peacock-data-public-datasets-idc-config_toyds
/
bigscience
/jz
/slurms_scripts
/preprocess_lmt5.slurm
#!/bin/bash | |
#SBATCH --job-name=preprocesslmt5 | |
#SBATCH --partition=prepost | |
#SBATCH --ntasks=1 # number of MP tasks | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --time=10:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --error=%x-%j.out # error file name (same to watch just one file) | |
#SBATCH --account=six@gpu | |
#SBATCH --mail-type=ALL | |
set -x -e | |
source $six_ALL_CCFRWORK/start-prod | |
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models | |
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets | |
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules | |
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics | |
export HF_DATASETS_OFFLINE=1 | |
export TRANSFORMERS_OFFLINE=1 | |
DATASET=openwebtext | |
LOGG_FREQUENCY=125 | |
SAVE_FREQUENCY=250 | |
EVAL_FREQUENCY=100000 | |
SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/preprocesslmt5 | |
LOGGING_DIR=${eha_ALL_CCFRSCRATCH}/tensorboard/preprocesslmt5 | |
python ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_text2text.py \ | |
--model_type t5 \ | |
--tokenizer_name t5-small \ | |
--config_name ${six_ALL_CCFRWORK/code/bigscience/jz/configs/lm_t5/lm_t5-tiny.json \ | |
--dataset_name ${DATASET} --block_size 512 \ | |
--preprocessing_num_workers 76 \ | |
--do_train --do_eval \ | |
--max_train_samples 1 --max_val_samples 1 \ | |
--per_device_train_batch_size 1 --gradient_accumulation_steps 1 \ | |
--per_device_eval_batch_size 1 \ | |
--output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \ | |
--report_to tensorboard \ | |
--logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps ${LOGG_FREQUENCY} \ | |
--eval_steps ${EVAL_FREQUENCY} --evaluation_strategy steps \ | |
--save_strategy steps --save_steps ${SAVE_FREQUENCY} --save_total_limit 200 | |