#!/bin/bash #SBATCH --job-name=tr14-2B7-mup #SBATCH --partition=production-cluster #SBATCH --nodes=8 #SBATCH --cpus-per-task=12 #SBATCH --ntasks-per-node=1 #SBATCH --gres=gpu:a100:8 #SBATCH --hint=nomultithread #SBATCH --time 100:00:00 #SBATCH --output=/fsx/teven/mup/tr14-2B7-%j.out #SBATCH --exclude=ip-26-0-159-215,ip-26-0-153-238 echo "START TIME: $(date)" mkdir -p $LOGS_PATH # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! __conda_setup="$('/admin/home/teven/miniconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)" if [ $? -eq 0 ]; then eval "$__conda_setup" else if [ -f "/admin/home/teven/miniconda3/etc/profile.d/conda.sh" ]; then . "/admin/home/teven/miniconda3/etc/profile.d/conda.sh" else export PATH="/admin/home/teven/miniconda3/bin:$PATH" fi fi unset __conda_setup # <<< conda initialize <<< # Proper env variables conda activate tvn_dev export PATH=/usr/local/cuda-11.4/bin:$PATH export NCCL_PROTO=simple export PATH=/opt/amazon/efa/bin:$PATH export FI_EFA_FORK_SAFE=1 export FI_LOG_LEVEL=1 export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn #export NCCL_ALGO=ring #export NCCL_DEBUG=info #export NCCL_DEBUG_SUBSYS=INIT,ENV,GRAPH,COLL export PYTHONFAULTHANDLER=1 export CUDA_LAUNCH_BLOCKING=0 export OMPI_MCA_mtl_base_verbose=1 export FI_EFA_ENABLE_SHM_TRANSFER=0 export FI_PROVIDER=efa export FI_EFA_TX_MIN_CREDITS=64 export NCCL_TREE_THRESHOLD=0 #export TORCH_CPP_LOG_LEVEL=INFO #export TORCH_DISTRIBUTED_DEBUG=INFO export NCCL_ASYNC_ERROR_HANDLING=1 #export NCCL_P2P_DISABLE=1 #export NCCL_IBEXT_DISABLE=1 #export NCCL_SOCKET_IFNAME="eth0,en,eth,em,bond" # testing for potential faulty nodes srun --jobid $SLURM_JOBID bash -c 'python -c "import torch, socket; print(socket.gethostname(), torch.cuda.is_available())"' # so processes know who to talk to export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_PORT=12802 MEGATRON_DEEPSPEED_REPO=/fsx/teven/Megatron-DeepSpeed cd $MEGATRON_DEEPSPEED_REPO TOKENIZER_NAME_OR_PATH=t5-small variant=main DATA_PATH=/fsx/data/gpt2tok_c4_text_document DATA_OUTPUT_PATH=/fsx/mup_exps/checkpoints/tr14-2B7-lr$1-init0.1-inpm10-outm10-atnm10-mup CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$variant REPO_PATH=$DATA_OUTPUT_PATH/tr14-2B7-test-lr$1-init0.1-inpm10-outm10-atnm10-mup TENSORBOARD_PATH=$REPO_PATH/tensorboard/$variant LOGS_PATH=$REPO_PATH/logs/$variant GPUS_PER_NODE=8 NNODES=$SLURM_NNODES PP_SIZE=1 TP_SIZE=2 MICRO_BATCH_SIZE=16 GLOBAL_BATCH_SIZE=512 NLAYERS=32 NHIDDEN=2560 NHEADS=32 SEQ_LEN=2048 SAVE_INTERVAL=250 TRAIN_SAMPLES=1_953_125 # 50B tokens LR_DECAY_SAMPLES=1_953_125 # Decay in the same amount LR_WARMUP_SAMPLES=183_105 # 375M tokens MUP_ARGS=" \ --lr $1 \ --min-lr `bc <<< "scale=3; $1/10"` \ --init-method-std 0.1 \ --mup \ --mup-input-mult 10 \ --mup-output-mult 10 \ --mup-attn-mult 10 \ " OPTIMIZER_ARGS=" \ --optimizer adam \ --adam-beta1 0.9 \ --adam-beta2 0.95 \ --adam-eps 1e-8 \ --lr-decay-style cosine \ --lr-decay-samples $LR_DECAY_SAMPLES \ --lr-warmup-samples $LR_WARMUP_SAMPLES \ --clip-grad 1.0 \ --weight-decay 1e-1 \ " # for 20h 1190, for 100h 5990 EXIT_OPTS=" \ --exit-duration-in-mins 1190 \ " GPT_ARGS=" \ --pp-partition-method 'type:transformer' \ --num-layers $NLAYERS \ --hidden-size $NHIDDEN \ --num-attention-heads $NHEADS \ --seq-length $SEQ_LEN \ --max-position-embeddings $SEQ_LEN \ --micro-batch-size $MICRO_BATCH_SIZE \ --global-batch-size $GLOBAL_BATCH_SIZE \ --train-samples $TRAIN_SAMPLES \ --tokenizer-type PretrainedFromHF \ --tokenizer-name-or-path $TOKENIZER_NAME_OR_PATH \ --embed-layernorm \ --fp16 \ --seed 42 \ --position-embedding-type alibi \ --checkpoint-activations \ --abort-on-unmet-fused-kernel-constraints \ --pad-vocab-size-to 51200 \ $OPTIMIZER_ARGS \ $EXIT_OPTS \ " # TODO: decide on efficient eval-interval + eval-iters OUTPUT_ARGS=" \ --log-interval 1 \ --save-interval $SAVE_INTERVAL \ --eval-interval 1000 \ --eval-iters 1 \ --tensorboard-dir $TENSORBOARD_PATH \ --tensorboard-queue-size 5 \ --log-timers-to-tensorboard \ --log-batch-size-to-tensorboard \ --log-validation-ppl-to-tensorboard \ " ZERO_STAGE=1 config_json="./ds_config.$SLURM_JOBID.json" # Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() cat < $config_json { "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, "train_batch_size": $GLOBAL_BATCH_SIZE, "gradient_clipping": 1.0, "zero_optimization": { "stage": $ZERO_STAGE }, "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 500, "hysteresis": 2, "min_loss_scale": 1, "initial_scale_power": 12 }, "steps_per_print": 2000, "wall_clock_breakdown": false } EOT DEEPSPEED_ARGS=" \ --deepspeed \ --deepspeed_config ${config_json} \ --zero-stage ${ZERO_STAGE} \ --deepspeed-activation-checkpointing \ " export LAUNCHER="python -u -m torch.distributed.run \ --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \ --rdzv_backend c10d \ --max_restarts 0 \ --tee 3 \ " export CMD=" \ `pwd`/pretrain_gpt.py \ --tensor-model-parallel-size $TP_SIZE \ --pipeline-model-parallel-size $PP_SIZE \ $GPT_ARGS \ $OUTPUT_ARGS \ $MUP_ARGS \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ --data-impl mmap \ --distributed-backend nccl \ $DEEPSPEED_ARGS \ " echo $CMD # do not remove or the training will hang and nodes will be lost w/o this workaround export CUDA_LAUNCH_BLOCKING=1 # hide duplicated errors using this hack - will be properly fixed in pt-1.12 export TORCHELASTIC_ERROR_FILE=/tmp/torch-elastic-error.json clear; srun --jobid $SLURM_JOBID bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD" 2>&1 | tee -a $LOGS_PATH/main_log.txt echo "END TIME: $(date)"