File size: 5,102 Bytes
4f028c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afcfb44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f028c1
 
 
 
afcfb44
 
4f028c1
 
 
 
 
 
afcfb44
 
 
 
 
 
 
 
9475f96
afcfb44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: cc-by-4.0
task_categories:
- image-segmentation
tags:
- methane-detection
- thermal-infrared
- agriculture
- semantic-segmentation
- optical-gas-imaging
- environmental-monitoring
- FLIR-GF77
- enteric-methane
- rumen-fermentation
size_categories:
- 1K<n<10K
language:
- en
pretty_name: Controlled Diet Dataset for Methane Plume Detection
dataset_info:
  features:
  - name: image
    dtype: image
  - name: mask
    dtype: image
  config_name: default
  splits:
  - name: train
    num_bytes: 0
    num_examples: 3905
  - name: validation
    num_bytes: 0
    num_examples: 496
  - name: test
    num_bytes: 0
    num_examples: 484
  download_size: 0
  dataset_size: 0
configs:
- config_name: default
  data_files:
  - split: train
    path: 
    - "data/train/images/*.png"
    - "data/train/masks/*.png"
  - split: validation  
    path: 
    - "data/validation/images/*.png"
    - "data/validation/masks/*.png"
  - split: test
    path: 
    - "data/test/images/*.png"
    - "data/test/masks/*.png"
class_info:
  class_mapping:
    0: "background"
    1: "control_diet"        # 166-171 ppm, 50:50 F:C ratio
    2: "low_forage_diet"     # 300-334 ppm, 20:80 F:C ratio
    3: "high_forage_diet"    # 457-510 ppm, 80:20 F:C ratio
  pixel_to_class_mapping:
    # Note: Dataset has discrepancy between pixel values and class IDs
    0: 0  # background
    1: 1  # control_diet
    2: 3  # pixel value 2 โ†’ class 3 (high forage)
    3: 2  # pixel value 3 โ†’ class 2 (low forage)
  gc_concentration_ranges:
    1: "166-171 ppm"  # Control diet
    2: "300-334 ppm"  # Low forage diet  
    3: "457-510 ppm"  # High forage diet
  diet_descriptions:
    1: "Control (50:50 F:C ratio)"
    2: "Low Forage (20:80 F:C ratio)"
    3: "High Forage (80:20 F:C ratio)"
---

# Controlled Diet Dataset for Methane Plume Detection

[![Paper](https://img.shields.io/badge/Paper-IET%20Image%20Processing-blue)](https://doi.org/10.1049/ipr2.13327)
[![License](https://img.shields.io/badge/License-CC%20BY%204.0-green)](https://creativecommons.org/licenses/by/4.0/)
[![USDA](https://img.shields.io/badge/Funded%20by-USDA%20NIFA-orange)](https://www.nifa.usda.gov/)

## ๐Ÿ“Š Dataset Overview

This repository contains the CD dataset for methane plume detection, presented in the paper "Optical gas imaging and deep learning for quantifying enteric methane emissions from rumen fermentation in vitro". This dataset contains **4,885 thermal infrared images** of methane plumes captured using FLIR GF77 optical gas imaging technology for semantic segmentation applications in agricultural emissions monitoring. 

The images document methane emissions from controlled rumen fermentation experiments under three dietary conditions: Control diet (166-171 ppm), Low forage diet (300-334 ppm), and High forage diet (457-510 ppm).

## ๐Ÿ“„ Associated Publication

**"Optical gas imaging and deep learning for quantifying enteric methane emissions from rumen fermentation in vitro"**  
*Mohamed G. Embaby, Toqi Tahamid Sarker, Amer AbuGhazaleh, Khaled R. Ahmed*  
*IET Image Processing*, January 19, 2025  
DOI: [10.1049/ipr2.13327](https://doi.org/10.1049/ipr2.13327)

## ๐Ÿ“Š Dataset Details


### Dataset Statistics
| Class | GC Range (ppm) | Diet Description | Train | Val | Test | Total |
|-------|----------------|------------------|-------|-----|------|-------|
| Control | 166-171 | 50:50 F:C ratio | 1,079 | 138 | 133 | 1,350 |
| Low Forage | 300-334 | 20:80 F:C ratio | 1,268 | 162 | 157 | 1,587 |
| High Forage | 457-510 | 80:20 F:C ratio | 1,558 | 196 | 194 | 1,948 |


### Class Mapping

- **Class 0**: Background
- **Class 1**: Control diet methane plumes (166-171 ppm, 50:50 F:C ratio)
- **Class 2**: Low forage diet methane plumes (300-334 ppm, 20:80 F:C ratio)  
- **Class 3**: High forage diet methane plumes (457-510 ppm, 80:20 F:C ratio)

**Mask Pixel Values:**
> โš ๏ธ **Important**: There is a discrepancy between pixel values and class IDs in the mask files:

- Pixel value 0: Background (Class 0)
- Pixel value 1: Control diet (Class 1)
- Pixel value 2: **High forage diet (Class 3)** โš ๏ธ
- Pixel value 3: **Low forage diet (Class 2)** โš ๏ธ


## ๐Ÿ“‹ License

This dataset is released under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license.

## ๐Ÿ“š Additional Resources

For preprocessing methods and code examples, please refer to the [GitHub repository](https://github.com/toqitahamid/controlled-diet-methane-dataset-tools). 


## ๐Ÿ™ Acknowledgments

This work was supported by the USDA National Institute of Food and Agriculture (NIFA) under Grant No. 2022-70001-37404.

## ๐Ÿ“œ Citation

This work is published in IET Image Processing (2025, DOI: 10.1049/ipr2.13327).

```bibtex
@article{embaby2025optical,
  title={Optical gas imaging and deep learning for quantifying enteric methane emissions from rumen fermentation in vitro},
  author={Embaby, Mohamed G and Sarker, Toqi Tahamid and AbuGhazaleh, Amer and Ahmed, Khaled R},
  journal={IET Image Processing},
  year={2025},
  doi={10.1049/ipr2.13327}
}
```