import json import os from argparse import ArgumentParser import numpy as np from matplotlib import pyplot as plt def get_args(): parser = ArgumentParser() parser.add_argument('--input-files', type=lambda s: s.split(','), required=True, help='Input file that hold all evaluation metrics') return parser.parse_args() # TODO: fill it up RANDOM_BASELINE={ "arc_challenge_acc": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6 "arc_easy_acc": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6 "boolq_acc": 0.5, "copa_acc": 0.5, "headqa_acc": 0.25, # TODO: That's a pain as some have 4, some have 5 and nobody reports random baseline "hellaswag_acc": 0.25, "lambada_acc": 0., # Safe to say that random models won't perform well at all. "logiqa_acc": 0.25, "mathqa_acc": 0.25, # TODO: That's a pain as some have 4, some have 5 and nobody reports random baseline "mrpc_acc": 0.5, "multirc_acc": 0., # TODO: I couldn't figure it out "openbookqa_acc": 0.25, "piqa_acc": 0.5, "prost_acc": 0.25, "pubmedqa_acc": 1/3, "qnli_acc": 0.5, "qqp_acc": 0.5, "race_acc": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5 "rte_acc": 0.5, "sciq_acc": 0.25, "sst_acc": 0.5, "triviaqa_acc": 0., "webqs_acc": 0., "wic_acc": 0.5, "winogrande_acc": 0.5, "wnli_acc": 0.5, "wsc_acc": 0.5 } def normalise_scores(scores_per_task): normalised_scores = {} for key,value in scores_per_task.items(): # We assume it exists, otherwise we need to figure out what the random baseline is normalised_scores[key] = (value - RANDOM_BASELINE[key]) / (1. - RANDOM_BASELINE[key]) # TODO: we need to substract the random baseline. return scores_per_task def main(): args = get_args() final = {} for input_file in args.input_files: assert os.path.basename(input_file).endswith("_agg.json") experiment_name = os.path.basename(input_file).split("_agg.json")[0] with open(input_file, "r") as fi: final[experiment_name] = json.load(fi) # We search for matching tokens matching_tokens = set(next(iter(final.values()))["tokens"]) for experiment_name, experiment in final.items(): tokens = experiment["tokens"] matching_tokens = matching_tokens & set(tokens) # Make sure we don't override existing data assert "token2checkpoint_step" not in experiment experiment["token2checkpoint_step"] = {token: ckpt_step for token, ckpt_step in zip(tokens, experiment["checkpoints"])} # Make sure we don't override existing data assert "token2id" not in experiment experiment["token2id"] = {token: _id for _id, token in enumerate(tokens)} matching_tokens = sorted(matching_tokens) print(f"Plotting only for tokens in {matching_tokens}") plots_per_keys = {} for token in matching_tokens: for experiment_name, experiment in final.items(): _id = experiment["token2id"][token] scores_per_task = { "Average_acc": { f"{evaluation_name}_{metric_name}": metric[_id] for evaluation_name, evaluation in experiment["results"].items() for metric_name, metric in evaluation.items() if metric_name == "acc" }, # "Average": { # metric_name: values[i] # for evaluation_name in final["results"][experiment_name] # for metric_name, values in final["results"][experiment_name][evaluation_name].items() # if metric_name[-7:] != "_stderr" # } } # Build plot graphs for key in scores_per_task: if key not in plots_per_keys: plots_per_keys[key] = {} plot_per_token = plots_per_keys[key] if token in plot_per_token: continue plot = plt.figure() plot = plot.add_subplot(1, 1, 1) plot.set_title(f"{key} - Number of tokens seen: {token}") plot_per_token[token] = plot # Plot per steps for key in plots_per_keys: scores = scores_per_task[key] plot = plots_per_keys[key][token] # Normalize score normalised_scores = normalise_scores(scores) # Sort scores, we order them from smalles to biggest sorted_scores = sorted(normalised_scores.values()) # Compute the number of task over that sorted_scores. y = np.arange(len(sorted_scores), 0, -1) / len(sorted_scores) plot.step(x=sorted_scores, y=y, label=experiment_name) for plots in plots_per_keys.values(): assert len(plots) == len(matching_tokens) for plot in plots.values(): plot.legend() plt.show() if __name__ == "__main__": main()