|
""" |
|
BIOSCAN-5M Dataset Loader |
|
|
|
Author: Zahra Gharaee (https://github.com/zahrag) |
|
License: MIT License |
|
Description: |
|
This script serves as a usage demo for loading and accessing the BIOSCAN-5M dataset, |
|
which includes millions of annotated insect images along with associated metadata for machine learning and biodiversity research. |
|
It demonstrates how to use the dataset loader to access multiple image resolutions (e.g., cropped and original) |
|
and predefined splits (e.g., training, validation, pretraining). |
|
The demo integrates with the Hugging Face `datasets` library, showcasing how to load |
|
the dataset locally or from the Hugging Face Hub for seamless data preparation and machine learning workflows. |
|
""" |
|
|
|
import matplotlib.pyplot as plt |
|
from datasets import load_dataset |
|
|
|
|
|
def plot_image_with_metadata(ex): |
|
|
|
image = ex["image"] |
|
|
|
|
|
fields_to_show = [ |
|
"processid", "sampleid", "phylum", "class", "order", "family", "subfamily", "genus", "species", |
|
"dna_bin", "dna_barcode", "country", "province_state", "coord-lat", "coord-lon", |
|
"image_measurement_value", "area_fraction", "scale_factor", "split" |
|
] |
|
|
|
|
|
metadata_lines = [] |
|
for cnt, field in enumerate(fields_to_show): |
|
value = ex.get(field, "N/A") |
|
if field == "dna_barcode" and value not in ("N/A", None, ""): |
|
value = value[:10] + " ... " + f"({len(value)} bp)" |
|
if field == "image_measurement_value" and value not in (None, "", "N/A"): |
|
value = int(value) |
|
metadata_lines.append(f"{cnt + 1}- {field}: {value}") |
|
|
|
fig, axs = plt.subplots(1, 2, figsize=(12, 6), gridspec_kw={'width_ratios': [1.2, 2]}) |
|
plt.subplots_adjust(wspace=0.1) |
|
fig.suptitle(f"Image and Metadata: {ex.get('processid', '')}", fontsize=14) |
|
|
|
|
|
axs[0].axis("off") |
|
metadata_text = "\n".join(metadata_lines) |
|
axs[0].text(0, 0.9, metadata_text, fontsize=14, va='top', ha='left', transform=axs[0].transAxes, wrap=True) |
|
|
|
|
|
axs[1].imshow(image) |
|
axs[1].axis("off") |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
def main(): |
|
|
|
ds_val = load_dataset("dataset.py", name="cropped_256_eval", split="validation", trust_remote_code=True) |
|
print(f"{ds_val.description}{ds_val.license}{ds_val.citation}") |
|
|
|
|
|
samples_to_show = 10 |
|
cnt = 1 |
|
for i, sp in enumerate(ds_val): |
|
plot_image_with_metadata(sp) |
|
if cnt == samples_to_show: |
|
break |
|
cnt += 1 |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|
|
|
|
|