peacock-data-public-datasets-idc-bigscience
/
data
/oscar-multilingual
/oscar-jsonl-to-meg-mt5-multinode.slurm
#SBATCH --job-name=oscar-jsonl-to-meg-mt5-multinode # job name | |
#SBATCH --ntasks-per-node=1 # number of MP tasks | |
#SBATCH --nodes=8 | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --time=20:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --account=six@cpu | |
#SBATCH --partition=cpu_p1 | |
set -x -e | |
source $six_ALL_CCFRWORK/start-prod | |
conda activate teven-temp-backcompat | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
input=$six_ALL_CCFRSCRATCH/datasets/oscar-multilingual/oscar-en-shuffled.jsonl | |
output=$six_ALL_CCFRSCRATCH/datasets/oscar-multilingual/oscar-meg-mt5-multinode | |
cd $SCRATCH/Megatron-DeepSpeed | |
python -m torch.distributed.launch --nproc_per_node 75 --nnodes 8 tools/preprocess_data_dist.py \ | |
--input $input \ | |
--output-prefix $output \ | |
--dataset-impl mmap \ | |
--tokenizer-type PretrainedFromHF \ | |
--tokenizer-name-or-path google/mt5-small \ | |
--append-eod \ | |
--scratch $six_ALL_CCFRSCRATCH/datasets/oscar-multilingual/merge_dir | |
#echo "now copy the results to $six_ALL_CCFRWORK/datasets-custom/oscar/ from $six_ALL_CCFRSCRATCH/datasets/oscar-multilingual/oscar-meg-mt5" | |