peacock-data-public-datasets-idc-config_toyds
/
bigscience
/train
/tr8b-104B
/tr8b-104B-cl-a100-16n.slurm
#!/bin/bash | |
#SBATCH --job-name=tr8b-104B-cl-a100 | |
#SBATCH --partition=gpu_p5 | |
#SBATCH --nodes=16 | |
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! | |
#SBATCH --cpus-per-task=40 # number of cores per tasks | |
#SBATCH --hint=nomultithread # we get physical cores not logical | |
#SBATCH --gres=gpu:8 # number of gpus | |
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS) | |
#SBATCH --output=%x-%j.out # output file name | |
#SBATCH --account=six@v100 | |
set -x -e | |
source $six_ALL_CCFRWORK/code/tr8b-104B/bigscience/train/tr8b-104B/start-tr8b-104B | |
echo "START TIME: $(date)" | |
VARIANT=cl-a100 | |
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr8b-104B | |
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints/$VARIANT | |
REPO_PATH=$DATA_OUTPUT_PATH/tr8b-104B-logs/ | |
TENSORBOARD_PATH=$REPO_PATH/tensorboard/$VARIANT | |
LOGS_PATH=$REPO_PATH/logs/$VARIANT | |
mkdir -p $LOGS_PATH | |
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr8b-104B/Megatron-DeepSpeed-tr8b-104B | |
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json | |
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt | |
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document | |
cd $MEGATRON_DEEPSPEED_REPO | |
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | |
MASTER_PORT=6000 | |
GPUS_PER_NODE=8 | |
NNODES=16 | |
TP_SIZE=4 # always fixed to the size of a single node | |
PP_SIZE=32 # NLAYERS must be a multiple of PP_SIZE here | |
#DP_SIZE=$NNODES*$GPUS_PER_NODE/($PP_SIZE*$TP_SIZE) # will get derived automatically by trainer | |
# GLOBAL_BATCH_SIZE has to be divisible by MICRO_BATCH_SIZE*DP_size | |
# GLOBAL_BATCH_SIZE=$(($MICRO_BATCH_SIZE*$GAS*$DP_SIZE)) - GAS is auto-derived by deepspeed | |
MICRO_BATCH_SIZE=1 | |
GLOBAL_BATCH_SIZE=2048 | |
NLAYERS=64 | |
NHIDDEN=11600 | |
NHEADS=80 | |
SEQ_LEN=2048 | |
VOCAB_SIZE=50257 | |
SAVE_INTERVAL=50 | |
LR_WARMUP_SAMPLES=3_750_000 | |
LR_DECAY_SAMPLES=126_953_125 | |
LR_DECAY_TOKENS=$(perl -e "print $LR_DECAY_SAMPLES*$SEQ_LEN") | |
TRAIN_SAMPLES=600_000_000 | |
TRAIN_TOKENS=300_000_000_000 | |
OPTIMIZER_ARGS=" \ | |
--optimizer adam \ | |
--adam-beta1 0.9 \ | |
--adam-beta2 0.95 \ | |
--adam-eps 1e-8 \ | |
--lr 6e-5 \ | |
--min-lr 6e-6 \ | |
--lr-warmup-samples $LR_WARMUP_SAMPLES \ | |
--lr-decay-tokens $LR_DECAY_TOKENS \ | |
--lr-decay-style cosine \ | |
--clip-grad 1.0 \ | |
--weight-decay 1e-1 \ | |
" | |
EXIT_OPTS=" \ | |
--exit-duration-in-mins 1185 \ | |
" | |
# --rampup-batch-size 16 16 6_000_000 \ | |
GPT_ARGS=" \ | |
--num-layers $NLAYERS \ | |
--hidden-size $NHIDDEN \ | |
--num-attention-heads $NHEADS \ | |
--seq-length $SEQ_LEN \ | |
--max-position-embeddings $SEQ_LEN \ | |
--micro-batch-size $MICRO_BATCH_SIZE \ | |
--global-batch-size $GLOBAL_BATCH_SIZE \ | |
--train-samples $TRAIN_SAMPLES \ | |
--train-tokens $TRAIN_TOKENS \ | |
--vocab-file $VOCAB_FILE \ | |
--merge-file $MERGE_FILE \ | |
--loss-scale 12 \ | |
--init-method-std 0.006 \ | |
--fp16 \ | |
--checkpoint-activations \ | |
--embed-layernorm \ | |
--seed 43 \ | |
$OPTIMIZER_ARGS \ | |
$EXIT_OPTS \ | |
" | |
OUTPUT_ARGS=" \ | |
--log-interval 1 \ | |
--save-interval $SAVE_INTERVAL \ | |
--eval-interval 150 \ | |
--eval-iters 5 \ | |
--tensorboard-dir $TENSORBOARD_PATH \ | |
--tensorboard-queue-size 5 \ | |
--log-timers-to-tensorboard \ | |
--log-batch-size-to-tensorboard \ | |
--log-validation-ppl-to-tensorboard \ | |
" | |
ZERO_STAGE=1 | |
config_json="./ds_config.$SLURM_JOBID.json" | |
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size() | |
cat <<EOT > $config_json | |
{ | |
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE, | |
"train_batch_size": $GLOBAL_BATCH_SIZE, | |
"gradient_clipping": 1.0, | |
"elastic_checkpoint": true, | |
"zero_optimization": { | |
"stage": $ZERO_STAGE | |
}, | |
"fp16": { | |
"enabled": true, | |
"loss_scale": 0, | |
"loss_scale_window": 500, | |
"hysteresis": 2, | |
"min_loss_scale": 1, | |
"initial_scale_power": 12 | |
}, | |
"curriculum_learning": { | |
"enabled": true, | |
"curriculum_type": "seqlen", | |
"min_difficulty": 64, | |
"max_difficulty": $SEQ_LEN, | |
"schedule_type": "fixed_linear", | |
"schedule_config": { | |
"total_curriculum_step": 36000, | |
"difficulty_step": 8 | |
} | |
}, | |
"steps_per_print": 2000, | |
"wall_clock_breakdown": false | |
} | |
EOT | |
DEEPSPEED_ARGS=" \ | |
--deepspeed \ | |
--deepspeed_config ${config_json} \ | |
--zero-stage ${ZERO_STAGE} \ | |
--deepspeed-activation-checkpointing \ | |
" | |
export LAUNCHER="python -u -m torch.distributed.launch \ | |
--nproc_per_node $GPUS_PER_NODE \ | |
--nnodes $NNODES \ | |
--master_addr $MASTER_ADDR \ | |
--master_port $MASTER_PORT \ | |
" | |
export CMD=" \ | |
`pwd`/pretrain_gpt.py \ | |
--tensor-model-parallel-size $TP_SIZE \ | |
--pipeline-model-parallel-size $PP_SIZE \ | |
$GPT_ARGS \ | |
$OUTPUT_ARGS \ | |
--save $CHECKPOINT_PATH \ | |
--load $CHECKPOINT_PATH \ | |
--data-path $DATA_PATH \ | |
--data-impl mmap \ | |
--split 949,50,1 \ | |
--distributed-backend nccl \ | |
$DEEPSPEED_ARGS \ | |
" | |
echo $CMD | |
# to debug - add echo (it exits and prints what it would have launched) | |
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD' 2>&1 | tee -a $LOGS_PATH/main_log.txt | |
echo "END TIME: $(date)" | |
# | |