peacock-data-public-datasets-idc-enfm-dataprocessing
/
RedPajamaV2
/scripts
/utils
/get_duplicates.py
""" | |
Utility to check result of minhash-clustering | |
""" | |
import pandas as pd | |
import orjson | |
import gzip | |
import os | |
from common import listdir_fullpath | |
from tqdm import tqdm | |
def get_file_subpath( | |
language, | |
partition, | |
extension | |
): | |
return f"{language}_{partition}.{extension}" | |
if __name__ == "__main__": | |
CLUSTERS_DIR = "/home1/BharatGPT_Data/RedPajamaV2/data/minhash_clusters/2023-14" | |
DOCS_DIR = "/home1/BharatGPT_Data/RedPajamaV2/data/documents/2023-14" | |
CLUSTERS_SHARD = "0187" | |
LANGUAGE = "en" | |
PARTITION = "head" | |
CLUSTERS_EXTENSION = "clusters.parquet" | |
DOCS_EXTENSION = "json.gz" | |
df = pd.read_parquet(os.path.join( | |
CLUSTERS_DIR, | |
CLUSTERS_SHARD, | |
get_file_subpath(LANGUAGE, PARTITION, CLUSTERS_EXTENSION) | |
), columns=["cluster_id"]) | |
required_cluster_id = df["cluster_id"][0] | |
# get all docs with this cluster id | |
for shard in tqdm(os.listdir(CLUSTERS_DIR)): | |
df2 = pd.read_parquet(os.path.join( | |
CLUSTERS_DIR, | |
shard, | |
get_file_subpath(LANGUAGE, PARTITION, CLUSTERS_EXTENSION) | |
), columns=["id", "cluster_id"]) | |
df2 = df2[df2["cluster_id"] == required_cluster_id] | |
doc_ids = [] | |
for _, row in df2.iterrows(): | |
doc_id = int(row["id"].split('/')[-1]) | |
doc_ids.append(doc_id) | |
if len(doc_ids) == 0: | |
continue | |
with gzip.open(os.path.join( | |
DOCS_DIR, | |
shard, | |
get_file_subpath(LANGUAGE, PARTITION, DOCS_EXTENSION) | |
)) as docs_file: | |
next_idx = 0 | |
next_doc_id = doc_ids[next_idx] | |
for idx, line in enumerate(docs_file): | |
if idx == next_doc_id: | |
print(line) | |
print() | |
next_idx += 1 | |
if next_idx < len(doc_ids): | |
next_doc_id = doc_ids[next_idx] | |