|
""" |
|
Utility to get doc and character counts |
|
""" |
|
|
|
import os |
|
import gzip |
|
import orjson |
|
import multiprocessing |
|
from tqdm import tqdm |
|
import json |
|
|
|
def process_shard_unfiltered( |
|
shard |
|
): |
|
global LANGUAGE |
|
global PARTITION |
|
global SIGNALS_DIR |
|
global SIGNALS_EXTENSION |
|
|
|
result = { |
|
"doc_count": 0, |
|
"char_count": 0 |
|
} |
|
|
|
signals_file_path = os.path.join( |
|
SIGNALS_DIR, |
|
shard, |
|
f"{LANGUAGE}_{PARTITION}.{SIGNALS_EXTENSION}" |
|
) |
|
|
|
with gzip.open(signals_file_path, "r") as signals_file: |
|
for line in signals_file: |
|
signals_dict = orjson.loads(line) |
|
result["doc_count"] += 1 |
|
result["char_count"] += signals_dict["quality_signals"]["ccnet_length"][0][2] |
|
|
|
return result |
|
|
|
def process_shard_docids( |
|
shard |
|
): |
|
global LANGUAGE |
|
global PARTITION |
|
global SIGNALS_DIR |
|
global SIGNALS_EXTENSION |
|
global DOCIDS_DIR |
|
|
|
docids_file_path = os.path.join( |
|
DOCIDS_DIR, |
|
shard, |
|
f"{LANGUAGE}_{PARTITION}.{DOCIDS_EXTENSION}" |
|
) |
|
docids = json.load(open(docids_file_path)) |
|
docids_set = set(docids) |
|
|
|
result = { |
|
"doc_count": 0, |
|
"char_count": 0 |
|
} |
|
|
|
signals_file_path = os.path.join( |
|
SIGNALS_DIR, |
|
shard, |
|
f"{LANGUAGE}_{PARTITION}.{SIGNALS_EXTENSION}" |
|
) |
|
|
|
with gzip.open(signals_file_path, "r") as signals_file: |
|
for line in signals_file: |
|
signals_dict = orjson.loads(line) |
|
if signals_dict["id"] in docids_set: |
|
result["doc_count"] += 1 |
|
result["char_count"] += signals_dict["quality_signals"]["ccnet_length"][0][2] |
|
|
|
assert result["doc_count"] == len(docids_set), f"ERROR in counts for {shard=}" |
|
|
|
return result |
|
|
|
def process_docids_store( |
|
processing_function |
|
): |
|
with multiprocessing.Pool(NUM_CORES) as pool: |
|
shards_list = sorted(os.listdir(DOCIDS_DIR)) |
|
all_results = list(tqdm( |
|
pool.imap(processing_function, shards_list), |
|
total=len(shards_list) |
|
)) |
|
all_shards_counts = { |
|
"doc_count": 0, |
|
"char_count": 0 |
|
} |
|
for result in all_results: |
|
for k in list(all_shards_counts.keys()): |
|
all_shards_counts[k] += result[k] |
|
return all_shards_counts |
|
|
|
|
|
if __name__ == "__main__": |
|
NUM_CORES = 50 |
|
SNAPSHOT = "2023-14" |
|
LANGUAGE = "en" |
|
PARTITION = "head" |
|
DATA_ROOT_DIR = "/mnt/weka/peacock/enfm-dataprocessing/RedPajamaV2/data" |
|
SIGNALS_DIR = f"{DATA_ROOT_DIR}/quality_signals/{SNAPSHOT}" |
|
DOCIDS_DIR = f"{DATA_ROOT_DIR}/filtered_docids/quality_filtered_minus_clustered/{SNAPSHOT}" |
|
SIGNALS_EXTENSION = "signals.json.gz" |
|
DOCIDS_EXTENSION = "json" |
|
GET_COMPLETE_DATASET_COUNTS = False |
|
|
|
|
|
|
|
if GET_COMPLETE_DATASET_COUNTS: |
|
print(process_docids_store( |
|
process_shard_unfiltered |
|
)) |
|
else: |
|
print(process_docids_store( |
|
process_shard_docids |
|
)) |
|
|
|
""" |
|
Notes |
|
- Counts format: (doc_count, char_count) |
|
- RedPajamaV2 Snapshot 2023-14 |
|
- unfiltered |
|
- head: (133M, 678.9B) |
|
- middle: (194.3M, 944.8B) |
|
- total: (327.3M, 1623.7B) |
|
- quality_filtered |
|
- head: (76.5M, 437.4B) |
|
- middle: (113.9M, 605.9B) |
|
- quality_filtered_minus_clustered |
|
- head: (67.6M, 382.8B) |
|
- middle: (102.8M, 539.5B) |
|
- total: (170.4M, 922.3B): 52% docs, 57% chars retained |
|
""" |
|
|