""" To reduce dependencies, the functions in this module are adapted from the `datasketch` library with minor modifications. """ from scipy.integrate import quad as integrate import hashlib import numpy as np import struct from typing import Iterable, List from utilities.text import form_ngrams def _false_positive_probability(threshold, b, r): def proba(s): return 1 - (1 - s ** float(r)) ** float(b) a, *_ = integrate(proba, 0.0, threshold) return a def _false_negative_probability(threshold, b, r): def proba(s): return 1 - (1 - (1 - s ** float(r)) ** float(b)) a, *_ = integrate(proba, threshold, 1.0) return a def optimal_param( threshold: float, num_perm: int, false_positive_weight: float = 0.5, false_negative_weight: float = 0.5 ): r""" Compute the optimal `MinHashLSH` parameter that minimizes the weighted sum of probabilities of false positive and false negative. """ min_error = float("inf") opt = (0, 0) for b in range(1, num_perm + 1): max_r = int(num_perm / b) for r in range(1, max_r + 1): fp = _false_positive_probability(threshold, b, r) fn = _false_negative_probability(threshold, b, r) error = fp * false_positive_weight + fn * false_negative_weight if error < min_error: min_error = error opt = (b, r) return opt def sha1_hash32(data: bytes) -> int: """ A 32-bit hash function based on SHA1. Note: This implementation is copied from datasketch to avoid dependency. Args: data (bytes): the data to generate 32-bit integer hash from. Returns: int: an integer hash value that can be encoded using 32 bits. """ return struct.unpack(" np.ndarray: r""" Combined with some datasketch code to better parallelize computation. Note: This implementation is adapted from the near-dedupe implementation by the bigcode project. Parameters ---------- words_sequence : str A sequence of (normalized) words for which to generate a signature. ngram_size : int The size of n-grams. permutations : np.ndarray The permutations for the minhash. max_hash: int The maximum value for hashes. mersenne_prime: int The mersenne prime. Returns ------- List[np.uint32] The minhash signature. """ num_perm = permutations.shape[-1] hashvalues = np.ones(num_perm, dtype=np.uint64) * max_hash tokens = {" ".join(t) for t in form_ngrams(words_sequence, ngram_size)} h_vals = np.array( [sha1_hash32(token.encode("utf-8")) for token in tokens], dtype=np.uint64 ) a, b = permutations phv = np.bitwise_and( ((h_vals * np.tile(a, (len(h_vals), 1)).T).T + b) % mersenne_prime, max_hash ) # compute the minhash signature = np.vstack([phv, hashvalues]).min(axis=0).astype(np.uint32) return signature