path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128010675/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datasets import load_dataset from sklearn.metrics import accuracy_score from torch.utils.data import DataLoader from transformers import TrainingArguments, Trainer from transformers import ViTForImageClassification from transformers import ViTImageProcessor import numpy as np import torch import torch from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples train_data.set_transform(train_transforms) test_data.set_transform(val_transforms) from torch.utils.data import DataLoader import torch def collate_fn(examples): pixel_values = torch.stack([example['pixel_values'] for example in examples]) labels = torch.tensor([label2id[example['label']] for example in examples]) return {'pixel_values': pixel_values, 'labels': labels} train_dataloader = DataLoader(train_data, collate_fn=collate_fn, batch_size=4) test_dataloader = DataLoader(test_data, collate_fn=collate_fn, batch_size=4) from transformers import ViTForImageClassification model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', id2label=id2label, label2id=label2id) from transformers import TrainingArguments, Trainer metric_name = 'accuracy' args = TrainingArguments('5-Flower-Types-Classification', save_strategy='epoch', evaluation_strategy='epoch', learning_rate=2e-05, per_device_train_batch_size=32, per_device_eval_batch_size=4, num_train_epochs=5, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model=metric_name, logging_dir='logs', remove_unused_columns=False) from sklearn.metrics import accuracy_score import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return dict(accuracy=accuracy_score(predictions, labels)) import torch trainer = Trainer(model, args, train_dataset=train_data, eval_dataset=test_data, data_collator=collate_fn, compute_metrics=compute_metrics, tokenizer=processor) trainer.train() outputs = trainer.predict(test_data) print(outputs.metrics)
code
128010675/cell_26
[ "text_plain_output_1.png" ]
from datasets import load_dataset from sklearn.metrics import accuracy_score from torch.utils.data import DataLoader from transformers import TrainingArguments, Trainer from transformers import ViTForImageClassification from transformers import ViTImageProcessor import numpy as np import torch import torch from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples train_data.set_transform(train_transforms) test_data.set_transform(val_transforms) from torch.utils.data import DataLoader import torch def collate_fn(examples): pixel_values = torch.stack([example['pixel_values'] for example in examples]) labels = torch.tensor([label2id[example['label']] for example in examples]) return {'pixel_values': pixel_values, 'labels': labels} train_dataloader = DataLoader(train_data, collate_fn=collate_fn, batch_size=4) test_dataloader = DataLoader(test_data, collate_fn=collate_fn, batch_size=4) from transformers import ViTForImageClassification model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', id2label=id2label, label2id=label2id) from transformers import TrainingArguments, Trainer metric_name = 'accuracy' args = TrainingArguments('5-Flower-Types-Classification', save_strategy='epoch', evaluation_strategy='epoch', learning_rate=2e-05, per_device_train_batch_size=32, per_device_eval_batch_size=4, num_train_epochs=5, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model=metric_name, logging_dir='logs', remove_unused_columns=False) from sklearn.metrics import accuracy_score import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return dict(accuracy=accuracy_score(predictions, labels)) import torch trainer = Trainer(model, args, train_dataset=train_data, eval_dataset=test_data, data_collator=collate_fn, compute_metrics=compute_metrics, tokenizer=processor) trainer.train()
code
128010675/cell_2
[ "text_plain_output_1.png" ]
!pip install -q transformers datasets
code
128010675/cell_19
[ "text_plain_output_1.png" ]
from datasets import load_dataset from transformers import ViTForImageClassification from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTForImageClassification model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', id2label=id2label, label2id=label2id)
code
128010675/cell_28
[ "text_plain_output_1.png" ]
from datasets import load_dataset from sklearn.metrics import accuracy_score from torch.utils.data import DataLoader from transformers import TrainingArguments, Trainer from transformers import ViTForImageClassification from transformers import ViTImageProcessor import numpy as np import torch import torch from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples train_data.set_transform(train_transforms) test_data.set_transform(val_transforms) from torch.utils.data import DataLoader import torch def collate_fn(examples): pixel_values = torch.stack([example['pixel_values'] for example in examples]) labels = torch.tensor([label2id[example['label']] for example in examples]) return {'pixel_values': pixel_values, 'labels': labels} train_dataloader = DataLoader(train_data, collate_fn=collate_fn, batch_size=4) test_dataloader = DataLoader(test_data, collate_fn=collate_fn, batch_size=4) from transformers import ViTForImageClassification model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', id2label=id2label, label2id=label2id) from transformers import TrainingArguments, Trainer metric_name = 'accuracy' args = TrainingArguments('5-Flower-Types-Classification', save_strategy='epoch', evaluation_strategy='epoch', learning_rate=2e-05, per_device_train_batch_size=32, per_device_eval_batch_size=4, num_train_epochs=5, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model=metric_name, logging_dir='logs', remove_unused_columns=False) from sklearn.metrics import accuracy_score import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return dict(accuracy=accuracy_score(predictions, labels)) import torch trainer = Trainer(model, args, train_dataset=train_data, eval_dataset=test_data, data_collator=collate_fn, compute_metrics=compute_metrics, tokenizer=processor) trainer.train() outputs = trainer.predict(test_data)
code
128010675/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from datasets import load_dataset from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} print(id2label, label2id)
code
128010675/cell_16
[ "image_output_1.png" ]
from datasets import load_dataset from torch.utils.data import DataLoader from transformers import ViTImageProcessor import torch from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples train_data.set_transform(train_transforms) test_data.set_transform(val_transforms) from torch.utils.data import DataLoader import torch def collate_fn(examples): pixel_values = torch.stack([example['pixel_values'] for example in examples]) labels = torch.tensor([label2id[example['label']] for example in examples]) return {'pixel_values': pixel_values, 'labels': labels} train_dataloader = DataLoader(train_data, collate_fn=collate_fn, batch_size=4) test_dataloader = DataLoader(test_data, collate_fn=collate_fn, batch_size=4) batch = next(iter(train_dataloader)) for k, v in batch.items(): if isinstance(v, torch.Tensor): print(k, v.shape)
code
128010675/cell_17
[ "text_plain_output_1.png" ]
from datasets import load_dataset from torch.utils.data import DataLoader from transformers import ViTImageProcessor import torch from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples train_data.set_transform(train_transforms) test_data.set_transform(val_transforms) from torch.utils.data import DataLoader import torch def collate_fn(examples): pixel_values = torch.stack([example['pixel_values'] for example in examples]) labels = torch.tensor([label2id[example['label']] for example in examples]) return {'pixel_values': pixel_values, 'labels': labels} train_dataloader = DataLoader(train_data, collate_fn=collate_fn, batch_size=4) test_dataloader = DataLoader(test_data, collate_fn=collate_fn, batch_size=4) batch = next(iter(train_dataloader)) batch = next(iter(test_dataloader)) for k, v in batch.items(): if isinstance(v, torch.Tensor): print(k, v.shape)
code
128010675/cell_10
[ "text_plain_output_1.png" ]
from transformers import ViTImageProcessor from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
code
128010675/cell_12
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_8.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from transformers import ViTImageProcessor from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] print('Size: ', size) normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples
code
328872/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts def cleanResults(numRaces, dfResults): for raceCol in range(1, numRaces + 1): dfResults['R' + str(raceCol)] = dfResults['R' + str(raceCol)].str.replace('\\(|\\)|DNF-|RET-|SCP-|RDG-|RCT-|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*', '') dfResults['R' + str(raceCol)] = pd.to_numeric(dfResults['R' + str(raceCol)]) return dfResults def doRating(numRaces, dfResults, dfRatings): for raceCol in range(1, numRaces + 1): competed = dfRatings['Name'].isin(dfResults['Name'][dfResults['R' + str(raceCol)].notnull()]) rating_group = list(zip(dfRatings['Rating'][competed].T.values.tolist())) dfRatings['Rating'][competed] = ts.rate(rating_group, ranks=dfResults['R' + str(raceCol)][competed].T.values.tolist()) return pd.DataFrame(dfRatings) dfResults = pd.read_csv('../input/201608-SanFracisco-HydrofoilProTour.csv') dfResults = cleanResults(16, dfResults) dfRatings = pd.DataFrame() dfRatings['Name'] = dfResults['Name'] dfRatings['Rating'] = pd.Series(np.repeat(ts.Rating(), len(dfRatings))).T.values.tolist() dfRatings = doRating(16, dfResults, dfRatings) dfRatings['mu'] = pd.Series(np.repeat(25.0, len(dfRatings))) dfRatings['sigma'] = pd.Series(np.repeat(8.333, len(dfRatings))) dfRatings['mu_minus_3sigma'] = pd.Series(np.repeat(0.0, len(dfRatings))) for i in range(0, len(dfRatings['Rating'])): dfRatings['mu'][i] = float(dfRatings['Rating'][i].mu) dfRatings['sigma'][i] = float(dfRatings['Rating'][i].sigma) dfRatings['mu_minus_3sigma'][i] = float(dfRatings['mu'][i] - 3 * dfRatings['sigma'][i])
code
328872/cell_7
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts def cleanResults(numRaces, dfResults): for raceCol in range(1, numRaces + 1): dfResults['R' + str(raceCol)] = dfResults['R' + str(raceCol)].str.replace('\\(|\\)|DNF-|RET-|SCP-|RDG-|RCT-|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*', '') dfResults['R' + str(raceCol)] = pd.to_numeric(dfResults['R' + str(raceCol)]) return dfResults def doRating(numRaces, dfResults, dfRatings): for raceCol in range(1, numRaces + 1): competed = dfRatings['Name'].isin(dfResults['Name'][dfResults['R' + str(raceCol)].notnull()]) rating_group = list(zip(dfRatings['Rating'][competed].T.values.tolist())) dfRatings['Rating'][competed] = ts.rate(rating_group, ranks=dfResults['R' + str(raceCol)][competed].T.values.tolist()) return pd.DataFrame(dfRatings) dfResults = pd.read_csv('../input/201608-SanFracisco-HydrofoilProTour.csv') dfResults = cleanResults(16, dfResults) dfRatings = pd.DataFrame() dfRatings['Name'] = dfResults['Name'] dfRatings['Rating'] = pd.Series(np.repeat(ts.Rating(), len(dfRatings))).T.values.tolist() dfRatings = doRating(16, dfResults, dfRatings) dfRatings['mu'] = pd.Series(np.repeat(25.0, len(dfRatings))) dfRatings['sigma'] = pd.Series(np.repeat(8.333, len(dfRatings))) dfRatings['mu_minus_3sigma'] = pd.Series(np.repeat(0.0, len(dfRatings))) for i in range(0, len(dfRatings['Rating'])): dfRatings['mu'][i] = float(dfRatings['Rating'][i].mu) dfRatings['sigma'][i] = float(dfRatings['Rating'][i].sigma) dfRatings['mu_minus_3sigma'][i] = float(dfRatings['mu'][i] - 3 * dfRatings['sigma'][i]) dfRatings.index = dfRatings['mu_minus_3sigma'].rank(ascending=False) dfRatings.sort('mu_minus_3sigma', ascending=False)
code
130011524/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names for image_batch, label_batch in dataset.take(1): print(image_batch.shape) print(label_batch.numpy())
code
130011524/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_size = 0.8 len(dataset) * train_size train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds) val_size = 0.1 len(dataset) * val_size val_ds = test_ds.take(6) len(val_ds) test_ds = test_ds.skip(6) len(test_ds) def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.1, test_split=0.1, shuffle=True, shuffle_size=10000): assert train_split + test_split + val_split == 1 ds_size = len(ds) if shuffle: ds = ds.shuffle(shuffle_size, seed=12) train_size = int(train_split * ds_size) val_size = int(val_split * ds_size) train_ds = ds.take(train_size) val_ds = ds.skip(train_size).take(val_size) test_ds = ds.skip(train_size).skip(val_size) return (train_ds, val_ds, test_ds) len(test_ds)
code
130011524/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_size = 0.8 len(dataset) * train_size train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds) val_size = 0.1 len(dataset) * val_size val_ds = test_ds.take(6) len(val_ds) test_ds = test_ds.skip(6) len(test_ds) def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.1, test_split=0.1, shuffle=True, shuffle_size=10000): assert train_split + test_split + val_split == 1 ds_size = len(ds) if shuffle: ds = ds.shuffle(shuffle_size, seed=12) train_size = int(train_split * ds_size) val_size = int(val_split * ds_size) train_ds = ds.take(train_size) val_ds = ds.skip(train_size).take(val_size) test_ds = ds.skip(train_size).skip(val_size) return (train_ds, val_ds, test_ds) len(train_ds)
code
130011524/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds) val_ds = test_ds.take(6) len(val_ds) test_ds = test_ds.skip(6) len(test_ds)
code
130011524/cell_6
[ "text_plain_output_1.png" ]
import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE)
code
130011524/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype('uint8')) plt.title(class_names[labels_batch[i]]) plt.axis('off')
code
130011524/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds) val_ds = test_ds.take(6) len(val_ds)
code
130011524/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib as plt import os "\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n"
code
130011524/cell_7
[ "text_plain_output_1.png" ]
import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names
code
130011524/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds) val_size = 0.1 len(dataset) * val_size
code
130011524/cell_32
[ "text_plain_output_1.png" ]
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization, AveragePooling2D, GlobalAveragePooling2D from keras.models import Model,Sequential, Input, load_model from keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import Adam BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 def build_densenet(): densenet = DenseNet121(weights='imagenet', include_top=False) input = Input(shape=(SIZE, SIZE, N_ch)) x = Conv2D(3, (3, 3), padding='same')(input) x = densenet(x) x = GlobalAveragePooling2D()(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.5)(x) output = Dense(15, activation='softmax', name='root')(x) model = Model(input, output) optimizer = Adam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=0.1, decay=0.0) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary() return model model = build_densenet() annealer = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=5, verbose=1, min_lr=0.001) checkpoint = ModelCheckpoint('model.h5', verbose=1, save_best_only=True) datagen = ImageDataGenerator(rotation_range=360, width_shift_range=0.2, height_shift_range=0.2, zoom_range=0.2, horizontal_flip=True, vertical_flip=True) datagen.fit(X_train) hist = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=BATCH_SIZE), steps_per_epoch=X_train.shape[0] // BATCH_SIZE, epochs=EPOCHS, verbose=2, callbacks=[annealer, checkpoint], validation_data=(X_val, Y_val))
code
130011524/cell_8
[ "text_plain_output_1.png" ]
import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names len(dataset)
code
130011524/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_size = 0.8 len(dataset) * train_size
code
130011524/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_ds = dataset.take(54) len(train_ds)
code
130011524/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds)
code
130011524/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") train_size = 0.8 len(dataset) * train_size train_ds = dataset.take(54) len(train_ds) test_ds = dataset.skip(54) len(test_ds) val_size = 0.1 len(dataset) * val_size val_ds = test_ds.take(6) len(val_ds) test_ds = test_ds.skip(6) len(test_ds) def get_dataset_partitions_tf(ds, train_split=0.8, val_split=0.1, test_split=0.1, shuffle=True, shuffle_size=10000): assert train_split + test_split + val_split == 1 ds_size = len(ds) if shuffle: ds = ds.shuffle(shuffle_size, seed=12) train_size = int(train_split * ds_size) val_size = int(val_split * ds_size) train_ds = ds.take(train_size) val_ds = ds.skip(train_size).take(val_size) test_ds = ds.skip(train_size).skip(val_size) return (train_ds, val_ds, test_ds) len(val_ds)
code
130011524/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names plt.figure(figsize=(10, 10)) for image_batch, labels_batch in dataset.take(1): for i in range(12): ax = plt.subplot(3, 4, i + 1) plt.imshow(image_batch[i].numpy().astype("uint8")) plt.title(class_names[labels_batch[i]]) plt.axis("off") len(dataset)
code
130011524/cell_10
[ "text_plain_output_1.png" ]
import tensorflow as tf BATCH_SIZE = 32 IMAGE_SIZE = 256 CHANNELS = 3 EPOCHS = 50 dataset = tf.keras.preprocessing.image_dataset_from_directory('/kaggle/input/potato-dataset/Potato', seed=123, shuffle=True, image_size=(IMAGE_SIZE, IMAGE_SIZE), batch_size=BATCH_SIZE) class_names = dataset.class_names class_names for image_batch, label_batch in dataset.take(1): print(image_batch[0].numpy())
code
16120680/cell_13
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] from sklearn.model_selection import train_test_split X = np.array(df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'TicketSplitLen', 'Sex_Ind', 'CabinPrefixInd']]) y = np.array(df.Survived) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score lr_model = LogisticRegression() lr_model.fit(X_train, y_train) predictions = lr_model.predict(X_test) accuracy = accuracy_score(y_test, predictions) precision = precision_score(y_test, predictions) recall = recall_score(y_test, predictions) f1 = f1_score(y_test, predictions) parameters = lr_model.coef_ comparison = pd.DataFrame([['LR', accuracy, precision, recall, f1]], columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1']) print(f'Accuracy with LR: {accuracy}') print(f'Precision with LR: {precision}') print(f'Recall with LR: {recall}') print(f'F1 with LR: {f1}')
code
16120680/cell_9
[ "image_output_5.png", "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] df.tail()
code
16120680/cell_20
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] from sklearn.model_selection import train_test_split X = np.array(df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'TicketSplitLen', 'Sex_Ind', 'CabinPrefixInd']]) y = np.array(df.Survived) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score lr_model = LogisticRegression() lr_model.fit(X_train, y_train) predictions = lr_model.predict(X_test) accuracy = accuracy_score(y_test, predictions) precision = precision_score(y_test, predictions) recall = recall_score(y_test, predictions) f1 = f1_score(y_test, predictions) parameters = lr_model.coef_ comparison = pd.DataFrame([['LR', accuracy, precision, recall, f1]], columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1']) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout nn_model = Sequential() nn_model.add(Dense(16, activation='relu', input_shape=(8,))) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(32, activation='relu')) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(64, activation='relu')) nn_model.add(Dropout(0.2, noise_shape=None, seed=None)) nn_model.add(Dense(1, activation='sigmoid')) nn_model.summary() nn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) results = nn_model.fit(X_train, y_train, epochs=200, batch_size=16, validation_data=(X_test, y_test)) predictions = nn_model.predict(X_test) accuracy = accuracy_score(y_test, predictions.round()) precision = precision_score(y_test, predictions.round()) recall = recall_score(y_test, predictions.round()) f1 = f1_score(y_test, predictions.round()) comparison = comparison.append({'Model': 'NN', 'Accuracy': accuracy, 'Precision': precision, 'Recall': recall, 'F1': f1}, ignore_index=True) from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import RandomForestClassifier n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=10)] max_features = ['auto', 'sqrt'] max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] bootstrap = [True, False] random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) rf_random = RandomizedSearchCV(estimator=rf_model, param_distributions=random_grid, n_iter=100, cv=3, verbose=2, random_state=42, n_jobs=-1) rf_random.fit(X_train, y_train) best_random = rf_random.best_estimator_ predictions = best_random.predict(X_test) accuracy = accuracy_score(y_test, predictions) precision = precision_score(y_test, predictions) recall = recall_score(y_test, predictions) f1 = f1_score(y_test, predictions) comparison = comparison.append({'Model': 'RF', 'Accuracy': accuracy, 'Precision': precision, 'Recall': recall, 'F1': f1}, ignore_index=True) print(f'Accuracy with RF: {accuracy}') print(f'Precision with RF: {precision}') print(f'Recall with RF: {recall}') print(f'F1 with RF: {f1}')
code
16120680/cell_2
[ "text_plain_output_1.png" ]
import os import string import numpy as np import pandas as pd import matplotlib.pyplot as plt import os print(os.listdir('../input'))
code
16120680/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] from sklearn.model_selection import train_test_split X = np.array(df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'TicketSplitLen', 'Sex_Ind', 'CabinPrefixInd']]) y = np.array(df.Survived) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape
code
16120680/cell_19
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] from sklearn.model_selection import train_test_split X = np.array(df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'TicketSplitLen', 'Sex_Ind', 'CabinPrefixInd']]) y = np.array(df.Survived) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import RandomForestClassifier n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=10)] max_features = ['auto', 'sqrt'] max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] bootstrap = [True, False] random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) rf_random = RandomizedSearchCV(estimator=rf_model, param_distributions=random_grid, n_iter=100, cv=3, verbose=2, random_state=42, n_jobs=-1) rf_random.fit(X_train, y_train) best_random = rf_random.best_estimator_
code
16120680/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i, name in enumerate(q.index)] vals = [name for i, name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend()
code
16120680/cell_15
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout nn_model = Sequential() nn_model.add(Dense(16, activation='relu', input_shape=(8,))) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(32, activation='relu')) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(64, activation='relu')) nn_model.add(Dropout(0.2, noise_shape=None, seed=None)) nn_model.add(Dense(1, activation='sigmoid')) nn_model.summary() nn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
code
16120680/cell_16
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] from sklearn.model_selection import train_test_split X = np.array(df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'TicketSplitLen', 'Sex_Ind', 'CabinPrefixInd']]) y = np.array(df.Survived) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout nn_model = Sequential() nn_model.add(Dense(16, activation='relu', input_shape=(8,))) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(32, activation='relu')) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(64, activation='relu')) nn_model.add(Dropout(0.2, noise_shape=None, seed=None)) nn_model.add(Dense(1, activation='sigmoid')) nn_model.summary() nn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) results = nn_model.fit(X_train, y_train, epochs=200, batch_size=16, validation_data=(X_test, y_test))
code
16120680/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.head()
code
16120680/cell_17
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.model_selection import train_test_split from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string df = pd.read_csv('../input/train.csv') df['CabinPrefix'] = [str(cabinname)[0] for cabinname in df.Cabin] df.loc[df.Cabin.isnull(), 'CabinPrefix'] = None df['CabinKnown'] = [value for value in df.Cabin.isnull()] df['TicketSplitLen'] = [len(t.split()) for t in df.Ticket] df['Sex_Ind'] = -1 df.loc[df.Sex == 'female', 'Sex_Ind'] = 1 df.loc[df.Sex == 'male', 'Sex_Ind'] = 2 df['Age'] = df.Age.fillna(0) cols = ['Pclass','Sex', 'SibSp', 'Parch', 'Embarked', 'CabinPrefix', 'TicketSplitLen', 'CabinKnown'] for col in cols: q = df.groupby(col).Survived.sum() t = df.groupby(col).Survived.count() fig, ax = plt.subplots() pos = [i for i,name in enumerate(q.index)] vals = [name for i,name in enumerate(q.index)] ax.barh(pos, t, color='r', label='died') ax.barh(pos, q, label='survived') ax.set_yticks(pos) ax.set_yticklabels(vals) ax.set_ylabel(col) ax.legend() letter_map = {} for i, letter in enumerate(list(string.ascii_lowercase.upper())): letter_map[letter] = i + 1 letter_map[None] = -1 df['CabinPrefixInd'] = [letter_map[cabin_prefix] for cabin_prefix in df.CabinPrefix] from sklearn.model_selection import train_test_split X = np.array(df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'TicketSplitLen', 'Sex_Ind', 'CabinPrefixInd']]) y = np.array(df.Survived) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score lr_model = LogisticRegression() lr_model.fit(X_train, y_train) predictions = lr_model.predict(X_test) accuracy = accuracy_score(y_test, predictions) precision = precision_score(y_test, predictions) recall = recall_score(y_test, predictions) f1 = f1_score(y_test, predictions) parameters = lr_model.coef_ comparison = pd.DataFrame([['LR', accuracy, precision, recall, f1]], columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1']) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout nn_model = Sequential() nn_model.add(Dense(16, activation='relu', input_shape=(8,))) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(32, activation='relu')) nn_model.add(Dropout(0.3, noise_shape=None, seed=None)) nn_model.add(Dense(64, activation='relu')) nn_model.add(Dropout(0.2, noise_shape=None, seed=None)) nn_model.add(Dense(1, activation='sigmoid')) nn_model.summary() nn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) results = nn_model.fit(X_train, y_train, epochs=200, batch_size=16, validation_data=(X_test, y_test)) predictions = nn_model.predict(X_test) accuracy = accuracy_score(y_test, predictions.round()) precision = precision_score(y_test, predictions.round()) recall = recall_score(y_test, predictions.round()) f1 = f1_score(y_test, predictions.round()) comparison = comparison.append({'Model': 'NN', 'Accuracy': accuracy, 'Precision': precision, 'Recall': recall, 'F1': f1}, ignore_index=True) print(f'Accuracy with NN: {accuracy}') print(f'Precision with NN: {precision}') print(f'Recall with NN: {recall}') print(f'F1 with NN: {f1}')
code
50242100/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/titanic/train.csv') df.shape df.isna().count() df.describe()
code
50242100/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50242100/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/titanic/train.csv') df.shape
code
50242100/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/titanic/train.csv') df.shape df.isna().count()
code
50242100/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/titanic/train.csv') df.head()
code
16120872/cell_21
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') df.isna().sum().sort_values(ascending=False)[:20] for c in df.columns: if df[c].dtypes == 'O': df[c].fillna(value='none', inplace=True) else: df[c].fillna(value=0, inplace=True) objects_list = ['MSSubClass'] linkert_list = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'HeatingQC', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PavedDrive', 'Fence'] for c in df.columns: if df[c].dtypes == 'O': d = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).mean() d = round(d / df['SalePrice'].mean() * 100, 1) d.name = 'Mean' b = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).std() b = round(b / df['SalePrice'].std() * 100, 1) b.name = 'std' a = [] for c in linkert_list: a.append(df[c].unique().tolist()) label_values = pd.DataFrame(a).T label_values
code
16120872/cell_6
[ "text_html_output_1.png" ]
import missingno import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') missingno.matrix(df, figsize=(30, 5))
code
16120872/cell_11
[ "text_html_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') df.isna().sum().sort_values(ascending=False)[:20] for c in df.columns: if df[c].dtypes == 'O': df[c].fillna(value='none', inplace=True) else: df[c].fillna(value=0, inplace=True) df.head()
code
16120872/cell_1
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os print(os.listdir('../input')) import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all'
code
16120872/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') df.isna().sum().sort_values(ascending=False)[:20]
code
16120872/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') df.isna().sum().sort_values(ascending=False)[:20] for c in df.columns: if df[c].dtypes == 'O': df[c].fillna(value='none', inplace=True) else: df[c].fillna(value=0, inplace=True) df.iloc[:, -1].head()
code
16120872/cell_3
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') df.head()
code
16120872/cell_22
[ "text_html_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import missingno pd.set_option('display.max_columns', 1000) from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' df = pd.read_csv('../input/train.csv') d_test = pd.read_csv('../input/test.csv') df.isna().sum().sort_values(ascending=False)[:20] for c in df.columns: if df[c].dtypes == 'O': df[c].fillna(value='none', inplace=True) else: df[c].fillna(value=0, inplace=True) objects_list = ['MSSubClass'] linkert_list = ['ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'HeatingQC', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageQual', 'GarageCond', 'PavedDrive', 'Fence'] for c in df.columns: if df[c].dtypes == 'O': d = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).mean() d = round(d / df['SalePrice'].mean() * 100, 1) d.name = 'Mean' b = df.set_index(c)['SalePrice'].groupby(axis=0, level=0).std() b = round(b / df['SalePrice'].std() * 100, 1) b.name = 'std' a = [] for c in linkert_list: a.append(df[c].unique().tolist()) label_values = pd.DataFrame(a).T label_values label_loc = [4, 7, 8, 11, 12] label_values[label_loc]
code
16120872/cell_36
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_estimators=100) clf.fit(x_train, y_train) clf.score(x_train, y_train)
code
89131213/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import ast data = pd.read_csv('example_data/Belgium_labeled.csv', keep_default_na=False)[['text', 'label']]
code
89127563/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) test.sample(20) test.dtypes
code
89127563/cell_30
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) test.sample(20) train.dtypes test.dtypes missing_values = pd.concat([train.drop(columns=['Transported']).isnull().sum(), test.isnull().sum()], axis=1) missing_values.columns = ['Number of missing value (train)', 'Number of missing value (test)'] missing_values['% of missing value (train)'] = 100 * missing_values['Number of missing value (train)'] / train.shape[0] missing_values['% of missing value (test)'] = 100 * missing_values['Number of missing value (test)'] / test.shape[0] missing_values cardinality = pd.concat([train.drop(columns=['Transported']).nunique(), test.nunique()], axis=1) cardinality.columns = ['Number of unique values (train)', 'Number of unique values (test)'] cardinality
code
89127563/cell_20
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) test.sample(20) print(f'Data size:\n- Training data: Number of row = {train.shape[0]}, Number of columns = {train.shape[1]}\n- Test data : Number of row = {test.shape[0]}, Number of columns = {test.shape[1]}')
code
89127563/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) test.sample(20) train.dtypes test.dtypes missing_values = pd.concat([train.drop(columns=['Transported']).isnull().sum(), test.isnull().sum()], axis=1) missing_values.columns = ['Number of missing value (train)', 'Number of missing value (test)'] missing_values['% of missing value (train)'] = 100 * missing_values['Number of missing value (train)'] / train.shape[0] missing_values['% of missing value (test)'] = 100 * missing_values['Number of missing value (test)'] / test.shape[0] missing_values
code
89127563/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') test.sample(20)
code
89127563/cell_32
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) test.sample(20) train.dtypes test.dtypes missing_values = pd.concat([train.drop(columns=['Transported']).isnull().sum(), test.isnull().sum()], axis=1) missing_values.columns = ['Number of missing value (train)', 'Number of missing value (test)'] missing_values['% of missing value (train)'] = 100 * missing_values['Number of missing value (train)'] / train.shape[0] missing_values['% of missing value (test)'] = 100 * missing_values['Number of missing value (test)'] / test.shape[0] missing_values cardinality = pd.concat([train.drop(columns=['Transported']).nunique(), test.nunique()], axis=1) cardinality.columns = ['Number of unique values (train)', 'Number of unique values (test)'] cardinality train['Cabin']
code
89127563/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) train['Transported'].value_counts(dropna=False).reset_index().rename(columns={'index': 'Transported', 'Transported': 'Number of rows'})
code
89127563/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20) test.sample(20) train.dtypes
code
89127563/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') sample_submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') train.sample(20)
code
89127563/cell_5
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73095137/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all
code
73095137/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout df_all.select_dtypes('object').head()
code
73095137/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2)
code
73095137/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all df_all.head().T feats = [c for c in df_all.columns if c not in ['satisfaction']] feats
code
73095137/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.info()
code
73095137/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all df_all.head().T df_all.info()
code
73095137/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout fig = plt.figure(figsize=(8, 5)) df_all.satisfaction.value_counts(normalize=True).plot(kind='bar', color=['darkorange', 'steelblue'], alpha=0.9, rot=0) plt.show()
code
73095137/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape)
code
73095137/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(20, 15)) sns.heatmap(df_all.corr(), annot=True, cmap='coolwarm') plt.tight_layout
code
73095137/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout df_all['satisfaction'].value_counts()
code
73095137/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73095137/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum()
code
73095137/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout df_all['Class'].value_counts()
code
73095137/cell_28
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all df_all.head().T from sklearn.model_selection import train_test_split train, test = train_test_split(df_all, test_size=0.2, random_state=42) train, valid = train_test_split(train, test_size=0.2, random_state=42) (train.shape, valid.shape, test.shape) feats = [c for c in df_all.columns if c not in ['satisfaction']] feats from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=200, random_state=42, n_jobs=-1) rf.fit(train[feats], train['satisfaction']) preds_val = rf.predict(valid[feats]) preds_val
code
73095137/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout df_all['Customer_Type'].value_counts()
code
73095137/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout df_all['Gender'].value_counts()
code
73095137/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape
code
73095137/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout df_all['Type_of_Travel'].value_counts()
code
73095137/cell_24
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all df_all.head().T from sklearn.model_selection import train_test_split train, test = train_test_split(df_all, test_size=0.2, random_state=42) train, valid = train_test_split(train, test_size=0.2, random_state=42) (train.shape, valid.shape, test.shape)
code
73095137/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all df_all.head().T
code
73095137/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) df_all['Arrival_Delay_in_Minutes'] = df_all['Arrival_Delay_in_Minutes'].fillna(df_all['Arrival_Delay_in_Minutes'].median()) df_all
code
73095137/cell_27
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T df_all.columns = [c.replace(' ', '_') for c in df_all.columns] df_all.isna().sum() df_all = df_all.drop('Unnamed:_0', axis=1) df_all = df_all.drop('id', axis=1) df_all.describe().round(2) import seaborn as sns import matplotlib.pyplot as plt plt.tight_layout # Checando o desbalanceamento fig = plt.figure(figsize = (8,5)) df_all.satisfaction.value_counts(normalize = True).plot(kind='bar', color= ['darkorange','steelblue'], alpha = 0.9, rot=0) plt.show() df_all = pd.get_dummies(df_all, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class']) df_all df_all.head().T from sklearn.model_selection import train_test_split train, test = train_test_split(df_all, test_size=0.2, random_state=42) train, valid = train_test_split(train, test_size=0.2, random_state=42) (train.shape, valid.shape, test.shape) feats = [c for c in df_all.columns if c not in ['satisfaction']] feats from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=200, random_state=42, n_jobs=-1) rf.fit(train[feats], train['satisfaction'])
code
73095137/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('../input/airline-passenger-satisfaction/test.csv') (df.shape, test.shape) df_all = df.append(test) df_all.shape df_all.head(10).T
code
1003657/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) directory_data = pd.read_csv('../input/directory.csv') plt.figure(figsize=(13, 5)) directory_data['Country'].value_counts().head(15).plot(kind='bar')
code
1003657/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) directory_data = pd.read_csv('../input/directory.csv') directory_data.head()
code
1003657/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1003657/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns directory_data = pd.read_csv('../input/directory.csv') sns.countplot(data=directory_data, x='Brand')
code
1003657/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) directory_data = pd.read_csv('../input/directory.csv') directory_data['Brand'].value_counts()
code
1003657/cell_10
[ "text_plain_output_1.png" ]
!pip install geoplotlib
code
1003657/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) directory_data = pd.read_csv('../input/directory.csv') directory_data.describe()
code
128032771/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import random import seaborn as sns def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) seed_everything(42) fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() plt.figure(figsize=(10, 10)) mask = np.zeros_like(train.corr()) mask[np.triu_indices_from(mask)] = True sns.heatmap(train.corr(), mask=mask, annot=True, cmap='Blues') plt.show()
code
128032771/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() sns.displot(data=train, x='Body_Temp', kde=True)
code
128032771/cell_7
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd exercise = pd.read_csv('/kaggle/input/fmendesdat263xdemos/exercise.csv') calories = pd.read_csv('/kaggle/input/fmendesdat263xdemos/calories.csv') exercise['Calories_Burned'] = calories['Calories'] exercise = exercise.drop(['User_ID'], axis=1) exercise
code
128032771/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() sns.displot(data=train, x='Heart_Rate', kde=True)
code