peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/scripts
/requests_caching.py
""" | |
Usage: | |
python requests_caching.py --tasks=comma,separated,list,of,tasks --cache_requests=<true|refresh|delete]> | |
""" | |
import argparse | |
import os | |
from typing import List | |
import torch | |
from transformers import ( | |
pipeline as trans_pipeline, | |
) | |
from lm_eval import simple_evaluate | |
from lm_eval.evaluator import request_caching_arg_to_dict | |
from lm_eval.utils import eval_logger | |
MODULE_DIR = os.path.dirname(os.path.realpath(__file__)) | |
# Used to specify alternate cache path, useful if run in a docker container | |
# NOTE raw datasets will break if you try to transfer the cache from your host to a docker image | |
LM_HARNESS_CACHE_PATH = os.getenv("LM_HARNESS_CACHE_PATH") | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
MODEL = "EleutherAI/pythia-70m" | |
TASK = "text-generation" | |
def run_model_for_task_caching(tasks: List[str], cache_requests: str): | |
eval_logger.info(f"Loading HF model: {MODEL}") | |
trans_pipe = trans_pipeline( | |
task=TASK, model=MODEL, device=DEVICE, trust_remote_code=True | |
) | |
model = trans_pipe.model | |
tokenizer = trans_pipe.tokenizer | |
eval_logger.info( | |
f"Running simple_evaluate to cache request objects for tasks: {tasks}" | |
) | |
cache_args = request_caching_arg_to_dict(cache_requests=cache_requests) | |
eval_logger.info( | |
f"The following operations will be performed on the cache: {cache_requests}" | |
) | |
eval_data = simple_evaluate( | |
model="hf-auto", | |
model_args={ | |
"pretrained": model, | |
"tokenizer": tokenizer, | |
}, | |
limit=1, | |
device=DEVICE, | |
tasks=tasks, | |
write_out=True, | |
**cache_args, | |
) | |
return eval_data | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--tasks", | |
"-t", | |
default=None, | |
metavar="task1,task2", | |
) | |
parser.add_argument( | |
"--cache_requests", | |
type=str, | |
default=None, | |
choices=["true", "refresh", "delete"], | |
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.", | |
) | |
args = parser.parse_args() | |
tasks = args.tasks.split(",") | |
eval_data = run_model_for_task_caching( | |
tasks=tasks, model=MODEL, device=DEVICE, cache_requests=args.cache_requests | |
) | |