peacock-data-public-datasets-idc-14.backup.output
/
lm-evaluation-harness
/tests
/models
/test_vllm.py
from typing import List | |
import pytest | |
import torch | |
import lm_eval.tasks as tasks | |
from lm_eval.api.instance import Instance | |
task_manager = tasks.TaskManager() | |
class TEST_VLLM: | |
vllm = pytest.importorskip("vllm") | |
try: | |
from lm_eval.models.vllm_causallms import VLLM | |
LM = VLLM(pretrained="EleutherAI/pythia-70m") | |
except ModuleNotFoundError: | |
pass | |
torch.use_deterministic_algorithms(True) | |
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"]) | |
multiple_choice_task = task_list["arc_easy"] # type: ignore | |
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1) | |
MULTIPLE_CH: List[Instance] = multiple_choice_task.instances | |
generate_until_task = task_list["gsm8k"] # type: ignore | |
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10 | |
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1) | |
generate_until: List[Instance] = generate_until_task.instances | |
rolling_task = task_list["wikitext"] # type: ignore | |
rolling_task.build_all_requests(limit=10, rank=0, world_size=1) | |
ROLLING: List[Instance] = rolling_task.instances | |
# TODO: make proper tests | |
def test_logliklihood(self) -> None: | |
res = self.LM.loglikelihood(self.MULTIPLE_CH) | |
assert len(res) == len(self.MULTIPLE_CH) | |
for x in res: | |
assert isinstance(x[0], float) | |
def test_generate_until(self) -> None: | |
res = self.LM.generate_until(self.generate_until) | |
assert len(res) == len(self.generate_until) | |
for x in res: | |
assert isinstance(x, str) | |
def test_logliklihood_rolling(self) -> None: | |
res = self.LM.loglikelihood_rolling(self.ROLLING) | |
for x in res: | |
assert isinstance(x, float) | |