BIOSCAN-5M / usage_demo_bioscan5m.py
Gharaee's picture
Update usage_demo_bioscan5m.py
2ac8011 verified
"""
BIOSCAN-5M Dataset Loader
Author: Zahra Gharaee (https://github.com/zahrag)
License: MIT License
Description:
This script serves as a usage demo for loading and accessing the BIOSCAN-5M dataset,
which includes millions of annotated insect images along with associated metadata for machine learning and biodiversity research.
It demonstrates how to use the dataset loader to access multiple image resolutions (e.g., cropped and original)
and predefined splits (e.g., training, validation, pretraining).
The demo integrates with the Hugging Face `datasets` library, showcasing how to load
the dataset locally or from the Hugging Face Hub for seamless data preparation and machine learning workflows.
"""
import matplotlib.pyplot as plt
from datasets import load_dataset
def plot_image_with_metadata(ex):
image = ex["image"]
# Define the metadata fields to show
fields_to_show = [
"processid", "sampleid", "phylum", "class", "order", "family", "subfamily", "genus", "species",
"dna_bin", "dna_barcode", "country", "province_state", "coord-lat", "coord-lon",
"image_measurement_value", "area_fraction", "scale_factor", "split"
]
# Prepare metadata as formatted strings
metadata_lines = []
for cnt, field in enumerate(fields_to_show):
value = ex.get(field, "N/A")
if field == "dna_barcode" and value not in ("N/A", None, ""):
value = value[:10] + " ... " + f"({len(value)} bp)" # bp: base pairs
if field == "image_measurement_value" and value not in (None, "", "N/A"):
value = int(value)
metadata_lines.append(f"{cnt + 1}- {field}: {value}")
fig, axs = plt.subplots(1, 2, figsize=(12, 6), gridspec_kw={'width_ratios': [1.2, 2]})
plt.subplots_adjust(wspace=0.1)
fig.suptitle(f"Image and Metadata: {ex.get('processid', '')}", fontsize=14)
# Left: metadata
axs[0].axis("off")
metadata_text = "\n".join(metadata_lines)
axs[0].text(0, 0.9, metadata_text, fontsize=14, va='top', ha='left', transform=axs[0].transAxes, wrap=True)
# Right: image
axs[1].imshow(image)
axs[1].axis("off")
plt.tight_layout()
plt.show()
def main():
ds_val = load_dataset("dataset.py", name="cropped_256_eval", split="validation", trust_remote_code=True)
print(f"{ds_val.description}{ds_val.license}{ds_val.citation}")
# Print and visualize a few examples
samples_to_show = 10
cnt = 1
for i, sp in enumerate(ds_val):
plot_image_with_metadata(sp)
if cnt == samples_to_show:
break
cnt += 1
if __name__ == '__main__':
main()