Datasets:
File size: 58,294 Bytes
a3ae39b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "cCXb6F65XhI_"
},
"outputs": [],
"source": [
"import logging\n",
"from abc import ABCMeta, abstractmethod\n",
"from dataclasses import dataclass, replace\n",
"from math import cos, pi, sqrt\n",
"from typing import Any, Dict, List, Optional, Tuple, Union\n",
"\n",
"import torch\n",
"import torch.distributed as dist\n",
"import torch.nn as nn\n",
"from torch.distributed.fsdp import FullyShardedDataParallel\n",
"from torch.distributed.fsdp import FullyShardedDataParallel as FSDP\n",
"from torch.optim.optimizer import Optimizer as OptimizerBase\n",
"\n",
"#from . import LayerNormBase\n",
"#from .config import OptimizerType, SchedulerConfig, SchedulerType, TrainConfig\n",
"#from .torch_util import get_default_device, is_distributed\n",
"\n",
"\"\"\" Simulate import from .torch_util \"\"\"\n",
"\n",
"import gc\n",
"import os\n",
"from typing import Optional, TypeVar\n",
"\n",
"import torch\n",
"import torch.distributed as dist\n",
"\n",
"T = TypeVar(\"T\")\n",
"\n",
"\n",
"def is_distributed() -> bool:\n",
" return dist.is_available() and dist.is_initialized()\n",
"\n",
"def get_default_device() -> torch.device:\n",
" if torch.cuda.is_available() and torch.cuda.is_initialized():\n",
" return torch.device(\"cuda\")\n",
" elif torch.backends.mps.is_available():\n",
" return torch.device(\"mps\")\n",
" else:\n",
" return torch.device(\"cpu\")\n",
"\n",
"\n",
"\"\"\" end of simulation \"\"\"\n",
"\n",
"\n",
"\n",
"\n",
"__all__ = [\n",
" \"Optimizer\",\n",
" \"LionW\",\n",
" \"AdamW\",\n",
" \"MuonW\",\n",
" \"Scheduler\",\n",
" \"CosWithWarmup\",\n",
" \"LinearWithWarmup\",\n",
" \"InvSqrtWithWarmup\",\n",
" \"MaxScheduler\",\n",
" \"ConstantScheduler\",\n",
" \"CosLinearEnvelope\",\n",
" \"BoltOnWarmupScheduler\",\n",
" \"build_optimizer\",\n",
" \"build_scheduler\",\n",
"]\n",
"\n",
"\n",
"log = logging.getLogger(__name__)"
]
},
{
"cell_type": "code",
"source": [
"class Optimizer(OptimizerBase):\n",
" def __init__(self, *args, record_update_metrics: bool = False, selective_updates: bool = False, **kwargs):\n",
" super().__init__(*args, **kwargs)\n",
" self._record_update_metrics = record_update_metrics\n",
" self._collecting_metrics = False\n",
" self._selective_updates = selective_updates\n",
"\n",
" def _clean_param_name(self, name: str) -> str:\n",
" return name.replace(\"_fsdp_wrapped_module.\", \"\")\n",
"\n",
" @torch.no_grad()\n",
" def clip_grads_and_collect_metrics(\n",
" self,\n",
" global_step: int,\n",
" collect_param_metrics: bool = True,\n",
" process_group: Optional[dist.ProcessGroup] = None,\n",
" device: Optional[torch.device] = None,\n",
" ) -> Dict[str, torch.Tensor]:\n",
" \"\"\"\n",
" Clips gradients for every group that has the field `max_grad_norm`.\n",
" At the same time collect metrics for each parameter and its gradient.\n",
" \"\"\"\n",
" self._collecting_metrics = collect_param_metrics\n",
" device = get_default_device() if device is None else device\n",
"\n",
" # NOTE (epwalsh): during distributed training we're making an assumption that the order of\n",
" # the param groups and the params within each group are the same across all ranks.\n",
" # This is justified since we initialize the parameter groups in every rank by iterating over\n",
" # `module.parameters()` or `module.named_modules()` / `module.named_parameters()`, each of which\n",
" # provides a consistent order.\n",
" # For each parameter (with a gradient) we'll collect:\n",
" # - min, max, avg, norm of the param itself\n",
" # - min, max, avg, norm of the param's gradient\n",
" # - min, max, avg, norm of any additional per-parameter optimizer state metrics returned from\n",
" # `self.get_state_for_param()`.\n",
" # Afterwards we'll reduce these all over all ranks.\n",
" per_param_min_metrics: List[torch.Tensor] = []\n",
" per_param_max_metrics: List[torch.Tensor] = []\n",
" per_param_sum_metrics: List[torch.Tensor] = []\n",
" per_param_norm_metrics: List[torch.Tensor] = []\n",
" per_param_numel_metrics: List[torch.Tensor] = []\n",
"\n",
" per_param_min_metric_names: List[str] = []\n",
" per_param_max_metric_names: List[str] = []\n",
" per_param_avg_metric_names: List[str] = []\n",
" per_param_norm_metric_names: List[str] = []\n",
"\n",
" dst_rank = 0\n",
" if process_group is not None:\n",
" dst_rank = dist.get_global_rank(process_group, 0)\n",
"\n",
" #######################################################################\n",
" # part 1: collect metrics locally\n",
" #######################################################################\n",
" for group in self.param_groups:\n",
" for name, p in zip(group[\"param_names\"], group[\"params\"]):\n",
" name = self._clean_param_name(name)\n",
" # Always need to collect the norm of gradients for clipping, even if we're not collecting\n",
" # other metrics.\n",
" tensors: List[Optional[torch.Tensor]] = [p.grad]\n",
" prefixes: List[str] = [f\"grad/{name}\"]\n",
" if collect_param_metrics:\n",
" state = self.get_state_for_param(p)\n",
" sorted_state_keys = sorted([k for k in state.keys()])\n",
" tensors.extend([p] + [state[key] for key in sorted_state_keys])\n",
" prefixes.extend([f\"param/{name}\"] + [f\"{key}/{name}\" for key in sorted_state_keys])\n",
" assert len(tensors) == len(prefixes)\n",
"\n",
" # Get min, max, avg, and norm for all `tensors` associated with the parameter.\n",
" for x, prefix in zip(tensors, prefixes):\n",
" # grad or state tensors could be none for params that have their shards completely on\n",
" # other ranks.\n",
" if x is not None and x.numel() > 0:\n",
" if collect_param_metrics:\n",
" x_abs = x.abs()\n",
" per_param_min_metrics.append(x_abs.min().unsqueeze(0).to(dtype=torch.float32))\n",
" per_param_max_metrics.append(x_abs.max().unsqueeze(0).to(dtype=torch.float32))\n",
" per_param_sum_metrics.append(x.sum().unsqueeze(0).to(dtype=torch.float32))\n",
" per_param_numel_metrics.append(\n",
" torch.tensor([x.numel()], device=device, dtype=torch.float32)\n",
" )\n",
" per_param_norm_metrics.append(\n",
" torch.linalg.vector_norm(x, 2.0, dtype=torch.float32).unsqueeze(0)\n",
" )\n",
" else:\n",
" if collect_param_metrics:\n",
" per_param_min_metrics.append(\n",
" torch.tensor([float(\"inf\")], device=device, dtype=torch.float32)\n",
" )\n",
" per_param_max_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))\n",
" per_param_sum_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))\n",
" per_param_numel_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))\n",
" per_param_norm_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))\n",
" if collect_param_metrics:\n",
" per_param_min_metric_names.append(f\"{prefix}.min\")\n",
" per_param_max_metric_names.append(f\"{prefix}.max\")\n",
" per_param_avg_metric_names.append(f\"{prefix}.avg\")\n",
" per_param_norm_metric_names.append(f\"{prefix}.norm\")\n",
"\n",
" assert (\n",
" len(per_param_min_metrics)\n",
" == len(per_param_min_metric_names)\n",
" == len(per_param_max_metrics)\n",
" == len(per_param_max_metric_names)\n",
" == len(per_param_sum_metrics)\n",
" == len(per_param_numel_metrics)\n",
" == len(per_param_avg_metric_names)\n",
" )\n",
" assert len(per_param_norm_metrics) == len(per_param_norm_metric_names)\n",
"\n",
" def is_grad_norm_metric(metric_name: str) -> bool:\n",
" return metric_name.startswith(\"grad/\") and metric_name.endswith(\".norm\")\n",
"\n",
" #######################################################################\n",
" # part 2: reduce metrics over ranks\n",
" #######################################################################\n",
" param_group_sharded = False\n",
" for group in self.param_groups:\n",
" param_group_sharded = param_group_sharded or group.get(\"sharded\", False)\n",
"\n",
" total_grad_norm: torch.Tensor\n",
" per_param_avg_metrics: List[torch.Tensor] = []\n",
" if is_distributed() and param_group_sharded:\n",
" # Reduce metrics across all ranks. Note that we can use a `reduce` for most cases\n",
" # instead of an `all_reduce`, but we need `all_reduce` for norms so that all ranks\n",
" # get the right value for gradient norms so they can clip correctly.\n",
" # Reduce mins.\n",
" if per_param_min_metrics:\n",
" all_mins = torch.cat(per_param_min_metrics).to(device)\n",
" dist.reduce(all_mins, dst_rank, op=dist.ReduceOp.MIN, group=process_group)\n",
" per_param_min_metrics = all_mins.split(1)\n",
" # Reduce maxs.\n",
" if per_param_max_metrics:\n",
" all_maxs = torch.cat(per_param_max_metrics).to(device)\n",
" dist.reduce(all_maxs, dst_rank, op=dist.ReduceOp.MAX, group=process_group)\n",
" per_param_max_metrics = all_maxs.split(1)\n",
" # Reduce sums or just norms.\n",
" all_norms = torch.cat(per_param_norm_metrics).to(device) ** 2.0\n",
" if per_param_sum_metrics and per_param_numel_metrics:\n",
" all_sums = torch.cat(per_param_sum_metrics).to(device)\n",
" all_numels = torch.cat(per_param_numel_metrics).to(device)\n",
" all_sums_norms_numels = torch.cat(\n",
" [all_sums.unsqueeze(0), all_norms.unsqueeze(0), all_numels.unsqueeze(0)], dim=0\n",
" )\n",
" dist.all_reduce(all_sums_norms_numels, op=dist.ReduceOp.SUM, group=process_group)\n",
" all_sums, all_norms, all_numels = all_sums_norms_numels.split(1)\n",
" # Get averages.\n",
" # NOTE: could get infs for non-rank0 processes but that's okay.\n",
" per_param_avg_metrics = (all_sums / all_numels).squeeze(0).split(1)\n",
" else:\n",
" dist.all_reduce(all_norms, op=dist.ReduceOp.SUM, group=process_group)\n",
" grad_norm_metric_mask = torch.tensor(\n",
" [float(is_grad_norm_metric(n)) for n in per_param_norm_metric_names], device=all_norms.device\n",
" )\n",
" total_grad_norm = (all_norms * grad_norm_metric_mask).sum() ** 0.5\n",
" per_param_norm_metrics = (all_norms ** (0.5)).squeeze(0).split(1)\n",
" else:\n",
" total_grad_norm = (\n",
" torch.cat(\n",
" [\n",
" m\n",
" for m, n in zip(per_param_norm_metrics, per_param_norm_metric_names)\n",
" if is_grad_norm_metric(n)\n",
" ]\n",
" )\n",
" ** 2.0\n",
" ).sum() ** 0.5\n",
" per_param_avg_metrics = [x / n for x, n in zip(per_param_sum_metrics, per_param_numel_metrics)]\n",
"\n",
" assert len(per_param_avg_metrics) == len(per_param_avg_metric_names)\n",
"\n",
" # Collect all metrics into a single dict.\n",
" all_metrics: Dict[str, torch.Tensor] = {}\n",
" if collect_param_metrics:\n",
" for metric_name, metric in zip(per_param_min_metric_names, per_param_min_metrics):\n",
" all_metrics[metric_name] = metric.squeeze(0)\n",
" for metric_name, metric in zip(per_param_max_metric_names, per_param_max_metrics):\n",
" all_metrics[metric_name] = metric.squeeze(0)\n",
" for metric_name, metric in zip(per_param_avg_metric_names, per_param_avg_metrics):\n",
" all_metrics[metric_name] = metric.squeeze(0)\n",
"\n",
" for metric_name, metric in zip(per_param_norm_metric_names, per_param_norm_metrics):\n",
" all_metrics[metric_name] = metric.squeeze(0)\n",
" all_metrics[\"total_grad_norm\"] = total_grad_norm\n",
"\n",
" #######################################################################\n",
" # part 3: clip grads\n",
" #######################################################################\n",
" num_grads_clipped = 0\n",
" num_eligible_grads = 0\n",
" for group in self.param_groups:\n",
" if (max_norm_ratio := group.get(\"max_grad_norm_ratio\")) is not None:\n",
" num_clipped = self._do_adaptive_clipping(\n",
" group, max_norm_ratio, global_step, all_metrics, collect_param_metrics=collect_param_metrics\n",
" )\n",
" elif (max_norm := group.get(\"max_grad_norm\")) is not None:\n",
" num_clipped = self._do_global_fixed_clipping(\n",
" group, max_norm, all_metrics, collect_param_metrics=collect_param_metrics\n",
" )\n",
" else:\n",
" # No clipping needed.\n",
" continue\n",
" num_eligible_grads += len(group[\"params\"])\n",
" if num_clipped is not None:\n",
" num_grads_clipped += num_clipped\n",
"\n",
" if collect_param_metrics:\n",
" if num_eligible_grads > 0:\n",
" clipping_rate = torch.tensor(num_grads_clipped / num_eligible_grads, device=\"cpu\")\n",
" else:\n",
" clipping_rate = torch.tensor(0.0, device=\"cpu\")\n",
" all_metrics[\"clipping_rate\"] = clipping_rate\n",
"\n",
" # total_grad_norm is computed at all steps, even when collect_param_metrics is set to False\n",
" return all_metrics\n",
"\n",
" @torch.no_grad()\n",
" def _do_adaptive_clipping(\n",
" self,\n",
" group: Dict[str, Any],\n",
" max_norm_ratio: float,\n",
" global_step: int,\n",
" all_metrics: Dict[str, torch.Tensor],\n",
" collect_param_metrics: bool = True,\n",
" device: Optional[torch.device] = None,\n",
" ) -> Optional[int]:\n",
" \"\"\"\n",
" Do adaptive gradient clipping on a param group.\n",
"\n",
" If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped.\n",
" \"\"\"\n",
" device = get_default_device() if device is None else device\n",
" num_grads_clipped = 0\n",
" # We'll use the bigger of beta1 and beta2 to update the exponential average of the norm of\n",
" # the gradient (a scalar), not to be confused with the exponential average of the gradient.\n",
" # TODO (epwalsh): handle optimizers that don't have betas.\n",
" beta1, beta2 = group[\"betas\"]\n",
" beta = max(beta1, beta2)\n",
" for name, p in zip(group[\"param_names\"], group[\"params\"]):\n",
" name = self._clean_param_name(name)\n",
" grad_norm = all_metrics.get(f\"grad/{name}.norm\")\n",
" if grad_norm is None:\n",
" continue\n",
"\n",
" # Get or initialize the exponential average of grad norm.\n",
" # TODO: The way we have it right now, every rank tracks the `grad_norm_exp_avg` of every parameter,\n",
" # even parameters for which the corresponding local shard is empty. This has the potential to\n",
" # cause some issues with the optimizer, as we ran into with https://github.com/allenai/LLM/pull/372.\n",
" # So we should consider changing how we do this at some point so that we don't add any state\n",
" # to parameters for which the local shard is empty. That would probably add extra distributed\n",
" # communication, at least on steps where we have to log (i.e. when `collect_param_metrics=True`).\n",
" state = self.state[p]\n",
" grad_norm_exp_avg = state.get(\"grad_norm_exp_avg\")\n",
" if grad_norm_exp_avg is None:\n",
" grad_norm_exp_avg = grad_norm.clone().to(device)\n",
" # We don't want to add anything to `state` until `state` has been initialized, otherwise\n",
" # this will crash some optimizers which rely on checking `len(state)`. The downside here\n",
" # is that we won't start tracking `grad_norm_exp_avg` until the 2nd training step.\n",
" if global_step > 1:\n",
" state[\"grad_norm_exp_avg\"] = grad_norm_exp_avg\n",
"\n",
" max_allowed_norm = max_norm_ratio * grad_norm_exp_avg\n",
" clip_coef = max_allowed_norm / (grad_norm + 1e-6)\n",
"\n",
" # Clip the gradients and update the exponential average.\n",
" # Note that multiplying by the clamped coefficient is meaningless when it is\n",
" # equal to 1, but it avoids the host-device sync that would result from `if clip_coef_clamped < 1`.\n",
" clip_coef_clamped = torch.clamp(clip_coef, max=1.0)\n",
" if p.grad is not None:\n",
" # p.grad could be none for some ranks when using FSDP.\n",
" p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype))\n",
"\n",
" # Update the exponential average of the norm of the gradient with the clipped norm of the gradient.\n",
" grad_norm_exp_avg.lerp_((grad_norm * clip_coef_clamped).to(grad_norm_exp_avg.device), 1 - beta)\n",
" # Alternative: update with the *unclipped* norm of the gradient.\n",
" # grad_norm_exp_avg.lerp_(grad_norm.to(grad_norm_exp_avg.device), 1 - beta)\n",
"\n",
" if collect_param_metrics:\n",
" # Can't avoid host-device sync here.\n",
" if clip_coef_clamped < 1.0:\n",
" num_grads_clipped += 1\n",
" all_metrics[f\"grad_norm_exp_avg/{name}\"] = grad_norm_exp_avg\n",
" return num_grads_clipped if collect_param_metrics else None\n",
"\n",
" @torch.no_grad()\n",
" def _do_global_fixed_clipping(\n",
" self,\n",
" group: Dict[str, Any],\n",
" max_norm: float,\n",
" all_metrics: Dict[str, torch.Tensor],\n",
" collect_param_metrics: bool = True,\n",
" device: Optional[torch.device] = None,\n",
" ) -> Optional[int]:\n",
" \"\"\"\n",
" Do global fixed gradient clipping on a param group.\n",
"\n",
" If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped.\n",
" \"\"\"\n",
" device = get_default_device() if device is None else device\n",
" total_grad_norm = all_metrics[\"total_grad_norm\"]\n",
" clip_coef = max_norm / (total_grad_norm.to(device) + 1e-6)\n",
" clip_coef_clamped = torch.clamp(clip_coef, max=1.0)\n",
" num_grads_clipped: Optional[int] = None\n",
" if collect_param_metrics:\n",
" # Can't avoid host-device sync here.\n",
" if clip_coef_clamped < 1.0:\n",
" num_grads_clipped = len(group[\"params\"])\n",
" for p in group[\"params\"]:\n",
" # Clip the gradients.\n",
" # Note that multiplying by the clamped coefficient is meaningless when it is\n",
" # equal to 1, but it avoids the host-device sync that would result from `if clip_coef_clamped < 1`.\n",
" if p.grad is not None:\n",
" # p.grad could be none for some ranks when using FSDP.\n",
" p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype))\n",
" return num_grads_clipped\n",
"\n",
" def get_post_step_metrics(\n",
" self, module: nn.Module, process_group: Optional[dist.ProcessGroup] = None\n",
" ) -> Dict[str, torch.Tensor]:\n",
" del module, process_group\n",
" return {}\n",
"\n",
" def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]:\n",
" del param\n",
" return {}"
],
"metadata": {
"id": "o9dFXoh2YSVn"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class MuonW(Optimizer):\n",
" \"\"\"\n",
" Distributed implementation of Muon optimizer with weight decay.\n",
"\n",
" Muon applies orthogonalization to matrix parameter(2D+) updates using\n",
" Newton-Schulz orthogonalization iterations to compute the zeroth power. For non-matrix\n",
" parameters(embeddings, heads, bias), it uses AdamW as a backup.\n",
"\n",
" \"\"\"\n",
"\n",
" def __init__(\n",
" self,\n",
" params,\n",
" lr=0.01,\n",
" betas=(0.95, 0.95), # Muon uses single momentum param\n",
" weight_decay=0.0,\n",
" ns_steps=5,\n",
" nesterov=True,\n",
" eps=1e-8, # For AdamW backup\n",
" record_update_metrics=False,\n",
" selective_updates=False,\n",
" device=None,\n",
" ):\n",
" if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):\n",
" # User provided param groups\n",
" for param_group in params:\n",
" if 'use_muon' not in param_group:\n",
" param_group['use_muon'] = True\n",
" else:\n",
" # Convert single params list to a param group\n",
" params = [{'params': params, 'use_muon': True}]\n",
"\n",
" defaults = dict(\n",
" lr=lr,\n",
" betas=betas,\n",
" weight_decay=weight_decay,\n",
" ns_steps=ns_steps,\n",
" nesterov=nesterov,\n",
" eps=eps,\n",
" use_muon=True, # Default to using Muon\n",
" )\n",
" super().__init__(\n",
" params,\n",
" defaults,\n",
" record_update_metrics=record_update_metrics,\n",
" selective_updates=selective_updates\n",
" )\n",
" self._device = device\n",
" self._update_norms = None\n",
" self._update_maxs = None\n",
" self._update_param_names = None\n",
"\n",
" def zeropower_via_newtonschulz5(self, G, steps: int):\n",
" \"\"\"\n",
" Newton-Schulz iteration to compute the zeroth power / orthogonalization of G.\n",
" \"\"\"\n",
" assert G.ndim >= 2\n",
" a, b, c = (3.4445, -4.7750, 2.0315)\n",
" X = G.bfloat16()\n",
" if G.size(-2) > G.size(-1):\n",
" X = X.mT\n",
"\n",
" # Ensure spectral norm is at most 1\n",
" X = X / (X.norm(dim=(-2, -1), keepdim=True) + 1e-7)\n",
" # Perform the NS iterations\n",
" for _ in range(steps):\n",
" A = X @ X.mT\n",
" B = b * A + c * A @ A\n",
" X = a * X + B @ X\n",
"\n",
" if G.size(-2) > G.size(-1):\n",
" X = X.mT\n",
" return X\n",
"\n",
" def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]:\n",
" \"\"\"Return optimizer state for a parameter.\"\"\"\n",
" state = self.state[param]\n",
" if not state:\n",
" return {}\n",
"\n",
" result = {}\n",
" if 'momentum_buffer' in state:\n",
" result['momentum_buffer'] = state['momentum_buffer']\n",
" if 'exp_avg' in state:\n",
" result['exp_avg'] = state['exp_avg']\n",
" if 'exp_avg_sq' in state:\n",
" result['exp_avg_sq'] = state['exp_avg_sq']\n",
"\n",
" return result\n",
"\n",
" @torch.no_grad()\n",
" def step(self, closure=None):\n",
" \"\"\"Perform a single optimization step.\"\"\"\n",
" if closure is not None:\n",
" with torch.enable_grad():\n",
" closure()\n",
"\n",
" device = get_default_device() if self._device is None else self._device\n",
" update_norms = []\n",
" update_maxs = []\n",
" update_param_names = []\n",
"\n",
" collecting_metrics = self._collecting_metrics and self._record_update_metrics\n",
"\n",
" for group in self.param_groups:\n",
" lr = group['lr']\n",
" weight_decay = group['weight_decay']\n",
" beta1, beta2 = group['betas']\n",
" ns_steps = group['ns_steps']\n",
" nesterov = group['nesterov']\n",
" eps = group['eps']\n",
" use_muon = group['use_muon']\n",
"\n",
" for name, p in zip(group[\"param_names\"], group[\"params\"]):\n",
" name = self._clean_param_name(name)\n",
"\n",
" if p.grad is None:\n",
" if collecting_metrics:\n",
" update_param_names.append(name)\n",
" update_norms.append(torch.tensor([0.0], device=device))\n",
" update_maxs.append(torch.tensor([0.0], device=device))\n",
" continue\n",
"\n",
" # Apply weight decay\n",
" #mask = p.grad != 0 if self._selective_updates else 1\n",
" mask = (p.grad != 0) if self._selective_updates else torch.ones_like(p, dtype=torch.bool)\n",
" p.mul_(1 - mask * (lr * weight_decay))\n",
"\n",
" grad = p.grad\n",
" state = self.state[p]\n",
"\n",
" # Determine whether to use Muon or AdamW for this parameter\n",
" # We use Muon for matrix parameters unless explicitly disabled\n",
" should_use_muon = use_muon and p.ndim >= 2 and not ('embed' in name.lower() or 'head' in name.lower())\n",
"\n",
" if should_use_muon:\n",
" # --- Muon Update Logic ---\n",
"\n",
" # Initialize momentum buffer if needed\n",
" if 'momentum_buffer' not in state:\n",
" state['momentum_buffer'] = torch.zeros_like(grad)\n",
" momentum_buffer = state['momentum_buffer']\n",
"\n",
" # Update momentum\n",
" momentum_buffer.lerp_(grad, mask * (1 - beta1))\n",
"\n",
" # Compute update\n",
" if nesterov:\n",
" update = momentum_buffer * beta1 + grad * (1 - beta1)\n",
" else:\n",
" update = momentum_buffer.clone()\n",
"\n",
" if isinstance(mask, torch.Tensor):\n",
" update.mul_(mask)\n",
"\n",
" # Handle conv filters\n",
" orig_shape = update.shape\n",
" if update.ndim == 4:\n",
" update = update.view(update.shape[0], -1)\n",
"\n",
" # Apply Newton-Schulz\n",
" update = self.zeropower_via_newtonschulz5(update, steps=ns_steps)\n",
"\n",
" # Scale update\n",
" update *= max(1, grad.size(-2) / grad.size(-1)) ** 0.5\n",
"\n",
" # Reshape if needed\n",
" if len(orig_shape) == 4:\n",
" update = update.view(orig_shape)\n",
"\n",
" else:\n",
" # --- AdamW Update Logic ---\n",
"\n",
" # Initialize momentum buffers if needed\n",
" if 'exp_avg' not in state:\n",
" state['exp_avg'] = torch.zeros_like(grad)\n",
" state['exp_avg_sq'] = torch.zeros_like(grad)\n",
" state['step'] = 0\n",
"\n",
" # Update step count\n",
" state['step'] += 1\n",
" step = state['step']\n",
"\n",
" # Update momentum buffers\n",
" state['exp_avg'].lerp_(grad, mask * (1 - beta1))\n",
" state['exp_avg_sq'].mul_(1 - mask * (1 - beta2)).addcmul_(grad, grad, value=1 - beta2)\n",
"\n",
" # Bias correction\n",
" bias_correction1 = 1 - beta1 ** step\n",
" bias_correction2 = 1 - beta2 ** step\n",
"\n",
" # Compute AdamW update\n",
" denom = (state['exp_avg_sq'].sqrt() / math.sqrt(bias_correction2)).add_(eps)\n",
" update = state['exp_avg'] / bias_correction1 / denom\n",
"\n",
" if isinstance(mask, torch.Tensor):\n",
" update.mul_(mask)\n",
"\n",
" # Apply update\n",
" p.add_(update, alpha=-lr)\n",
"\n",
" # Collect metrics\n",
" if collecting_metrics:\n",
" update_param_names.append(name)\n",
" update_norms.append(torch.linalg.vector_norm(update, 2.0, dtype=torch.float32).unsqueeze(0))\n",
" update_maxs.append(update.abs().max().unsqueeze(0))\n",
"\n",
" # Store metrics\n",
" if collecting_metrics:\n",
" self._update_norms = update_norms\n",
" self._update_maxs = update_maxs\n",
" self._update_param_names = update_param_names\n",
"\n",
" return None\n",
"\n",
" def get_post_step_metrics(\n",
" self, module: nn.Module, process_group: Optional[dist.ProcessGroup] = None\n",
" ) -> Dict[str, torch.Tensor]:\n",
" \"\"\"Get metrics about the optimization step.\"\"\"\n",
" if not (self._record_update_metrics and self._collecting_metrics):\n",
" return {}\n",
"\n",
" device = get_default_device() if self._device is None else self._device\n",
" dst_rank = 0\n",
" if process_group is not None:\n",
" dst_rank = dist.get_global_rank(process_group, 0)\n",
"\n",
" param_names = self._update_param_names\n",
" update_norms = self._update_norms\n",
" update_maxs = self._update_maxs\n",
"\n",
" if param_names is None or update_norms is None or update_maxs is None:\n",
" return {}\n",
"\n",
" # Reduce metrics if needed\n",
" if is_distributed() and isinstance(module, FullyShardedDataParallel):\n",
" # Reduce norms\n",
" all_norms = torch.cat(update_norms).to(device) ** 2.0\n",
" dist.reduce(all_norms, dst_rank, op=dist.ReduceOp.SUM, group=process_group)\n",
" update_norms = (all_norms ** (0.5)).squeeze(0).split(1)\n",
"\n",
" # Reduce maxs\n",
" all_maxs = torch.cat(update_maxs).to(device)\n",
" dist.reduce(all_maxs, dst_rank, op=dist.ReduceOp.MAX, group=process_group)\n",
" update_maxs = all_maxs.split(1)\n",
"\n",
" # Collect metrics\n",
" metrics = {}\n",
" for param_name, update_norm, update_max in zip(param_names, update_norms, update_maxs):\n",
" metrics[f\"update/{param_name}.norm\"] = update_norm.squeeze(0)\n",
" metrics[f\"update/{param_name}.max\"] = update_max.squeeze(0)\n",
"\n",
" # Reset stored metrics\n",
" self._update_norms = None\n",
" self._update_maxs = None\n",
" self._update_param_names = None\n",
"\n",
" return metrics"
],
"metadata": {
"id": "UgBBhlu8YSOD"
},
"execution_count": 9,
"outputs": []
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "apYTNxvcYSFf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## testing suit"
],
"metadata": {
"id": "C7qri20wY61B"
}
},
{
"cell_type": "code",
"source": [
"# Quick debug test to see if Muon is actually updating\n",
"import torch\n",
"import torch.nn as nn\n",
"\n",
"model = nn.Linear(10, 5, bias=False)\n",
"optimizer = MuonW([{'params': model.parameters(), 'param_names': ['weight']}], lr=0.1)\n",
"\n",
"# Initial weight\n",
"init_weight = model.weight.data.clone()\n",
"\n",
"# Create gradient\n",
"x = torch.randn(32, 10)\n",
"y = model(x)\n",
"loss = y.sum()\n",
"loss.backward()\n",
"\n",
"print(f\"Gradient norm: {model.weight.grad.norm():.4f}\")\n",
"\n",
"# Step\n",
"optimizer.step()\n",
"\n",
"# Check update\n",
"weight_change = (model.weight.data - init_weight).norm()\n",
"print(f\"Weight change: {weight_change:.4f}\")\n",
"\n",
"if weight_change < 1e-6:\n",
" print(\"WARNING: Weights barely changed - check Newton-Schulz implementation\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JsLd9EUbYfMw",
"outputId": "447510b5-446c-48da-b10f-5ee35d1e137e"
},
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Gradient norm: 40.4564\n",
"Weight change: 0.0680\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import math\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import numpy as np\n",
"from typing import Dict, Optional\n",
"import unittest\n",
"from unittest.mock import MagicMock, patch\n",
"\n",
"# Mock the required imports for testing\n",
"class MockOptimizer:\n",
" \"\"\"Mock base optimizer for testing\"\"\"\n",
" def __init__(self, params, defaults, **kwargs):\n",
" self.param_groups = []\n",
" self.state = {}\n",
" self._collecting_metrics = False\n",
" self._record_update_metrics = False\n",
"\n",
" if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):\n",
" for group in params:\n",
" param_group = {**defaults, **group}\n",
" self.param_groups.append(param_group)\n",
" else:\n",
" self.param_groups = [{'params': list(params), **defaults}]\n",
"\n",
" def _clean_param_name(self, name):\n",
" return name.replace(\"_fsdp_wrapped_module.\", \"\")\n",
"\n",
"def get_default_device():\n",
" return torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
"def is_distributed():\n",
" return False\n",
"\n",
"# Insert your MuonW class here (copy from document 4)\n",
"# For testing purposes, inherit from MockOptimizer instead of Optimizer\n",
"\n",
"class TestMuonW(unittest.TestCase):\n",
" \"\"\"Test cases for MuonW optimizer\"\"\"\n",
"\n",
" def setUp(self):\n",
" \"\"\"Set up test fixtures\"\"\"\n",
" torch.manual_seed(42)\n",
" self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
" def test_matrix_param_uses_muon(self):\n",
" \"\"\"Test that matrix parameters use Muon update\"\"\"\n",
" # Create a simple model with matrix parameter\n",
" model = nn.Linear(10, 5)\n",
" model.to(self.device)\n",
"\n",
" # Add parameter names\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['weight', 'bias']}]\n",
"\n",
" optimizer = MuonW(params, lr=0.01)\n",
"\n",
" # Create dummy loss and backward\n",
" x = torch.randn(32, 10, device=self.device)\n",
" y = model(x)\n",
" loss = y.sum()\n",
" loss.backward()\n",
"\n",
" # Check initial state\n",
" weight_state_before = model.weight.data.clone()\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Verify weight changed (Muon was applied)\n",
" assert not torch.allclose(weight_state_before, model.weight.data)\n",
"\n",
" # Check that momentum buffer was created for weight\n",
" assert 'momentum_buffer' in optimizer.state[model.weight]\n",
"\n",
" print(\"β Matrix parameters use Muon update\")\n",
"\n",
" def test_scalar_param_uses_adamw(self):\n",
" \"\"\"Test that scalar parameters use AdamW update\"\"\"\n",
" class ModelWithScalar(nn.Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.weight = nn.Parameter(torch.randn(5, 10)) # Fixed: shape should be (out_features, in_features)\n",
" self.scalar = nn.Parameter(torch.randn(())) # scalar\n",
"\n",
" def forward(self, x):\n",
" return F.linear(x, self.weight) * self.scalar\n",
"\n",
" model = ModelWithScalar().to(self.device)\n",
"\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['weight', 'scalar']}]\n",
"\n",
" optimizer = MuonW(params, lr=0.01)\n",
"\n",
" # Forward and backward\n",
" x = torch.randn(32, 10, device=self.device)\n",
" y = model(x)\n",
" loss = y.sum()\n",
" loss.backward()\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Check that scalar parameter has AdamW state\n",
" scalar_state = optimizer.state[model.scalar]\n",
" assert 'exp_avg' in scalar_state\n",
" assert 'exp_avg_sq' in scalar_state\n",
" assert 'step' in scalar_state\n",
"\n",
" print(\"β Scalar parameters use AdamW update\")\n",
"\n",
" def test_embedding_uses_adamw(self):\n",
" \"\"\"Test that embedding layers use AdamW by default\"\"\"\n",
" model = nn.Embedding(100, 16).to(self.device)\n",
"\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['embedding.weight']}]\n",
"\n",
" optimizer = MuonW(params, lr=0.01)\n",
"\n",
" # Create dummy gradient\n",
" idx = torch.randint(0, 100, (32,), device=self.device)\n",
" y = model(idx)\n",
" loss = y.sum()\n",
" loss.backward()\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Check that embedding has AdamW state (not Muon)\n",
" embed_state = optimizer.state[model.weight]\n",
" assert 'exp_avg' in embed_state\n",
" assert 'exp_avg_sq' in embed_state\n",
"\n",
" print(\"β Embedding parameters use AdamW update\")\n",
"\n",
" def test_weight_decay(self):\n",
" \"\"\"Test that weight decay is applied correctly\"\"\"\n",
" model = nn.Linear(10, 5, bias=False).to(self.device)\n",
"\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['weight']}]\n",
"\n",
" weight_decay = 0.1\n",
" optimizer = MuonW(params, lr=0.01, weight_decay=weight_decay)\n",
"\n",
" # Store initial weight\n",
" initial_weight = model.weight.data.clone()\n",
"\n",
" # Create zero gradient (to isolate weight decay effect)\n",
" model.weight.grad = torch.zeros_like(model.weight)\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Check weight decay was applied: new_weight = old_weight * (1 - lr * wd)\n",
" expected = initial_weight * (1 - 0.01 * weight_decay)\n",
" assert torch.allclose(model.weight.data, expected, rtol=1e-5)\n",
"\n",
" print(\"β Weight decay applied correctly\")\n",
"\n",
" def test_nesterov_momentum(self):\n",
" \"\"\"Test Nesterov momentum option\"\"\"\n",
" # Test with Nesterov=True\n",
" model1 = nn.Linear(10, 5, bias=False).to(self.device)\n",
" model2 = nn.Linear(10, 5, bias=False).to(self.device)\n",
"\n",
" # Same initialization\n",
" model2.weight.data.copy_(model1.weight.data)\n",
"\n",
" params1 = [{'params': model1.parameters(), 'param_names': ['weight']}]\n",
" params2 = [{'params': model2.parameters(), 'param_names': ['weight']}]\n",
"\n",
" opt1 = MuonW(params1, lr=0.01, nesterov=True)\n",
" opt2 = MuonW(params2, lr=0.01, nesterov=False)\n",
"\n",
" # Same gradients\n",
" grad = torch.randn_like(model1.weight)\n",
" model1.weight.grad = grad.clone()\n",
" model2.weight.grad = grad.clone()\n",
"\n",
" opt1.step()\n",
" opt2.step()\n",
"\n",
" # Updates should be different\n",
" assert not torch.allclose(model1.weight.data, model2.weight.data)\n",
"\n",
" print(\"β Nesterov momentum works differently from standard momentum\")\n",
"\n",
" def test_conv_filters(self):\n",
" \"\"\"Test that conv filters are handled correctly\"\"\"\n",
" model = nn.Conv2d(3, 16, kernel_size=3).to(self.device)\n",
"\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['conv.weight', 'conv.bias']}]\n",
"\n",
" optimizer = MuonW(params, lr=0.01)\n",
"\n",
" # Forward and backward\n",
" x = torch.randn(4, 3, 32, 32, device=self.device)\n",
" y = model(x)\n",
" loss = y.sum()\n",
" loss.backward()\n",
"\n",
" initial_weight = model.weight.data.clone()\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Check weight was updated\n",
" assert not torch.allclose(initial_weight, model.weight.data)\n",
"\n",
" # Check state exists\n",
" assert 'momentum_buffer' in optimizer.state[model.weight]\n",
"\n",
" print(\"β Conv filters handled correctly\")\n",
"\n",
" def test_multiple_param_groups(self):\n",
" \"\"\"Test optimizer with multiple parameter groups\"\"\"\n",
" model = nn.Sequential(\n",
" nn.Linear(10, 20),\n",
" nn.ReLU(),\n",
" nn.Linear(20, 5)\n",
" ).to(self.device)\n",
"\n",
" # Different learning rates for different layers\n",
" params = [\n",
" {'params': model[0].parameters(), 'lr': 0.01, 'param_names': ['layer0.weight', 'layer0.bias']},\n",
" {'params': model[2].parameters(), 'lr': 0.001, 'param_names': ['layer2.weight', 'layer2.bias']}\n",
" ]\n",
"\n",
" optimizer = MuonW(params)\n",
"\n",
" # Forward and backward\n",
" x = torch.randn(32, 10, device=self.device)\n",
" y = model(x)\n",
" loss = y.sum()\n",
" loss.backward()\n",
"\n",
" # Store initial weights\n",
" w0_init = model[0].weight.data.clone()\n",
" w2_init = model[2].weight.data.clone()\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Both should be updated\n",
" assert not torch.allclose(w0_init, model[0].weight.data)\n",
" assert not torch.allclose(w2_init, model[2].weight.data)\n",
"\n",
" print(\"β Multiple parameter groups work correctly\")\n",
"\n",
" def test_zero_grad_handling(self):\n",
" \"\"\"Test that parameters with zero gradients are handled correctly\"\"\"\n",
" model = nn.Linear(10, 5).to(self.device)\n",
"\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['weight', 'bias']}]\n",
"\n",
" optimizer = MuonW(params, lr=0.01)\n",
"\n",
" # Set zero gradient\n",
" model.weight.grad = torch.zeros_like(model.weight)\n",
" model.bias.grad = torch.zeros_like(model.bias)\n",
"\n",
" initial_weight = model.weight.data.clone()\n",
"\n",
" # Step should not crash\n",
" optimizer.step()\n",
"\n",
" # With zero grad and no weight decay, parameters shouldn't change much\n",
" # (only numerical errors from Newton-Schulz on zero matrix)\n",
" assert torch.allclose(initial_weight, model.weight.data, atol=1e-6)\n",
"\n",
" print(\"β Zero gradients handled correctly\")\n",
"\n",
"def test_distributed_mock():\n",
" \"\"\"Test distributed functionality using mocks\"\"\"\n",
" print(\"\\nTesting distributed functionality with mocks...\")\n",
"\n",
" with patch('torch.distributed.is_initialized', return_value=True):\n",
" with patch('torch.distributed.get_global_rank', return_value=0):\n",
" with patch('torch.distributed.reduce') as mock_reduce:\n",
" # This simulates distributed metric collection\n",
" model = nn.Linear(10, 5)\n",
" params = [{'params': model.parameters(),\n",
" 'param_names': ['weight', 'bias']}]\n",
"\n",
" optimizer = MuonW(params, lr=0.01, record_update_metrics=True)\n",
" optimizer._collecting_metrics = True\n",
"\n",
" # Create gradient\n",
" model.weight.grad = torch.randn_like(model.weight)\n",
" model.bias.grad = torch.randn_like(model.bias)\n",
"\n",
" # Step\n",
" optimizer.step()\n",
"\n",
" # Check if metrics were collected\n",
" assert optimizer._update_norms is not None\n",
" assert optimizer._update_param_names is not None\n",
"\n",
" print(\"β Distributed mock test passed\")\n",
"\n",
"def run_convergence_test():\n",
" \"\"\"Test that the optimizer actually optimizes a simple problem\"\"\"\n",
" print(\"\\nRunning convergence test...\")\n",
"\n",
" torch.manual_seed(42)\n",
" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"\n",
" # Simple regression problem\n",
" X = torch.randn(100, 10, device=device)\n",
" true_w = torch.randn(10, 1, device=device)\n",
" y = X @ true_w + 0.1 * torch.randn(100, 1, device=device)\n",
"\n",
" model = nn.Linear(10, 1, bias=False).to(device)\n",
" params = [{'params': model.parameters(), 'param_names': ['weight']}]\n",
" optimizer = MuonW(params, lr=0.1) # Increased learning rate for better convergence\n",
"\n",
" losses = []\n",
" for epoch in range(200): # More epochs for convergence\n",
" # Forward\n",
" pred = model(X)\n",
" loss = F.mse_loss(pred, y)\n",
" losses.append(loss.item())\n",
"\n",
" # Backward\n",
" model.zero_grad() # Use model.zero_grad() instead\n",
" loss.backward()\n",
"\n",
" # Update\n",
" optimizer.step()\n",
"\n",
" # Check that loss decreased - relaxed threshold\n",
" assert losses[-1] < losses[0] * 0.7, f\"Loss didn't decrease enough: {losses[0]:.4f} -> {losses[-1]:.4f}\"\n",
"\n",
" print(f\"β Convergence test passed: {losses[0]:.4f} -> {losses[-1]:.4f}\")\n",
"\n",
"if __name__ == \"__main__\":\n",
" print(\"Running MuonW Optimizer Tests\")\n",
" print(\"=\" * 50)\n",
"\n",
" # Run unit tests\n",
" suite = unittest.TestLoader().loadTestsFromTestCase(TestMuonW)\n",
" runner = unittest.TextTestRunner(verbosity=0)\n",
" result = runner.run(suite)\n",
"\n",
" # Run additional tests\n",
" test_distributed_mock()\n",
" run_convergence_test()\n",
"\n",
" print(\"\\n\" + \"=\" * 50)\n",
" if result.wasSuccessful():\n",
" print(\"All tests passed! β
\")\n",
" else:\n",
" print(f\"Some tests failed. Failures: {len(result.failures)}, Errors: {len(result.errors)}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "CrWv9OuRYfHl",
"outputId": "4a2ce32e-d9b8-43f3-ec0d-9c4f10a770ec"
},
"execution_count": 13,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"----------------------------------------------------------------------\n",
"Ran 8 tests in 0.021s\n",
"\n",
"OK\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Running MuonW Optimizer Tests\n",
"==================================================\n",
"β Conv filters handled correctly\n",
"β Embedding parameters use AdamW update\n",
"β Matrix parameters use Muon update\n",
"β Multiple parameter groups work correctly\n",
"β Nesterov momentum works differently from standard momentum\n",
"β Scalar parameters use AdamW update\n",
"β Weight decay applied correctly\n",
"β Zero gradients handled correctly\n",
"\n",
"Testing distributed functionality with mocks...\n",
"β Distributed mock test passed\n",
"\n",
"Running convergence test...\n",
"β Convergence test passed: 20.7094 -> 0.0136\n",
"\n",
"==================================================\n",
"All tests passed! β
\n"
]
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "Xa9ABULwYfAi"
},
"execution_count": null,
"outputs": []
}
]
} |