File size: 65,037 Bytes
370453e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 |
# Prequel
Trials and tribulations prior to the start of training.
For the trials and tribulation during the training see: [chronicles](chronicles.md).
# A100 experiments
200B
torch.optim.Adam:
16 nodes:
- 1st node: 61GB
- all nodes: 47GB
- performance: XXX
apex.optimizers.FusedAdam
16 nodes:
- 1st node: 51GB
- all nodes: 44GB
- performance: XXX
## Size
Here are some existing models around the same size with NLAYERS / NHIDDEN and their ratio:
| origin | size | layers | hidden | ratio |
| ------ | --- | -----: | -----: | ----: |
| bs | 104B | 64 | 11600 | 180 |
| meg-lm | 145B | 80 | 12288 | 154 |
| openai | 175B | 96 | 12288 | 128 |
| meg-lm | 310B | 96 | 16384 | 170 |
| msft | 530B | 105 | 20480 | 195 |
| | | | | |
Possible ideas:
- 205B: 112 / 12288 (ratio: 109) narrow
- 206B: 96 / 13312 (ratio: 139) closer to typical 150-200 ratio
Formula to get model size, used 150k dict roughly - need to update:
```
NHIDDEN=12288; NLAYERS=112; SEQ_LEN=2048; VOCAB_SIZE=150257; python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B, ratio={int(h/l)}')"
```
### 104B topology / memory usage
Looking at the current 104B topology to try to estimate the 200B model, though many things are different.
```
NLAYERS=64
NHIDDEN=11600
NHEADS=80
SEQ_LEN=2048
VOCAB_SIZE=50257
```
32 GB gpus.
TP=4, PP=32
breakdown:
104B:
- embedding size: `v*h`: `50257*11600` = 582_981_200 / 4 (TP=4) => 145_745_300 params per gpu for embedding
- one layer size: `12*h**2 + 13*h`: 1_614_870_800 / 4 (TP=4) => 403_717_700 params per gpu per layer
64 layers over PP=32 => 2 layers per gpu
Total params per gpu:
- gpu w/ emb: `2*403_717_700 + 145_745_300` = 953_180_700 params * 18 bytes = 17_157_252_600 bytes (17GB)
- gpu w/o emb: `2*403_717_700` = 807_435_400 params * 18 bytes = 14_533_837_200 (15GB)
plus activations memory
Checking the actual GPU allocations (nvidia-smi) - also need to take into account the cuda kernels (1271MiB)
- 22GB (w/ embed) (4GB activations memory)
- 18GB (w/o embed) (2GB activations memory)
## Hardware
384 A100s 80GB / 8 gpus per node
We can plan to use 384 gpus out of 416 as 4 nodes of 8 gpus need to remain reserved for when some nodes happen to be down.
Initially we will have only 144 gpus and then around mid-Feb we should have the rest.
## Possible config:
So a possible config is
- a single replica needs to fit 96 gpus and then we can do DP=4 to a full 384 gpus
- extrapolating from the current 104B setup we can have: TP=4/PP=24 @ 80GB + 150K vocab size (which is different from the 50k vocab in 104B - 3x bigger embed matrix plus bigger hidden size.
- most likely the embedding layer now will need to be partitioned together with the transformer blocks to do a good balancing of resources. e.g. in the current 1.3B ml setup, the 1st and last gpus use all of DRAM, but the rest of gpus use only 1/2 DRAM - and TLOPs are ~21 which is very underutilized.
### Possible topologies for 200B
206B:
```
NLAYERS=96
NHIDDEN=13312
NHEADS=XXX
SEQ_LEN=2048
VOCAB_SIZE=150_000
```
Overall we know that DP is the fastest, then PP, then TP - but for PP to be efficient we need a big bs.
The following math is trying various topologies to fit into 80GB gpus
* TP=4, PP=24
- embedding size: `v*h: 150257*13312` = `2_000_221_184 / 4` (TP=4) => 500_055_296 params per gpu for embedding
- one layer size: `12*h**2 + 13*h`: `2_126_685_184 / 4` (TP=4) => 531_671_296 params per gpu per layer
In other words 2B params per layer w/o TP, or 38GB (`2.12*18`) per layer.
So here we definitely need to balance embedding layer with transformer layers as they are of the same size, so overall 2+layers blocks to balance - and the constraint won't be Layers % PP = 0 but Layers+2 % PP = 0
So probably should do 94 layers?
94+2 layers over PP=24 => 4 layers per gpu
Total params per gpu (considering emb layer on par with transformers block):
- `4*531_671_296` = `2_126_685_184 params * 18` = 38_280_333_312 bytes
plus activations memory
40GB A100 takes 1573MiB for cuda kernels (probably about the same for 80GB? may be a bit larger)
`python -c "import torch; import time; torch.ones(1).cuda(); time.sleep(30)"` + check `nvidia-smi` output.
* TP=1, PP=96
~2B params per layer w/o TP, or 38GB (`2.12*18`) per layer.
but DS breaks if there isn't at least one transformer block per gpu :(
otherwise could do a very efficient:
```
1 | 2 | 3 ... | 95 | 96
emb | transf | transf ....| transf | emb
```
So in this scenario no TP is needed, which should make the assembly much faster. But will require DS fixing their side. or perhaps we could somehow hack on a dummy layer which will be like transformers? e.g. if it's the first or last layer it'd be an identity forward.
Also the pipeline will be super long here, which to make efficient will require a huge global batch size.
* with TP=2, PP=48
1_063_342_592 params per layer, 19_140_166_656 bytes (19GB) per layer
perhaps could squeeze 3 layers per gpu - but of course each gpu will be less efficient since it will have to do 3 pipe stages.
* Other considerations
Of course, we could make the model wider and shallower so for example with TP=1 perhaps we could fit a bit more width and use less layers. e.g. 530B model was NLAYERS=105, NHIDDEN=20480 - so it's much wider.
## Reconsiderations
After discussing the above plans with the NVIDIA and DeepSpeed experts it appears that:
1. on A100 and especially with much larger models TP>1 is much more beneficial and typically NVIDIA almost always uses TP=gpus_per_node for large models.
2. A very deep PP (96) would be very difficult to keep efficient unless the batch size per replica is huge.
3. Too many layers isn't great either:
Jared Casper writes:
> Regarding hidden size vs transformer layer (width vs depth), some feedback I got is that there isn't really a magic formula/process. We increase depth with the width but not as drastically as a typical vision model scaling. So you shouldn't go too crazy with depth. The width is somewhat constrained by sizes good for the GPU, so it seems a strategy is to push out the width but keep it nice numbers, then fill out with depth. You'll notice even at 530B params we only went to 105 layers.
## Existing models
Let's first analyse a few existing models and see how they fit 80GB A100 8-gpu nodes.
* 145B meg-lm
```
NHIDDEN=12288; NLAYERS=80; SEQ_LEN=2048; VOCAB_SIZE=50257; python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B, ratio={int(h/l)}')"
Model size: 146B, ratio=153
```
```
NHIDDEN=12288; VOCAB_SIZE=50257; TP=8; python -c "h=$NHIDDEN; v=$VOCAB_SIZE; tp=$TP; emb=v*h/10**6; blk=(12*h**2+13*h)/10**6; print(f'emb size: {emb:.2f}M/{emb*18:.2f}GB, per gpu {emb/tp:.2f}M/{emb*18/tp:.2f}GB'); print(f'blk size: {blk:.2f}M/{blk*18:.2f}GB, per gpu {blk/tp:.2f}M/{blk*18/tp:.2f}GB')"
emb size: 617.56M/11116.04GB, per gpu 77.19M/1389.51GB
blk size: 1812.10M/32617.78GB, per gpu 226.51M/4077.22GB
```
MP=64: TP=8, PP=8: one replica 64 gpus
so 80/8=10 PP stages per gpu: `10*4` =40GB of weights/optim states/grads per gpu
* 310B meg-lm
```
NHIDDEN=16384; NLAYERS=96; SEQ_LEN=2048; VOCAB_SIZE=50257; python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B, ratio={int(h/l)}')"
Model size: 310B, ratio=170
```
MP=128: TP=8, PP=16: one replica 128 gpus
```
NHIDDEN=16384; VOCAB_SIZE=50257; TP=8; python -c "h=$NHIDDEN; v=$VOCAB_SIZE; tp=$TP; emb=v*h/10**6; blk=(12*h**2+13*h)/10**6; print(f'emb size: {emb:.2f}M/{emb*18:.2f}GB, per gpu {emb/tp:.2f}M/{emb*18/tp:.2f}GB'); print(f'blk size: {blk:.2f}M/{blk*18:.2f}GB, per gpu {blk/tp:.2f}M/{blk*18/tp:.2f}GB')"
emb size: 823.41M/14821.39GB, per gpu 102.93M/1852.67GB
blk size: 3221.44M/57985.89GB, per gpu 402.68M/7248.24GB
```
so `96/16=6` PP stages per gpu: `6*7.3` ~44GB of weights/optim states/grads per gpu
* 530B msft
```
NHIDDEN=20480; NLAYERS=105; SEQ_LEN=2048; VOCAB_SIZE=50257; python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B, ratio={int(h/l)}')"
Model size: 310B, ratio=170
```
MP=280: TP=8, PP=35: one replica 280 gpus
(actually don't know the vocab size here, but it doesn't matter much)
```
NHIDDEN=20480; VOCAB_SIZE=50257; TP=8; python -c "h=$NHIDDEN; v=$VOCAB_SIZE; tp=$TP; emb=v*h/10**6; blk=(12*h**2+13*h)/10**6; print(f'emb size: {emb:.2f}M/{emb*18:.2f}GB, per gpu {emb/tp:.2f}M/{emb*18/tp:.2f}GB'); print(f'blk size: {blk:.2f}M/{blk*18:.2f}GB, per gpu {blk/tp:.2f}M/{blk*18/tp:.2f}GB')"
emb size: 1029.26M/18526.74GB, per gpu 128.66M/2315.84GB
blk size: 5033.43M/90601.76GB, per gpu 629.18M/11325.22GB
```
so 105/35=3 PP stages per gpu: `6*7.3` = ~33.9GB of weights/optim states/grads per gpu
To summarize we can see the setup is so that about half the gpu is loaded with weights / optim states / grad `*18`)
## Possible 200B models
So first let's try to come up with wider and shallower model to fit 200B, or wide if shallow doesn't work out too well topology/efficiency-wise
### 199B: 80 x 14336 (layers x hidden)
```
NHIDDEN=14336; NLAYERS=80; SEQ_LEN=2048; VOCAB_SIZE=150257; python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B, ratio={int(h/l)}')"
Model size: 199B, ratio=179
```
which gives us:
```
NHIDDEN=14336; VOCAB_SIZE=150257; TP=8; python -c "h=$NHIDDEN; v=$VOCAB_SIZE; tp=$TP; emb=v*h/10**6; blk=(12*h**2+13*h)/10**6; print(f'emb size: {emb:.2f}M/{emb*18:.2f}GB, per gpu {emb/tp:.2f}M/{emb*18/tp:.2f}GB'); print(f'blk size: {blk:.2f}M/{blk*18:.2f}GB, per gpu {blk/tp:.2f}M/{blk*18/tp:.2f}GB')"
emb size: 2154.08M/38773.52GB, per gpu 269.26M/4846.69GB
blk size: 2466.44M/44395.87GB, per gpu 308.30M/5549.48GB
```
TP=8, PP=10 - 80 gpus for one replica, can fit DP=4 (320/384)
so with PP=10, we get 80/10 = 8 stages per gpu = 44GB for normal layer gpus and 50GB for the 1st/last gpus due to 5G embedding, the remaining 28GB for activations (2GB is cuda kernels) - could be enough, but not sure.
If we are tight, consider giving the embedding its own layer so the total layers will be NLAYERS+2. In which case we need to change NLAYERS to be -2 than the wanted number to be able to spread out the layers evenly across gpus.
Also consider that the more tightly we pack each gpu the more PP stages it'll have - the slower it'll run.
And less GPUs means less processing power - so overall it's likely to be slower.
### 206B: 96 x 13312 (layers x hidden)
```
NHIDDEN=13312; NLAYERS=96; SEQ_LEN=2048; VOCAB_SIZE=150257; python -c "h=$NHIDDEN; l=$NLAYERS; s=$SEQ_LEN; v=$VOCAB_SIZE; print(f'Model size: {(l*(12*h**2 + 13*h) + v*h + s*h + 2*h) / 10**9 :.0f}B, ratio={int(h/l)}')"
Model size: 206B, ratio=138
```
```
NHIDDEN=13312; VOCAB_SIZE=150257; TP=8; python -c "h=$NHIDDEN; v=$VOCAB_SIZE; tp=$TP; emb=v*h/10**6; blk=(12*h**2+13*h)/10**6; print(f'emb size: {emb:.2f}M/{emb*18:.2f}GB, per gpu {emb/tp:.2f}M/{emb*18/tp:.2f}GB'); print(f'blk size: {blk:.2f}M/{blk*18:.2f}GB, per gpu {blk/tp:.2f}M/{blk*18/tp:.2f}GB')"
emb size: 2000.22M/36003.98GB, per gpu 250.03M/4500.50GB
blk size: 2126.69M/38280.33GB, per gpu 265.84M/4785.04GB
```
TP=8, PP=12 => 96 gpus for one replica, can fit DP=4 (384/384)
96/12 = 8 stages per gpu = ~40GB per gpu, same number of PP stages per gpu and more spare memory
This might be a better fit memory-wise if the one above is too close to being full, especially on gpu 0 and -1.
It also uses the full 384 gpu allocation in a snag way.
## Train time estimation
So A100 spec is 312 TFLOPS for BF16, so probably the best would be 50% of that so 150 TFLOPs (which we probably won't reach, but let's see), so yes I agree 150 is a bit too optimistic, but let's use it as the best case scenario.
Also we still don't know how many gpus we will end up using, but let's say we use them all - 350. Once we decide on the topology we will be able to replace 350 with the actual number of gpus we plan to use.
```
$ python -c 'print(f"{8*300*200_000_000/(350*150)/(3600*24):0.2f}", "days")'
105.82 days
```
so 3.5 months in the best case scenario. But more likely 150-200 days since it'll be less of everything plus potential issues. We will know more once we get access to 1 replica as then we should get a much better TFLOPs estimation, which will then be less for DP>1.
And this estimate is w/o encountering any problems, which is unlikely, so add more overhead for rollbacks and restarts.
Additionally this number is too optimistic since we won't have the full number of GPUs till about some time in end of February.
See [Estimate total training time](../../math#estimate-total-training-time) for details of the math.
XXX: actually are we training for 300B or 400B tokens because of Multi-Lingual? in which case it'll be 1/3 longer!
## Allocated hours sufficiency check
We currently have about 3M gpu hours left in our allocation.
Let's see how many total gpus hours the good estimation is:
```
python -c 'print(f"{8*300*200_000_000/150/3600:0.2f}", "compute hours")'
888888.89 compute hours
```
So if it takes 2x longer than the best case scenario, then we say need about 2M hours, so we are fine there.
Important nuance:
We will have an exclusive access only till May, and in May we will have to share with others.
So at the moment we will have only about 3 months of having access to all gpus.
## Best TFLOPs
To measure best TFLOPs possible use a single, so that it uses all the intra-node connections (NVLink) and doesn't touch the network:
### fp16
- 1 node, 1 replica
20B model: TP=8, PP=1, NLAYERS=8, NHIDDEN=14400, NHEADS=32, SEQ_LEN=2048, VOCAB_LENGTH=250k, GBS=2048
```
iteration 2/ 95367 | consumed samples: 4096 | consumed tokens: 8388608 | elapsed time per iteration (s): 769.99 | learning rate: 3.787E-06 | global batch size: 2048 | lm loss: 6.384045E+01 | loss scale: 4096.0 | grad norm: 15906.210 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 2.660 | TFLOPs: 108.47 |
```
- 10 nodes, 1 replica
200B model: TP=8, PP=10, NLAYERS=80, NHIDDEN=14400, NHEADS=96, SEQ_LEN=2048, VOCAB_LENGTH=250k, GBS=2048
```
iteration 2/ 95367 | consumed samples: 4096 | consumed tokens: 8388608 | elapsed time per iteration (s): 844.81 | learning rate: 3.787E-06 | global batch size: 2048 | lm loss: 6.373861E+01 | loss scale: 4096.0 | grad norm: 34132.119 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 2.424 | TFLOPs: 98.87 |
```
- 20 nodes, 2 replicas
```
iteration 2/ 95367 | consumed samples: 4096 | consumed tokens: 8388608 | elapsed time per iteration (s): 430.21 | learning rate: 3.787E-06 | global batch size: 2048 | lm loss: 6.373876E+01 | loss scale: 4096.0 | grad norm: 34027.311 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 4.761 | TFLOPs: 97.07 |
```
It was puzzling why much less memory was used for identical set up with DP=2 over DP=1 - but it's because of ZeRO-1 that saves a lot of memory across all GPUs!
| GPUs | Size | DP | TP | PP | MBS | Mem | TFLOPs | Notes |
| ---: | ---: | -: | -: | -: | --: | ---: | -----: | ----: |
| 8 | 20B | 1 | 8 | 1 | 1 | 67GB | 108.47 | 02-17 |
| 80 | 200B | 1 | 8 | 10 | 1 | 73GB | 98.87 | 02-17 |
| 160 | 200B | 2 | 8 | 10 | 1 | 51GB | 97.07 | 02-17 |
| | | | | | | | | |
*Mem = max memory used by the first (last) nodes with the word embedding matrix - max is 77GB
### bf16
- 1 node, 1 replica
20B model: TP=8, PP=1, NLAYERS=8, NHIDDEN=14400, NHEADS=32, SEQ_LEN=2048, VOCAB_LENGTH=250k, GBS=2048
```
iteration 2/ 95367 | consumed samples: 4096 | consumed tokens: 8388608 | elapsed time per iteration (s): 777.09 | learning rate: 3.787E-06 | global batch size: 2048 | lm loss: 6.381926E+01 | loss scale: 1.0 | grad norm: 2.763 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 2.635 | TFLOPs: 107.48 |
```
- 10 nodes, 1 replica
200B model: TP=8, PP=10, NLAYERS=80, NHIDDEN=14400, NHEADS=96, SEQ_LEN=2048, VOCAB_LENGTH=250k, GBS=2048
```
iteration 2/ 95367 | consumed samples: 4096 | consumed tokens: 8388608 | elapsed time per iteration (s): 853.81 | learning rate: 3.787E-06 | global batch size: 2048 | lm loss: 6.369443E+01 | loss scale: 1.0 | grad norm: 4.461 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 2.399 | TFLOPs: 97.82 |
```
- 20 nodes, 2 replicas
```
iteration 2/ 95367 | consumed samples: 4096 | consumed tokens: 8388608 | elapsed time per iteration (s): 434.14 | learning rate: 3.787E-06 | global batch size: 2048 | lm loss: 6.369444E+01 | loss scale: 1.0 | grad norm: 6.314 | num zeros: 0.0 | number of skipped iterations: 0 | number of nan iterations: 0 | samples per second: 4.717 | TFLOPs: 96.19 |
```
| GPUs | Size | DP | TP | PP | MBS | Mem | TFLOPs | Notes |
| ---: | ---: | -: | -: | -: | --: | ---: | -----: | ----: |
| 8 | 20B | 1 | 8 | 1 | 1 | 68GB | 107.48 | 02-17 |
| 80 | 200B | 1 | 8 | 10 | 1 | 75GB | 97.82 | 02-17 |
| 160 | 200B | 2 | 8 | 10 | 1 | 53GB | 96.19 | 02-17 |
| | | | | | | | | |
*Mem = max memory used by the first (last) nodes with the word embedding matrix - max is 77GB
So we can load more stages as we get higher DP as ZeRO spreads out over more gpus - smaller shards.
## dealing with JZ hanging on the large model
This overcomes the hanging which in general should lead to a slower throughput since all CUDA operations become synchronous and would block until they are done.
```
export CUDA_LAUNCH_BLOCKING=1
```
200B, measuring 2nd iter:
| GPUs | async | GBS | TFLOPs | Notes |
| ---: | ----: | ---: | -----: | -----------: |
| 80 | no | 512 | 91.04 | |
| 80 | yes | 512 | 97.20 | |
| 160 | no | 512 | 84.59 | |
| 160 | yes | 512 | 84.44 | |
| 160 | no | 2048 | 90.29 | |
| 160 | yes | 2048 | 90.25 | may hang |
| 320 | no | 2048 | 87.78 | |
| 320 | yes | 2048 | xxxx | always hangs |
| | | | | |
async/yes == `CUDA_LAUNCH_BLOCKING=0`
Interesting. Sometimes `CUDA_LAUNCH_BLOCKING=1` impacts the speed, at other times it doesn't. Perhaps with larger set ups it's barely impacting since there is a lot more comms than the small setup.
## Choosing the fastest 3D Topology
Benchmarking the fastest 3D topology. Constraint: can use at most 48 nodes of 8 gpu a100 80gb nodes.
Note that we want not the highest TFLOPs but the highest speed per iteration, since one can get high TFLOPs on less GPUs and overall slower speed, since we only care about how fast we can finish the training.
Also note that the model size isn't always the same as the number of layers had to be tweaked to fit PP and NHIDDEN was fixed - so speed/tflops can't be exactly compared - but can be brought back to the same size by tweaking NHIDDEN. also since for efficiency of finishing this process I take the snapshot of a single iteration (always 2nd) the data isn't exact and can fluctuate a bit. But the point of this exercise is to get a feel of which topology is superior.
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 200B | 12 | 8 | 4 | 1 | 2040 | 47GB | 189.06 | 91.67 | 02-20 |
| 45 | 200B | 9 | 8 | 5 | 1 | 2043 | 44GB | 208.40 | 88.84 | 02-20 |
| 48 | 194B | 8 | 8 | 6 | 1 | 2048 | 39GB | 183.64 | 92.38 | 02-20 |
| 42 | 191B | 6 | 8 | 7 | 1 | 2046 | 39GB | 202.99 | 94.20 | 02-20 |
| 48 | 200B | 6 | 8 | 8 | 1 | 2046 | 36GB | 185.75 | 93.59 | 02-20 |
| 45 | 205B | 5 | 8 | 9 | 1 | 2045 | 37GB | 199.14 | 94.23 | 02-20 |
| 40 | 200B | 4 | 8 | 10 | 1 | 2048 | 35GB | 221.21 | 94.39 | 02-20 |
| 44 | 195B | 4 | 8 | 11 | 1 | 2048 | 32GB | 197.15 | 92.67 | 02-20 |
| 48 | 183B | 4 | 8 | 12 | 1 | 2048 | 30GB | 172.40 | 90.84 | 02-20 |
| | | | | | | | | | | |
* Sec/it throughput at iteration 2
As you can see the 80GB is totally unnecessary for MBS=1 as we are bound by compute of each gpu and we barely use half the gpu memory and trying to pack more on each gpu slows the ensemble down. This is of course thanks to ZeRO which shards all fp32 optim+grad+params over all gpus - so the more gpus you use the less memory is needed to accomodate the same model size, regardless of DP/TP/PP topology. (with MBS=1 that is so that the activations don't take too much memory)
This table doesn't take into account batch size rampup which needs to be divisible by DP as it progressed from 32, 64, ... so really we have an additional constraint of `DP % 4 = 0` and `GBS % 32 = 0`.
which means from the above list only a few configs are suitable, and these are:
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 194B | 8 | 8 | 6 | 1 | 2048 | 39GB | 183.64 | 92.38 | 02-20 |
| 40 | 200B | 4 | 8 | 10 | 1 | 2048 | 35GB | 221.21 | 94.39 | 02-20 |
| 44 | 195B | 4 | 8 | 11 | 1 | 2048 | 32GB | 197.15 | 92.67 | 02-20 |
| 48 | 183B | 4 | 8 | 12 | 1 | 2048 | 30GB | 172.40 | 90.84 | 02-20 |
| | | | | | | | | | | |
Increasing MBS will speed up things a bit and we have a ton of spare memory to accommodate a larger MBS, but have to ensure we get the batch size ramp up sorted out. So if the rampup steps are in increments of 32 with DP=4 highest MBS is 8. and `log2(MBS) % 2 = 0`.
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 194B | 8 | 8 | 6 | 1 | 2048 | 39GB | 183.64 | 92.38 | 02-20 |
| 48 | 194B | 8 | 8 | 6 | 2 | 2048 | 45GB | 172.36 | 98.43 | 02-20 |
| 48 | 194B | 8 | 8 | 6 | 4 | 2048 | 56GB | 173.92 | 97.55 | 02-20 |
| 48 | 194B | 8 | 8 | 6 | 8 | 2048 | 75GB | 192.42 | 88.17 | 02-20 |
| | | | | | | | | | | |
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ---------------------: |
| 40 | 200B | 4 | 8 | 10 | 1 | 2048 | 35GB | 221.21 | 94.39 | 02-20 |
| 40 | 200B | 4 | 8 | 10 | 2 | 2048 | 43GB | 207.92 | 100.43 | 02-20 |
| 40 | 200B | 4 | 8 | 10 | 4 | 2048 | 55GB | 208.18 | 100.30 | 02-20 |
| 40 | 200B | 4 | 8 | 10 | 8 | 2048 | 76GB | 229.69 | 90.91 | 02-20 too close to OOM |
| | | | | | | | | | | |
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 44 | 195B | 4 | 8 | 11 | 1 | 2048 | 32GB | 197.15 | 92.67 | 02-20 |
| 44 | 195B | 4 | 8 | 11 | 2 | 2048 | 41GB | 186.65 | 97.89 | 02-20 |
| 44 | 195B | 4 | 8 | 11 | 4 | 2048 | 53GB | 185.79 | 98.34 | 02-20 |
| 44 | 195B | 4 | 8 | 11 | 8 | 2048 | 75GB | 206.62 | 88.42 | 02-20 |
| | | | | | | | | | | |
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 183B | 4 | 8 | 12 | 1 | 2048 | 30GB | 172.40 | 90.84 | 02-20 |
| 48 | 183B | 4 | 8 | 12 | 2 | 2048 | 39GB | 161.96 | 96.69 | 02-20 |
| 48 | 183B | 4 | 8 | 12 | 4 | 2048 | 50GB | 163.32 | 95.89 | 02-20 |
| | | | | | | | | | | |
The models are slightly different in size so can't compare absolute numbers.
But clearly MBS=2 is about the best, MBS=4 is close by.
If we utilize all 48 nodes then we have PP6 and PP12 as contenders.
## tile and wave quantization
A100 80GB has 108 SMs
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#tile-quant
```
nhidden % 128 = 0
```
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#wave-quant
```
nhidden % 108 = 0
```
TP=8:
```
nhidden % 8 = 0
```
Combining all 3:
```
nhidden = 108*8*c = 864*c
```
which gives 864*16 = 13824 (187B) => so let's try to compare with 14400 (200B)
XXX: This is a total guestimate - need proper math
| Nodes | Size | NHIDDEN | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 40 | 200B | 14400 | 4 | 8 | 10 | 1 | 2048 | 35GB | 221.21 | 94.39 | 02-20 |
| 40 | 187B | 13824 | 4 | 8 | 10 | 1 | 2048 | 33GB | 160.29 | 120.05 | 02-20 |
| 40 | 187B | 13824 | 4 | 8 | 10 | 2 | 2048 | 39GB | 151.07 | 127.38 | 02-20 |
| 40 | 187B | 13824 | 4 | 8 | 10 | 4 | 2048 | 53GB | 147.43 | 130.53 | 02-20 |
| 40 | 187B | 13824 | 4 | 8 | 10 | 8 | 2048 | 73GB | 152.51 | 126.18 | 02-20 |
| | | | | | | | | | | | |
## TFLOPs calculation improved
Until now we used an estimated TFLOPs calculator which was under-reporting the real TFLOPs. And we couldn't compare those to the TFLOPs reported by [Megatron-LM](https://github.com/NVIDIA/Megatron-LM#readme).
Deepak Narayanan fixed this here: https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/251
So from here on all the TLOPs reports will be about 3% higher - so can't exactly compare to the earlier numbers in this document.
## 48 node contenders
So we have 2 set ups that fit well into 48 nodes - and that's PP=6/DP=8 or PP=12/DP=4
NHIDDEN=14336 / NLAYERS=72
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 181B | 4 | 8 | 12 | 1 | 2048 | 29GB | 143.31 | 112.49 | 02-21 |
| 48 | 181B | 4 | 8 | 12 | 2 | 2048 | 37GB | 134.02 | 120.29 | 02-21 |
| 48 | 181B | 4 | 8 | 12 | 4 | 2048 | 49GB | 123.69 | 130.34 | 02-21 |
| 48 | 181B | 4 | 8 | 12 | 8 | 2048 | 69GB | 129.26 | 124.72 | 02-21 |
| | | | | | | | | | | |
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 181B | 8 | 8 | 6 | 1 | 2048 | 38GB | 139.82 | 115.31 | 02-21 |
| 48 | 181B | 8 | 8 | 6 | 2 | 2048 | 44GB | 131.02 | 123.05 | 02-21 |
| 48 | 181B | 8 | 8 | 6 | 4 | 2048 | 56GB | 121.48 | 132.71 | 02-21 |
| | | | | | | | | | | |
So it's either:
* DP=4, PP=12, MBS=4: 123 secs/it | 130 TFLOPS
* DP=8, PP=06, MBS=4: 121 secs/it | 133 TFLOPS
Let's compare again with another setup:
NHIDDEN=13824 / NLAYERS=84
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 196B | 4 | 8 | 12 | 2 | 2048 | 39GB | 143.89 | 121.45 | 02-21 |
| 48 | 196B | 4 | 8 | 12 | 4 | 2048 | 52GB | 133.12 | 131.27 | 02-21 |
| 48 | 196B | 8 | 8 | 6 | 2 | 2048 | 65GB | 141.41 | 123.58 | 02-21 |
| 48 | 196B | 8 | 8 | 6 | 4 | 2048 | 56GB | 130.31 | 134.11 | 02-21 |
| | | | | | | | | | | |
This one has 15% more layers than the previous tables, so here the less-PP-stages setup wins, that is:
* DP=8, PP=06, MBS=4: 130.31 secs/it | 134.11 TFLOPS
The following has so far given the highest TFLOPs, as we are packing more into less GPUs so 64 gpus are left out, and of course the total speed for iteration is much slower. So the key is the iteration speed and not TFLOPs.
NHIDDEN=13824 / NLAYERS=80
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 40 | 187B | 8 | 8 | 10 | 4 | 2048 | GB | 147.04 | 135.92 | 02-21 |
| | | | | | | | | | | |
Max possible TFLOPs check for `NHIDDEN=14336`:
NHIDDEN=14336 / NLAYERS=6 / GBS=512
| Nodes | Size | Layers | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -----: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 1 | 18B | 6 | 8 | 1 | 2 | 2048 | 54GB | 130.43 | 143.48 | 02-21 |
| 1 | 18B | 6 | 8 | 1 | 2 | 2048 | 54GB | 119.19 | 157.02 | 02-21 |
| 1 | 18B | 10 | 8 | 1 | 1 | 2048 | 80GB | 205.52 | 142.59 | 02-21 |
| | | | | | | | | | | |
Trying with ZeRO_STAGE=0/1
NHIDDEN=14336 / NLAYERS=72
| Nodes | Size | ZS | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 181B | 1 | 4 | 8 | 12 | 2 | 2048 | 37GB | 120.29 | 134.02 | 02-21 |
| 48 | 181B | 0 | 4 | 8 | 12 | 2 | 2048 | 72GB | 137.34 | 113.02 | 02-21 |
| | | | | | | | | | | | |
* ZS = ZERO_STAGE
XXX: currently can't test `ZeRO_STAGE=0` on master, or `ZeRO_STAGE=1` on the special branch - so need to retest the above on the same branch.
## Final round comparison
all NHEADS=64 (above too)
NHIDDEN=12288 / NLAYERS=96
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 177B | 8 | 8 | 6 | 2 | 2048 | GB | 136.73 | 115.73 | 02-23 |
| 48 | 177B | 8 | 8 | 6 | 4 | 2048 | GB | 122.96 | 128.69 | 02-23 |
| | | | | | | | | | | |
| | | | | | | | | | | |
NHIDDEN=13312 / NLAYERS=84
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 4 | 8 | 12 | 4 | 2048 | GB | 125.52 | 129.29 | 02-23 |
| 48 | 182B | 8 | 8 | 6 | 2 | 2048 | GB | 135.55 | 119.72 | 02-23 |
| 48 | 182B | 8 | 8 | 6 | 4 | 2048 | GB | 122.93 | 132.00 | 02-23 |
| | | | | | | | | | | |
NHIDDEN=13824 / NLAYERS=78
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 8 | 6 | 4 | 2048 | GB | 121.28 | 133.93 | 02-23 |
| | | | | | | | | | | |
NHIDDEN=14336 / NLAYERS=72
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | --: | ---: | -----: | -----: | ----: |
| 48 | 181B | 4 | 8 | 12 | 4 | 2048 | GB | 123.79 | 130.24 | 02-23 |
| 48 | 181B | 8 | 8 | 6 | 4 | 2048 | GB | 120.85 | 133.40 | 02-23 |
| | | | | | | | | | | |
## NHEADs comparison
NHIDDEN=14336 / NLAYERS=72
not many variations around 100 as `14336 = 2**11*7` and the constraint is `(HEADS/TP)*MBS % 4 = 0` or for `MBS=4, TP=8` `HEADS % 16 = 0`
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 181B | 8 | 8 | 6 | 4 | 16 | 2048 | 54GB | 121.03 | 133.20 | 02-24 |
| 48 | 181B | 8 | 8 | 6 | 4 | 32 | 2048 | 55GB | 124.01 | 130.00 | 02-23 |
| 48 | 181B | 8 | 8 | 6 | 4 | 64 | 2048 | 55GB | 120.18 | 134.15 | 02-23 |
| 48 | 181B | 8 | 8 | 6 | 4 | 112 | 2048 | 53GB | 138.72 | 116.21 | 02-23 |
| 48 | 181B | 8 | 8 | 6 | 4 | 128 | 2048 | 55GB | 124.89 | 129.08 | 02-23 |
| 48 | 181B | 8 | 8 | 6 | 4 | 256 | 2048 | 54GB | 132.85 | 121.35 | 02-24 |
| | | | | | | | | | | | |
NHIDDEN=13824 / NLAYERS=78
here `13824 = 2**9*3**3`
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 8 | 6 | 4 | 64 | 2048 | GB | 121.28 | 133.93 | 02-23 |
| 48 | 182B | 8 | 8 | 6 | 4 | 96 | 2048 | 59GB | 124.75 | 130.21 | 02-23 |
| 48 | 182B | 8 | 8 | 6 | 4 | 128 | 2048 | 54GB | 162.72 | 99.82 | 02-23 |
| | | | | | | | | | | | |
NHEADS=108 breaks constraints for invoking optimized fused softmax kernel
NHIDDEN=13312 / NLAYERS=84
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 8 | 6 | 4 | 64 | 2048 | GB | 122.93 | 132.00 | 02-23 |
| 48 | 182B | 8 | 8 | 6 | 4 | 128 | 2048 | GB | 129.17 | 125.63 | 02-23 |
| | | | | | | | | | | | |
NHIDDEN=12288 / NLAYERS=96
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 177B | 8 | 8 | 6 | 4 | 64 | 2048 | GB | 122.96 | 128.69 | 02-24 |
| 48 | 177B | 8 | 8 | 6 | 4 | 96 | 2048 | GB | 145.40 | 108.83 | 02-24 |
| 48 | 177B | 8 | 8 | 6 | 4 | 128 | 2048 | GB | 129.42 | 122.27 | 02-24 |
| | | | | | | | | | | | |
## GBS Variations
Note: A100s PCI-Express/NUMA was improved today so all TFLOPs have changed for the better (1-5%) - thus do not compare today's numbers to yesterday's.
NLAYERS=72
NHIDDEN=14336
NHEADS=64
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | ---: | ---: | -----: | -----: | ----: |
| 48 | 181B | 8 | 8 | 6 | 4 | 1568 | 56GB | 113.01 | 109.22 | 02-25 |
| 48 | 181B | 8 | 8 | 6 | 4 | 2048 | 55GB | 114.11 | 141.27 | 02-25 |
| 48 | 181B | 8 | 8 | 6 | 6 | 2016 | 66GB | 123.57 | 128.43 | 02-25 |
| 48 | 181B | 4 | 8 | 12 | 4 | 1568 | GB | 92.75 | 133.08 | 02-25 |
| 48 | 181B | 4 | 8 | 12 | 4 | 2048 | 49GB | 117.07 | 137.70 | 02-25 |
| 48 | 181B | 4 | 8 | 12 | 2 | 1568 | GB | 99.93 | 123.51 | 02-25 |
| 48 | 181B | 4 | 8 | 12 | 2 | 2048 | GB | 128.82 | 125.15 | 02-25 |
| | | | | | | | | | | |
some more configs with lower PP:
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | ---: | ---: | -----: | -----: | ----: |
| 48 | 181B | 6 | 8 | 8 | 4 | 2016 | 52GB | 113.16 | 140.24 | 02-25 |
| 48 | 181B | 12 | 8 | 4 | 2 | 2016 | 53GB | 125.52 | 126.43 | 02-25 |
| 48 | 181B | 12 | 8 | 4 | 4 | 2016 | 59GB | 114.81 | 138.22 | 02-25 |
| 48 | 181B | 24 | 8 | 2 | 1 | 2016 | 65GB | 145.45 | 109.11 | 02-25 |
| 48 | 181B | 24 | 8 | 2 | 2 | 2016 | 76GB | 136.13 | 116.58 | 02-25 |
| 48 | 181B | 48 | 8 | 1 | 1 | 2016 | OOM | | | 02-25 |
| | | | | | | | | | | |
Tweaking TP for the first time from the TP=8 is best assumption. But if the model fits into smaller TP it should be faster!
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | ---: | ---: | -----: | -----: | ----: |
| 48 | 181B | 8 | 4 | 12 | 4 | 2048 | 60GB | 111.89 | 144.08 | 02-25 |
| 48 | 181B | 8 | 4 | 12 | 2 | 2048 | 44GB | 110.48 | 145.92 | 02-25 |
| 48 | 181B | 8 | 4 | 12 | 2 | 2048 | 38GB | 113.54 | 141.99 | 02-25 |
| 48 | 181B | 16 | 4 | 6 | 4 | 2048 | 75GB | 117.11 | 137.66 | 02-25 |
| 48 | 181B | 16 | 4 | 6 | 2 | 2048 | 57GB | 111.71 | 144.31 | 02-25 |
| 48 | 181B | 16 | 2 | 12 | 2 | 2048 | 63GB | 112.50 | 143.30 | 02-25 |
| 48 | 181B | 32 | 2 | 6 | 2 | 2048 | OOM | | | 02-25 |
| 48 | 181B | 32 | 2 | 6 | 1 | 2048 | OOM | | | 02-25 |
| 48 | 181B | 8 | 2 | 24 | 1 | 2048 | 44GB | 119.53 | 134.88 | 02-25 |
| 48 | 181B | 8 | 2 | 24 | 2 | 2048 | 53GB | 122.75 | 131.33 | 02-25 |
| 48 | 181B | 4 | 4 | 24 | 1 | 2048 | GB | 130.60 | 123.44 | 02-25 |
| | | | | | | | | | | |
NHIDDEN=12288 / NLAYERS=96
| Nodes | Size | DP | TP | PP | MBS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | ---: | ---: | -----: | -----: | ----: |
| 48 | 177B | 8 | 1 | 48 | 1 | 2048 | 58GB | 142.17 | 111.30 | 02-25 |
| | | | | | | | | | | |
## Another round of NHEADS
to retest with TP<8 variations
NHIDDEN=13824 / NLAYERS=78
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 4 | 12 | 1 | 64 | 2048 | | 148.24 | 109.57 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 2 | 64 | 2048 | 48GB | 103.51 | 156.92 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 2 | 96 | 2048 | 48GB | 107.12 | 151.64 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 2 | 128 | 2048 | | 147.41 | 110.19 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 4 | 64 | 2048 | | 106.72 | 152.21 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 4 | 96 | 2048 | | 110.31 | 147.25 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 4 | 128 | 2048 | | 153.90 | 105.54 | 02-26 |
| 48 | 182B | 8 | 8 | 6 | 4 | 96 | 2048 | | 118.12 | 137.51 | 02-26 |
| 48 | 182B | 8 | 8 | 6 | 4 | 128 | 2048 | | 156.84 | 103.56 | 02-26 |
| | | | | | | | | | | | |
NHIDDEN=14336 / NLAYERS=72
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | ---: | ---: | -----: | -----: | ----: |
| 48 | 181B | 8 | 4 | 12 | 2 | 64 | 2048 | | 110.42 | 146.00 | 02-26 |
| 48 | 181B | 8 | 4 | 12 | 2 | 128 | 2048 | | 114.02 | 141.39 | 02-26 |
| 48 | 181B | 8 | 4 | 12 | 4 | 128 | 2048 | | 137.53 | 117.23 | 02-26 |
| 48 | 181B | 8 | 8 | 6 | 4 | 64 | 2048 | | 113.95 | 141.47 | 02-26 |
| 48 | 181B | 8 | 8 | 6 | 4 | 128 | 2048 | | 116.06 | 138.90 | 02-26 |
| | | | | | | | | | | | |
NHIDDEN=13312 / NLAYERS=84
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | ---: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 4 | 12 | 2 | 64 | 2048 | | 103.82 | 156.46 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 4 | 64 | 2048 | | 113.21 | 143.34 | 02-26 |
| 48 | 182B | 8 | 8 | 6 | 2 | 64 | 2048 | | 129.61 | 125.21 | 02-26 |
| | | | | | | | | | | | |
## Batchsize Warmup
NHIDDEN=13824 / NLAYERS=78
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 4 | 12 | 2 | 96 | 512 | | 35.77 | 113.52 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 2 | 96 | 1024 | | 59.65 | 136.15 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 2 | 96 | 1536 | | 83.11 | 146.59 | 02-26 |
| 48 | 182B | 8 | 4 | 12 | 2 | 96 | 2048 | | 107.12 | 151.64 | 02-26 |
| | | | | | | | | | | | |
## Re-do
78/12=6.5 - so the last stage has 1 block, while the rest have 7 - which is uneven. So that config is not optimal as it wastes gpus.
NHIDDEN=13824 / NLAYERS=78
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 182B | 8 | 8 | 6 | 2 | 96 | 2048 | GB | 133.57 | 121.61 | 02-27 |
| 48 | 182B | 8 | 8 | 6 | 4 | 96 | 2048 | 59GB | 118.24 | 137.38 | 02-27 |
| 48 | 182B | 16 | 4 | 6 | 2 | 96 | 2048 | GB | | | 02-27 |
| 48 | 182B | 16 | 4 | 6 | 4 | 96 | 2048 | 75GB | 115.55 | 140.57 | 02-27 |
| | | | | | | | | | | | |
HIDDEN=12288; NLAYERS=106; regex partition_method='type:transformer|embed')
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 195B | 8 | 4 | 12 | 2 | 96 | 2048 | 44GB | 112.69 | 154.86 | 02-27 |
| 48 | 195B | 8 | 4 | 12 | 2 | 64 | 2048 | GB | 110.96 | 157.27 | 02-27 |
| | | | | | | | | | | | |
## Rebalancing layers
Do not compare these numbers to the previous ones. For 2 reasons:
- First, from now on the testing is happening with BF16 optimizer that was just written to accumulate gradients in fp32, so it is more memory heavy and is a bit slower - this is compared to fp16 which grad accumulates in fp16. The additional memory usage is 4bytes x params and it's not sharded across gpus.
- I implemented and enabled `--pp-partition-method 'type:transformer|embedding'` so we use 2 layers less, to match `2+nlayers*PP` math to get a perfect balance giving each embedding layer its own slot on par with transformer layers. This is because 250k embedding matrix takes as much space as a single transformer layer.
HIDDEN=12288; NLAYERS=106; Model size: 195B, ratio=115
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 195B | 8 | 4 | 12 | 2 | 64 | 2048 | 67GB | 116.54 | 149.75 | 02-28 |
| 48 | 195B | 8 | 4 | 12 | 2 | 96 | 2048 | 65GB | 118.79 | 146.90 | 02-28 |
| 48 | 195B | 8 | 4 | 12 | 2 | 128 | 2048 | 67GB | 121.42 | 143.73 | 02-28 |
| 48 | 195B | 8 | 4 | 12 | 4 | 96 | 2048 | 79GB | 120.34 | 145.01 | 02-28 |
| | | | | | | | | | | | |
HIDDEN=12288; NLAYERS=100; Model size: 184B, ratio=122
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 184B | 16 | 4 | 6 | 2 | 64 | 2048 | OOM | x | x | 02-28 |
| 48 | 184B | 16 | 4 | 6 | 1 | 64 | 2048 | OOM | x | x | 02-28 |
| 48 | 184B | 8 | 8 | 6 | 2 | 64 | 2048 | 61GB | 139.72 | 117.91 | 02-28 |
| 48 | 184B | 8 | 8 | 6 | 4 | 64 | 2048 | 72GB | 120.96 | 136.20 | 02-28 |
| | | | | | | | | | | | |
NHIDDEN=13312; NLAYERS=82; Model size: 178B, ratio=162
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 178B | 4 | 8 | 12 | 4 | 64 | 2048 | 52GB | 111.79 | 141.76 | 02-28 |
| 48 | 178B | 8 | 4 | 12 | 2 | 64 | 2048 | 63GB | 104.45 | 151.71 | 02-28 |
| 48 | 178B | 8 | 4 | 12 | 2 | 104 | 2048 | 62GB | 123.71 | 128.10 | 02-28 |
| 48 | 178B | 8 | 4 | 12 | 2 | 128 | 2048 | 60GB | 108.78 | 145.68 | 02-28 |
| 48 | 178B | 8 | 4 | 12 | 4 | 64 | 2048 | 74GB | 104.82 | 151.18 | 02-28 |
| | | | | | | | | | | | |
NHIDDEN=13312; NLAYERS=94 Model size: 203B, ratio=141
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 203B | 8 | 4 | 12 | 2 | 128 | 2048 | 67GB | 124.10 | 146.12 | 02-28 |
| | | | | | | | | | | | |
NHIDDEN=14336; NLAYERS=70; Model size: 176B, ratio=204
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 176B | 4 | 8 | 12 | 2 | 64 | 2048 | 40GB | 121.63 | 128.92 | 02-28 |
| 48 | 176B | 8 | 4 | 12 | 2 | 64 | 2048 | 59GB | 102.03 | 153.68 | 02-28 |
| 48 | 176B | 8 | 4 | 12 | 2 | 112 | 2048 | 59GB | 104.50 | 150.05 | 02-28 |
| 48 | 176B | 8 | 4 | 12 | 2 | 128 | 2048 | 60GB | 105.89 | 148.08 | 02-28 |
| 48 | 176B | 8 | 4 | 12 | 4 | 64 | 2048 | 73GB | 102.27 | 153.33 | 02-28 |
| | | | | | | | | | | | |
NHIDDEN=14336; NLAYERS=82; Model size: 206B, ratio=174
| Nodes | Size | DP | TP | PP | MBS | NHEADS | GBS | Mem | Sec/it | TFLOPs | Notes |
| ----: | ---: | -: | -: | -: | --: | -----: | --: | ---: | -----: | -----: | ----: |
| 48 | 206B | 8 | 4 | 12 | 2 | 128 | 2048 | OOM | | | 02-28 |
| | | | | | | | | | | | |
(was quickly getting the memory snapshot with: `pdsh -w jean-zay-iam01 "source ~/.pdshrc; nvidia-smi"`)
## Hanging Issue
Here we are dealing with 320-384 A100 GPUs working in ensemble.
It appears that the system can't handle heavy NCCL traffic or something of sorts. It can handle less than 100B model over 40nodes (TP=8/PP=10/DP=4). It can handle 200B over 10 nodes. At 100B over 20-40 nodes random GPUs start not to respond and the whole system hangs until it times out. I was able to test with the same NHIDDEN and growing the model on the layer dimension:
- 10 layers - 25B works
- 20 layers - 50B works
- 40 layers - 100B hangs after succeeding iteration 1
I was just starting to diagnose on the hidden dimension and now 13/52 nodes are down and so I can't continue with this line of work, since 40 nodes gave me a reliable failure and 20 nodes is intermittent failure, so it's not good for diagnosing.
This is for a single replica of 10 nodes with 200B model + 250k vocab.
I think the failed nodes that crashed and didn't recover are high suspects for having internal problems. Even though when I tested in groups of 10 nodes everything was dandy - note - the same 200B model.
One more data point - Deepspeed ZeRO shards data over all gpus - so the more GPUs are involved the more communication happens. This is totally orthogonal to DP.
The next day:
Most of the nodes have come back this morning so continuing the dimensional growing experiments.
To remind, growing on the layer dimension and keeping hidden at `1024*14` worked until 40 layers were reached where it was hanging. So it couldn't handle 100B model in this dimension.
Now I'm keeping the layers dimension frozen to 80 and growing the nhidden dimension, starting from `1024*4` - proving that it works and then incrementing the size until it hangs:
- `1024*10` works (100B model)
- `1024*12` hangs (145B model)
So these 2 experiments both show that when the inter-node traffic exceeds certain level - the system is fails.
So it's not the size of each `all_reduce`/`broadcast` packet since at full NHIDDEN but only 1/4 of layers everything is just fine.
And BTW to get a quick success/failure indication I'm working with `GLOBAL_BATCH_SIZE=64` so PP is very inefficient, but it doesn't matter for the purpose of this experiment.
Using `py-spy` on the processes to dump python call stacks I have derived the same story on each node:
On each node with TP=8 - i.e. each node is only TP - the same situation: (checked nodes 0 and 1 only)
6 processes are in:
```
Thread 835990 (active): "MainThread"
train (megatron/training.py:915)
pretrain (megatron/training.py:187)
<module> (pretrain_gpt.py:239)
```
2 processes are in:
```
Thread 835995 (active): "MainThread"
broadcast (torch/distributed/distributed_c10d.py:1191)
_aggregate_total_loss (deepspeed/runtime/pipe/engine.py:540)
train_batch (deepspeed/runtime/pipe/engine.py:330)
train_step (megatron/training.py:436)
train (megatron/training.py:851)
pretrain (megatron/training.py:187)
<module> (pretrain_gpt.py:239)
```
so 6 processes finished `train_step` and now are trying to:
```
torch.distributed.all_reduce(
done_cuda, op=torch.distributed.ReduceOp.MAX)
```
but for some reason 2 processes never finished the `train_step` and are stuck broadcasting I presume to the other 6 processes, which have long gone.
So this hanging happens partially in Deepspeed and partially in Megatron-LM, somehow processes get out of sync even though everything works just fine on a smaller scale. But the issue could be brought on by apex's `FusedAdam` as we have dealt with a serious issue in it as well a week earlier, but it could also be pytorch, NCCL or some internal system issue. It's very hard to find the cause.
As I shared earlier the problem doesn't exist or goes away if either of 2 things happens:
- the model is under 100B (short stack of layer or narrow hidden) and 20 or more nodes are used in a single job
- `CUDA_LAUNCH_BLOCKING=1`
Topology is TP=8, PP=10, DP=4
It has been very difficult to work on diagnosing this issue since every time I run the hanging setup I would lose a few nodes and since I'm 10h behind JeanZay, nobody is around there to reboot the nodes.
So first of all it appears that `CUDA_LAUNCH_BLOCKING=1` removes the hanging issue and I did several performance checks and it surprisingly has no impact on this framework at this scale. Normally, it should make things much slower as it makes CUDA ops synchronous.
### py-spying all processes
After discussing this issue with Samyam I first run `py-spy` on all processes, but alas several processes weren't responding, so we had no idea how to tell where they were hanging.
For posterity here is the process:
In one console, first allocate the gpus:
```
salloc --partition=gpu_p5 --constraint=a100 --reservation=hug --nodes=2 --ntasks-per-node=1 --cpus-per-task=64 --hint=nomultithread --gres=gpu:8 --time 20:00:00 --account=six@a100
```
We are doing that so that if SLURM kills the processes we could still access those.
Now run the training job, which calls the main `srun` with all the gpus:
```
bash 200B-n40-bf16-mono.slurm
```
Wait till the program hangs.
Now in another console get the `SLURM_JOBID` (or get it from `salloc` log):
```
squeue -u `whoami` -o "%.16i %.9P %.26j %.8T %.10M %.8l %.6D %.20S %R"
```
Adjust jobid with `SLURM_JOBID` from above:
```
srun --jobid=2180718 --gres=gpu:0 --nodes=40 --tasks-per-node=1 --output=trace-%N.out sh -c 'ps aux | grep python | egrep -v "grep|srun" | grep `whoami` | awk "{print \$2}" | xargs -I {} py-spy dump --native --pid {}' || echo "failed"
```
Must use `--gres=gpu:0` for the monitor `srun` or otherwise it will block until the first `srun` exits
I also attempted using `pdsh` via `ds_ssh`, but somehow I wasn't able to run `py-spy` remotely - the main issue was that remote `ssh` command wasn't giving the same env as when I was logged in interactively via `ssh`. But if you have `sudo` access on the compute nodes than you could do:
First prepare `hostfile`:
```
function makehostfile() {
perl -e '$slots=split /,/, $ENV{"SLURM_STEP_GPUS"};
$slots=8 if $slots==0; # workaround 8 gpu machines
@nodes = split /\n/, qx[scontrol show hostnames $ENV{"SLURM_JOB_NODELIST"}];
print map { "$b$_ slots=$slots\n" } @nodes'
}
makehostfile > hostfile
```
Now run the `py-spy` extraction command over all nodes:
```
ds_ssh -f hostfile "source ~/.pdshrc; ps aux | grep python | grep -v grep | grep `whoami` | awk '{print \$2}' | xargs -I {} sudo py-spy dump --pid {} "
```
### python trace
So next came the idea of tracing all calls like one does with `strace(1)`, I researched python calls tracing facilities and have discovered that python has a `trace` sub-system.
This code will trace all python calls and log them to the console and into a dedicated per process log file, via a custom `Tee` module I added.
This then can help to understand where some processes stopped responding, since we will have the log of the last call before it went unresponsive.
```
$ cat pretrain_gpt.py
[...]
def main():
pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
import re
class Tee:
"""
A helper class to tee print's output into a file.
Usage:
sys.stdout = Tee(filename)
"""
def __init__(self, filename):
self.stdout = sys.stdout
self.file = open(filename, "a")
def __getattr__(self, attr):
return getattr(self.stdout, attr)
def write(self, msg):
self.stdout.write(msg)
self.file.write(msg)
self.file.flush()
def flush(self):
self.stdout.flush()
self.file.flush()
if __name__ == "__main__":
import sys
import trace
import socket
import os
# enable to trace
if 0:
cwd = os.path.realpath('.')
pid = os.getpid()
hostname = socket.gethostname()
local_rank = int(os.environ["LOCAL_RANK"])
trace_output_file = f"{cwd}/trace-{hostname}-{local_rank}-{pid}.txt"
# create a Trace object, telling it what to ignore, and whether to
# do tracing or line-counting or both.
tracer = trace.Trace(
ignoredirs=[sys.prefix, sys.exec_prefix],
trace=1,
count=1,
)
# outfile=trace_output_file)
# run the new command using the given tracer
sys.stdout = Tee(trace_output_file)
tracer.run('main()')
else:
main()
```
This code doesn't require any special handing other than enabling the trace by changing `if 0` to `if 1`.
Of course, this will now dump all python calls. I was worried that the slowdown will mask the issue causing the hanging, but surprisingly it didn't.
I got 14GB (!) of data logged of just python calls from 320 processes.
In retrospect I probably should have started the tracing at a later place, probably just before `train_step` - otherwise we have gotten a lot of useless traces of the dataloader and other preliminary code.
I wish I could tell `trace` which packages to follow, but alas it only supports dirs to ignore, which is much more difficult to set, and thus you end up with a lot more data than one needs. But still this is a super useful tool for debugging hanging processes.
### To be continued
We needed to do some more tweaks to get to the root of it.
Unfortunately I had to pause here, since I had to switch to testing the final version of the code and I couldn't risk losing nodes.
With having `CUDA_LAUNCH_BLOCKING=1` workaround providing a robust solution we will use that for a time being.
# a few preliminary runs
## main-1
While the final data is being cleaned up we are doing a few preliminary runs with data that still has some issues.
GBS ramp up of `--rampup-batch-size 16 16 9_765_625` - the first few stages starting with GBS=16 are really slow (8 TFLOPs). The pipeline doesn't have enough data to even fill all the stages once, so it's super inefficient and it'll take days until we start hitting 100 TFLOPs.
But there were no spikes during this brief experiment.
## main-2
Trying `--rampup-batch-size 384 16 9_765_625` since 384 is the first GBS where the pipe is filled up fully for the first time. `12*2*4=384` (`PP*MBS*DP`). The throughput start at 100 TFLOPs right away (and it should be 150 TFLOPS once we reach GBS=2048).
Found a bug: tied weights weren't getting reduced - was getting a spike on restart, fixed at
https://github.com/microsoft/DeepSpeed/pull/1801/commits/37011a92bad42b07c2cb742751873ef7073d84b8
So only the front embed matrix grad updates were making, the end one were ignored.
Will do a totally new run to compare that it's similar or better.
## main-3
Trying the rebased to master version 61d51fd62141ddb51b629b785af256fac407e048 and it has serious issues - the learning is much much slower
## main-4
So rolling back `olruwase/bf16-updates` branch to the fix:
37011a92bad42b07c2cb742751873ef7073d84b8 Reduce tied weight gradients
This time the learning is just a tad slower than main-2, so either deepspeed@master introduced some regression or the merge didn't go well.
additionally going to try the latest checkpoint from `main-3` as it's more progressive to check `main-4` for spikes.
same spike.
After analysis the module weights, it's clear we have 2 distinct issues:
1. `module.tied_modules.embed.word_embeddings.norm` is not taken care of at all in pp rank -1 and they get reset to defaults on load
2. `module.tied_modules.embed.word_embeddings.weight` is mismatching on pp rank -1 between after iteration of last step before save and before iteration of first step after load
This was derived with this debug instrumentation:
```
diff --git a/megatron/training.py b/megatron/training.py
index fd65ae9..fd76d28 100644
--- a/megatron/training.py
+++ b/megatron/training.py
@@ -58,6 +58,23 @@ from megatron.data.dataset_utils import analyze_data_prefix
import deepspeed
+def dump_weights(preamble, iteration, model):
+
+ import os
+ import socket
+ hostname = socket.gethostname()
+ pid = os.getpid()
+
+ tp_rank = mpu.get_tensor_model_parallel_rank()
+ pp_rank = mpu.get_pipeline_model_parallel_rank()
+ dp_rank = mpu.get_data_parallel_rank()
+ global_rank = torch.distributed.get_rank()
+
+ fn = f"debug-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-global{global_rank}-{preamble}-{pid}.txt"
+ #print(fn)
+ with open(fn, "w") as fh:
+ for n, p in model[0].named_parameters():
+ fh.write(f"{n}={p}\n")
def print_datetime(string):
"""Note that this call will sync across all ranks."""
@@ -426,6 +443,8 @@ def setup_model_and_optimizer(model_provider_func):
if args.fp16:
optimizer.reload_model_params()
+ #optimizer.update_lp_params()
+
return model, optimizer, lr_scheduler
@@ -848,12 +867,18 @@ def train(forward_step_func, model, optimizer, lr_scheduler,
args.pipeline_model_parallel_size >= 1:
args.curriculum_seqlen = args.curriculum_scheduler.update_difficulty( \
args.iteration + 1)
+
+ dump_weights("before-iteration", iteration+1, model)
+
loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
train_step(forward_step_func,
train_data_iterator,
model,
optimizer,
lr_scheduler)
+
+ dump_weights("after-iteration", iteration+1, model)
+
iteration += 1
args.iteration = iteration
new_samples = mpu.get_data_parallel_world_size() * \
```
and then
1. run 5 iterations and saved checkpoint, then run:
```
mkdir a; mv debug-* a
```
2. restarted and run a few iterations, then run:
```
mkdir b; mv debug-* b
```
I basically dumped weights for all ranks before and after train_step
Now let's compared them all. Comparing:
1. the after iteration of the last step before save (iteration 805 in this example)
2. the before iteration step after the load (on restart) (iteration 806 in this example)
with the help of:
```
perl -le 'print qx[diff -u a/debug-805-*global$_-after-iteration-*.txt b/debug-806-*-global$_-before-iteration-*.txt] for 0..383'
```
Result: all `a/debug-805-pp11-*-after-iteration-*.txt` and corresponding `b/debug-806-pp11-*-before-iteration-*.txt` mismatch.
so here is a sample diff:
```
--- a/debug-805-pp11-tp1-dp4-global369-after-iteration-377074.txt 2022-03-06 05:44:06.074835000 +0100
+++ b/debug-806-pp11-tp1-dp4-global369-before-iteration-378990.txt 2022-03-06 05:48:24.842635000 +0100
@@ -1,21 +1,15 @@
module.tied_modules.embed.word_embeddings.weight=Parameter containing:
-tensor([[-3.1090e-04, 4.6082e-03, -2.3499e-03, ..., -1.1292e-02,
- 2.1667e-03, -2.7313e-03],
- [-1.1353e-02, 9.9487e-03, -1.9684e-03, ..., -5.4550e-04,
- -2.3460e-04, 4.2114e-03],
- [ 3.2806e-03, -3.4332e-04, -5.5847e-03, ..., 7.6294e-03,
- 1.7853e-03, 2.5868e-05],
+tensor([[-0.0006, 0.0046, -0.0024, ..., -0.0114, 0.0014, -0.0030],
+ [-0.0109, 0.0096, -0.0020, ..., -0.0005, -0.0001, 0.0041],
+ [ 0.0027, -0.0004, -0.0056, ..., 0.0070, 0.0017, 0.0003],
...,
- [ 1.6098e-03, 4.1809e-03, -2.4567e-03, ..., -4.6692e-03,
- -4.5776e-03, 1.7090e-03],
- [ 5.7373e-03, 3.5858e-03, -1.7471e-03, ..., 2.3041e-03,
- -6.4392e-03, 1.0223e-03],
- [-1.6937e-03, -1.4038e-02, 2.1057e-03, ..., -3.6011e-03,
- 1.3275e-03, -5.8594e-03]], device='cuda:1', dtype=torch.bfloat16,
- requires_grad=True)
+ [ 0.0018, 0.0039, -0.0026, ..., -0.0051, -0.0043, 0.0016],
+ [ 0.0051, 0.0039, -0.0015, ..., 0.0027, -0.0063, 0.0008],
+ [-0.0018, -0.0142, 0.0021, ..., -0.0035, 0.0015, -0.0060]],
+ device='cuda:1', dtype=torch.bfloat16, requires_grad=True)
module.tied_modules.embed.word_embeddings.norm.weight=Parameter containing:
-tensor([0.9961, 0.9961, 0.9961, ..., 0.9961, 0.9961, 0.9961], device='cuda:1',
- dtype=torch.bfloat16, requires_grad=True)
+tensor([1., 1., 1., ..., 1., 1., 1.], device='cuda:1', dtype=torch.bfloat16,
+ requires_grad=True)
module.tied_modules.embed.word_embeddings.norm.bias=Parameter containing:
tensor([0., 0., 0., ..., 0., 0., 0.], device='cuda:1', dtype=torch.bfloat16,
requires_grad=True)
```
## main-5
trying a new baseline with rampup starting from 192
## main-6
trying https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/260 - comparing with main-5
tracks exactly main-5 - merged.
## main-7
Running with https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/261
Don't allocate embed LN on pp rank -1, - different checkpoint
still spikes on restart
# main-no-emb-norm
disable `--embed-layernorm` completely, check if spikes on restart
no spikes on restart
## main-8
1. test https://github.com/bigscience-workshop/Megatron-DeepSpeed/pull/262
2. At 1438 switched to deepspeed@ab61edb02a137d91b61bd416b4e8d3eb287b0eba of olruwase/bf16-updates - let's see if it tracks still the previous runs - yes it does.
So the restart spike's cause was this: the framework was putting `LayerNorm` that I added for the embedding layr into the wrong param group [here](https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/dd06ea32e014d8db6cdaf5e6839071d6523ca83c/megatron/optimizer/__init__.py#L31-L45).
it should have been in `no_weight_decay_params` but ended up in `weight_decay_params` because in this module `LayerNorm` is an alias for `MixedFusedLayerNorm`, so if `isinstance(module_, LayerNorm)` was `False`.
So if we want to use `torch.nn.LayerNorm` we have to change the code above to additionally check for ` or isinstance(module_, torch.nn.LayerNorm).`
## main-9
re-running with deepspeed@77b649d160c1cd86f33415e2a7deab50c45fba16 of olruwase/bf16-updates which fixed the tied-embedding desynchronization bug due to clip grads not running on the last pp rank for tied embeddings.
|