peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/scripts
/zeno_visualize.py
import argparse | |
import json | |
import os | |
import re | |
from pathlib import Path | |
import pandas as pd | |
from zeno_client import ZenoClient, ZenoMetric | |
from lm_eval.utils import eval_logger | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description="Upload your data to the Zeno AI evaluation platform to visualize results. This requires a ZENO_API_KEY in your environment variables. The eleuther harness must be run with log_samples=True and an output_path set for data to be written to disk." | |
) | |
parser.add_argument( | |
"--data_path", | |
required=True, | |
help="Where to find the results of the benchmarks that have been run. Uses the name of each subfolder as the model name.", | |
) | |
parser.add_argument( | |
"--project_name", | |
required=True, | |
help="The name of the generated Zeno project.", | |
) | |
return parser.parse_args() | |
def main(): | |
"""Upload the results of your benchmark tasks to the Zeno AI evaluation platform. | |
This scripts expects your results to live in a data folder where subfolders contain results of individual models. | |
""" | |
args = parse_args() | |
client = ZenoClient(os.environ["ZENO_API_KEY"]) | |
# Get all model subfolders from the parent data folder. | |
models = [ | |
os.path.basename(os.path.normpath(f)) | |
for f in os.scandir(Path(args.data_path)) | |
if f.is_dir() | |
] | |
assert len(models) > 0, "No model directories found in the data_path." | |
tasks = set(tasks_for_model(models[0], args.data_path)) | |
for model in models: # Make sure that all models have the same tasks. | |
old_tasks = tasks.copy() | |
task_count = len(tasks) | |
model_tasks = tasks_for_model(model, args.data_path) | |
tasks.intersection(set(model_tasks)) | |
if task_count != len(tasks): | |
eval_logger.warning( | |
f"All models must have the same tasks. {model} has tasks: {model_tasks} but have already recorded tasks: {old_tasks}. Taking intersection {tasks}" | |
) | |
assert ( | |
len(tasks) > 0 | |
), "Must provide at least one task in common amongst models to compare." | |
for task in tasks: | |
# Upload data for all models | |
for model_index, model in enumerate(models): | |
model_args = re.sub( | |
r"[\"<>:/\|\\?\*\[\]]+", | |
"__", | |
json.load( | |
open(Path(args.data_path, model, "results.json"), encoding="utf-8") | |
)["config"]["model_args"], | |
) | |
with open( | |
Path(args.data_path, model, f"{model_args}_{task}.jsonl"), | |
"r", | |
encoding="utf-8", | |
) as file: | |
data = json.loads(file.read()) | |
configs = json.load( | |
open(Path(args.data_path, model, "results.json"), encoding="utf-8") | |
)["configs"] | |
config = configs[task] | |
if model_index == 0: # Only need to assemble data for the first model | |
metrics = [] | |
for metric in config["metric_list"]: | |
metrics.append( | |
ZenoMetric( | |
name=metric["metric"], | |
type="mean", | |
columns=[metric["metric"]], | |
) | |
) | |
project = client.create_project( | |
name=args.project_name + (f"_{task}" if len(tasks) > 1 else ""), | |
view="text-classification", | |
metrics=metrics, | |
) | |
project.upload_dataset( | |
generate_dataset(data, config), | |
id_column="id", | |
data_column="data", | |
label_column="labels", | |
) | |
project.upload_system( | |
generate_system_df(data, config), | |
name=model, | |
id_column="id", | |
output_column="output", | |
) | |
def tasks_for_model(model: str, data_path: str): | |
"""Get the tasks for a specific model. | |
Args: | |
model (str): The name of the model. | |
data_path (str): The path to the data. | |
Returns: | |
list: A list of tasks for the model. | |
""" | |
dir_path = Path(data_path, model) | |
config = ( | |
json.load(open(Path(dir_path, "results.json"), encoding="utf-8"))["configs"], | |
) | |
return list(config[0].keys()) | |
def generate_dataset( | |
data, | |
config, | |
): | |
"""Generate a Zeno dataset from evaluation data. | |
Args: | |
data: The data to generate a dataset for. | |
config: The configuration of the task. | |
Returns: | |
pd.Dataframe: A dataframe that is ready to be uploaded to Zeno. | |
""" | |
ids = [x["doc_id"] for x in data] | |
labels = [x["target"] for x in data] | |
instance = [""] * len(ids) | |
if config["output_type"] == "loglikelihood": | |
instance = [x["arguments"][0][0] for x in data] | |
labels = [x["arguments"][0][1] for x in data] | |
elif config["output_type"] == "multiple_choice": | |
instance = [ | |
x["arguments"][0][0] | |
+ "\n\n" | |
+ "\n".join([f"- {y[1]}" for y in x["arguments"]]) | |
for x in data | |
] | |
elif config["output_type"] == "loglikelihood_rolling": | |
instance = [x["arguments"][0][0] for x in data] | |
elif config["output_type"] == "generate_until": | |
instance = [x["arguments"][0][0] for x in data] | |
return pd.DataFrame( | |
{ | |
"id": ids, | |
"data": instance, | |
"input_len": [len(x) for x in instance], | |
"labels": labels, | |
"output_type": config["output_type"], | |
} | |
) | |
def generate_system_df(data, config): | |
"""Generate a dataframe for a specific system to be uploaded to Zeno. | |
Args: | |
data: The data to generate a dataframe from. | |
config: The configuration of the task. | |
Returns: | |
pd.Dataframe: A dataframe that is ready to be uploaded to Zeno as a system. | |
""" | |
ids = [x["doc_id"] for x in data] | |
system_dict = {"id": ids} | |
system_dict["output"] = [""] * len(ids) | |
if config["output_type"] == "loglikelihood": | |
system_dict["output"] = [ | |
"correct" if x["filtered_resps"][0][1] is True else "incorrect" | |
for x in data | |
] | |
elif config["output_type"] == "multiple_choice": | |
system_dict["output"] = [ | |
", ".join([str(y[0]) for y in x["filtered_resps"]]) for x in data | |
] | |
system_dict["num_answers"] = [len(x["filtered_resps"]) for x in data] | |
elif config["output_type"] == "loglikelihood_rolling": | |
system_dict["output"] = [str(x["filtered_resps"][0]) for x in data] | |
elif config["output_type"] == "generate_until": | |
system_dict["output"] = [str(x["filtered_resps"][0]) for x in data] | |
system_dict["output_length"] = [len(str(x["filtered_resps"][0])) for x in data] | |
metrics = {} | |
for metric in config["metric_list"]: | |
if "aggregation" in metric and metric["aggregation"] == "mean": | |
metrics[metric["metric"]] = [x[metric["metric"]] for x in data] | |
system_dict.update(metrics) | |
system_df = pd.DataFrame(system_dict) | |
return system_df | |
if __name__ == "__main__": | |
main() | |