applied-ai-018's picture
Add files using upload-large-folder tool
b715c31 verified
#!/usr/bin/env python
#
# generate jsonl version of dataset that can be fed to megatron-lm pre-processor
#
# see various notes in the scripts for different options
#
# full dataset:
# ./oscar-multilingual-to-jsonl.py
# cat oscar-[0-4].jsonl > oscar.jsonl
#
# small dataset (0.1%):
# ./oscar-multilingual-to-jsonl.py -s
# cat oscar-[0-4].jsonl > oscar.jsonl
import logging
from argparse import ArgumentParser
from multiprocessing import Process, Queue
from datasets import load_dataset, ReadInstruction
import datasets
print(f"Using datasets=={datasets.__version__}")
DATASET_NAME = "oscar"
logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR)
parser = ArgumentParser()
parser.add_argument('-s', '--subset', action='store_true', help='Process and save a subset (0.1%) of data')
args = parser.parse_args()
# Once this part of the process runs it gets cached, so on subsequent runs it'll be much faster
split = ReadInstruction("train", to=0.1 if args.subset else 100, unit="%")
### Build/Load Datasets
# Once this part of the process completes it gets cached, so on subsequent runs it'll be much faster
language_subsets = {
"unshuffled_deduplicated_hi",
"unshuffled_deduplicated_ur",
"unshuffled_deduplicated_bn",
"unshuffled_deduplicated_id",
"unshuffled_deduplicated_ca",
"unshuffled_deduplicated_eu",
"unshuffled_deduplicated_ar",
"unshuffled_deduplicated_sw",
"unshuffled_deduplicated_zh",
"unshuffled_deduplicated_en",
"unshuffled_deduplicated_fr",
"unshuffled_deduplicated_pt",
"unshuffled_deduplicated_es",
"unshuffled_deduplicated_vi",
}
sharded_languages = {
"unshuffled_deduplicated_en",
"unshuffled_deduplicated_ru",
"unshuffled_deduplicated_de",
"unshuffled_deduplicated_es",
"unshuffled_deduplicated_fr",
"unshuffled_deduplicated_ja",
"unshuffled_deduplicated_zh",
}
### Save jsonl
# important: shuffling makes the process 5-7 times slower! best to shuffle the end jsonl file using
# https://github.com/alexandres/terashuf (should take ~1h to shuffle 900GB file with 70M records
# using 150GB RAM)
# version 1: one writer - quite slow
#shuffled_dataset = filtered_dataset.shuffle()
#shuffled_dataset = filtered_dataset
#shuffled_dataset.to_json(f"{DATASET_NAME}.jsonl", orient="records", lines=True, force_ascii=False)
# version 2: multiple parallel sharded writes
# much faster, but will require concatenation at the end
# 10 shards proved to much for the instance and 3 processed were killed, 5 worked well
# took about 1.5h per shard
N_SHARDS = 5
def process_shard(dataset, n_shards, idx, language_subset):
if n_shards > 1:
print(f"Sharding {idx}")
ds_shard = dataset.shard(n_shards, idx, contiguous=True)
# shuffle will make things much much slower
#ds_shard = ds_shard.shuffle() # remove contiguous=True above if shuffling
else:
ds_shard = dataset
print(f"Saving {DATASET_NAME}-{language_subset}-{idx}.jsonl")
export_filename = f"{DATASET_NAME}-{language_subset}-{idx}.jsonl" if n_shards > 1 else \
f"{DATASET_NAME}-{language_subset}.jsonl"
ds_shard.to_json(export_filename, orient="records", lines=True, force_ascii=False)
for language_subset in language_subsets:
dataset = load_dataset(DATASET_NAME, language_subset, split=split, keep_in_memory=False, ignore_verifications=True)
n_shards = N_SHARDS if language_subset in sharded_languages else 1
queue = Queue()
processes = [Process(target=process_shard, args=(dataset, n_shards, idx, language_subset,)) for idx in range(n_shards)]
for p in processes:
p.start()
for p in processes:
p.join()