|
|
""" |
|
|
Analyze Cannabis Lab Results | Massachusetts |
|
|
Copyright (c) 2023 Cannlytics |
|
|
|
|
|
Authors: Keegan Skeate <https://github.com/keeganskeate> |
|
|
Created: 2/1/2024 |
|
|
Updated: 8/15/2024 |
|
|
License: MIT License <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE> |
|
|
""" |
|
|
|
|
|
import json |
|
|
from matplotlib import ticker |
|
|
import matplotlib.pyplot as plt |
|
|
from matplotlib.ticker import StrMethodFormatter |
|
|
import matplotlib.dates as mdates |
|
|
from matplotlib import cm |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
import seaborn as sns |
|
|
from adjustText import adjust_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
plt.style.use('fivethirtyeight') |
|
|
plt.rcParams.update({ |
|
|
'font.family': 'Times New Roman', |
|
|
'font.size': 24, |
|
|
}) |
|
|
|
|
|
assets_dir = './presentation/images/figures' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from cannlytics.data.coas import CoADoc |
|
|
import os |
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
|
|
data_dir = r'D:\data\massachusetts\results' |
|
|
|
|
|
|
|
|
datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if 'urls' not in x and 'latest' not in x] |
|
|
mcr_results = pd.concat([pd.read_excel(x) for x in datafiles]) |
|
|
mcr_results = mcr_results.drop_duplicates(subset=['product_name', 'date_tested']) |
|
|
mcr_results = mcr_results.loc[mcr_results['results'] != '[]'] |
|
|
print('Number of MCR Labs results:', len(mcr_results)) |
|
|
|
|
|
|
|
|
parser = CoADoc() |
|
|
date = pd.Timestamp.now().strftime('%Y-%m-%d') |
|
|
data_dir = r"D:\data\massachusetts\lab_results" |
|
|
outfile = os.path.join(data_dir, f'mcr-lab-results-{date}.xlsx') |
|
|
parser.save(mcr_results, outfile) |
|
|
print(f'Saved standardized MCR Labs results: {outfile}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
datafiles = [ |
|
|
r"D:\data\public-records\Massachusetts\TestingTHC-THCA-YeastMold-Apr-Dec2021-FINAL.csv", |
|
|
r"D:\data\public-records\Massachusetts\TestingTHC-THCA-YeastMold-2022-FINAL.csv", |
|
|
r"D:\data\public-records\Massachusetts\TestingTHC-THCA-YeastMold-2023-Jan-June-FINAL.csv", |
|
|
r"D:\data\public-records\Massachusetts\TestingTHC-THCA-YeastMold-2023-Jul-Sep-FINAL.csv", |
|
|
] |
|
|
ma_results = pd.concat([pd.read_csv(datafile) for datafile in datafiles]) |
|
|
|
|
|
|
|
|
ma_results['lab'] = ma_results['TestingLabId'].combine_first(ma_results['TestingLab']) |
|
|
ma_results['strain_name'] = ma_results['StrainName'].combine_first(ma_results['Strain']) |
|
|
ma_results = ma_results.drop(columns=[ |
|
|
'TestingLabId', |
|
|
'TestingLab', |
|
|
'StrainName', |
|
|
'Strain', |
|
|
]) |
|
|
|
|
|
|
|
|
ma_results = ma_results.rename(columns={ |
|
|
'ProductCategory': 'product_type', |
|
|
'PackageLabel': 'label', |
|
|
'TestType': 'test_type', |
|
|
'TestResult': 'test_result', |
|
|
'TestPerformedDate': 'date_tested', |
|
|
}) |
|
|
|
|
|
|
|
|
state = 'MA' |
|
|
ma_results['lab_state'] = state |
|
|
ma_results['producer_state'] = state |
|
|
|
|
|
|
|
|
ma_results['date'] = pd.to_datetime(ma_results['date_tested']) |
|
|
ma_results['week'] = ma_results['date'].dt.to_period('W').astype(str) |
|
|
ma_results['month'] = ma_results['date'].dt.to_period('M').astype(str) |
|
|
ma_results = ma_results.sort_values('date') |
|
|
|
|
|
|
|
|
pivot_df = ma_results.pivot_table( |
|
|
index=['label', 'date_tested', 'lab'], |
|
|
columns='test_type', |
|
|
values='test_result', |
|
|
aggfunc='first', |
|
|
).reset_index() |
|
|
pivot_df.columns.name = None |
|
|
pivot_df.rename({ |
|
|
'THC (%) Raw Plant Material': 'delta_9_thc', |
|
|
'THCA (%) Raw Plant Material': 'thca', |
|
|
'Total THC (%) Raw Plant Material': 'total_thc', |
|
|
'Total Yeast and Mold (CFU/g) Raw Plant Material': 'yeast_and_mold' |
|
|
}, axis=1, inplace=True) |
|
|
pivot_df['date'] = pd.to_datetime(pivot_df['date_tested']) |
|
|
pivot_df['week'] = pivot_df['date'].dt.to_period('W').astype(str) |
|
|
pivot_df['month'] = pivot_df['date'].dt.to_period('M').astype(str) |
|
|
print('Number of public MA lab results:', len(pivot_df)) |
|
|
|
|
|
|
|
|
pivot_df = pd.concat([pivot_df, mcr_results]) |
|
|
print('Total number of MA results:', len(pivot_df)) |
|
|
|
|
|
|
|
|
outfile = 'D://data/cannabis_results/data/ma/ma-results-latest.xlsx' |
|
|
outfile_csv = 'D://data/cannabis_results/data/ma/ma-results-latest.csv' |
|
|
pivot_df.to_excel(outfile, index=False) |
|
|
pivot_df.to_csv(outfile_csv, index=False) |
|
|
print('Saved Excel:', outfile) |
|
|
print('Saved CSV:', outfile_csv) |
|
|
|
|
|
|
|
|
features = {x: 'string' for x in pivot_df.columns} |
|
|
print('Number of features:', len(features)) |
|
|
print(json.dumps(features, indent=2)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
monthly_tests = pivot_df.groupby('month').size().reset_index(name='n_tests') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample = pivot_df.loc[pivot_df['yeast_and_mold'].notnull()] |
|
|
sample = sample.loc[sample['date'] >= pd.to_datetime('2023-01-01')] |
|
|
|
|
|
|
|
|
detects = sample.loc[sample['yeast_and_mold'] > 0] |
|
|
detects.sort_values('yeast_and_mold', ascending=False, inplace=True) |
|
|
|
|
|
|
|
|
print('Maximum yeast and mold detection:', detects['yeast_and_mold'].max()) |
|
|
|
|
|
|
|
|
print('Most frequent yeast and mold detection:', detects['yeast_and_mold'].mode()) |
|
|
|
|
|
|
|
|
plt.figure(figsize=(15, 8)) |
|
|
filtered_df = sample.dropna(subset=['yeast_and_mold']) |
|
|
filtered_df.loc[ |
|
|
(filtered_df['yeast_and_mold'] <= 15_000) & |
|
|
(filtered_df['yeast_and_mold'] > 100) |
|
|
]['yeast_and_mold'].hist( |
|
|
bins=100, |
|
|
alpha=0.75, |
|
|
density=True, |
|
|
) |
|
|
plt.axvline(10_000, color='r', linestyle='dashed', linewidth=1) |
|
|
plt.xlabel('Yeast and Mold (CFU/g)') |
|
|
plt.ylabel('Frequency') |
|
|
plt.title('Histogram of Yeast and Mold Detections below 10,000') |
|
|
plt.legend(['State Limit (10,000)', 'Yeast and Mold (CFU/g)']) |
|
|
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f'{int(x):,}')) |
|
|
plt.xlim(0, 15_000) |
|
|
plt.savefig(f'{assets_dir}/histogram-below-10k.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
plt.figure(figsize=(15, 8)) |
|
|
filtered_df = sample.dropna(subset=['yeast_and_mold']) |
|
|
filtered_df.loc[filtered_df['yeast_and_mold'] > 10_000]['yeast_and_mold'].hist( |
|
|
bins=1000, |
|
|
alpha=0.75, |
|
|
density=True, |
|
|
) |
|
|
plt.axvline(10_000, color='r', linestyle='dashed', linewidth=1) |
|
|
plt.xlabel('Yeast and Mold (CFU/g)') |
|
|
plt.ylabel('Frequency') |
|
|
plt.title('Histogram of Yeast and Mold Detections above 10,000') |
|
|
plt.legend(['State Limit (10,000)', 'Yeast and Mold (CFU/g)']) |
|
|
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f'{int(x):,}')) |
|
|
plt.xlim(0, 500_000) |
|
|
plt.savefig(f'{assets_dir}/histogram-above-10k.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fails = sample.loc[sample['yeast_and_mold'] > 10_000] |
|
|
print(fails[['label', 'date_tested', 'lab', 'yeast_and_mold']]) |
|
|
|
|
|
|
|
|
sample['fail'] = sample['yeast_and_mold'] >= 10_000 |
|
|
fail_counts = sample['fail'].value_counts() |
|
|
fail_percentages = (fail_counts / fail_counts.sum()) * 100 |
|
|
colors = cm.coolwarm(sample['fail'].value_counts(normalize=True)) |
|
|
plt.figure(figsize=(15, 8)) |
|
|
ax = sample['fail'].value_counts().plot( |
|
|
kind='bar', |
|
|
color=[colors[-1], colors[0]] |
|
|
) |
|
|
ax.get_yaxis().set_major_formatter(StrMethodFormatter('{x:,.0f}')) |
|
|
plt.xticks( |
|
|
ticks=[0, 1], |
|
|
labels=['Below 10,000 CFU/g', 'Above 10,000 CFU/g'], |
|
|
rotation=0, |
|
|
) |
|
|
for i, (count, percentage) in enumerate(zip(fail_counts, fail_percentages)): |
|
|
ax.text(i, count, f'{percentage:.1f}%', color='black', ha='center', va='bottom') |
|
|
plt.ylabel('Number of Samples') |
|
|
plt.title('Total Yeast and Mold Detections in MA in 2023', pad=24) |
|
|
plt.xlabel('Pass/Fail') |
|
|
plt.savefig(f'{assets_dir}/ma-yeast-and-mold-failure-rate-2023.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
failure_rate = len(fails) / len(sample) |
|
|
print('Failure rate: %0.2f%%' % (failure_rate * 100)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples_tested_by_lab = sample['lab'].value_counts() |
|
|
failures_by_lab = sample.groupby('lab')['fail'].sum() |
|
|
failure_rate_by_lab = sample.groupby('lab')['fail'].mean() |
|
|
failure_rate_by_lab = failure_rate_by_lab.sort_values() |
|
|
plt.figure(figsize=(18, 16/1.618)) |
|
|
ax = sns.barplot( |
|
|
x=failure_rate_by_lab.index, |
|
|
y=failure_rate_by_lab.values * 100, |
|
|
palette='coolwarm' |
|
|
) |
|
|
for i, p in enumerate(ax.patches): |
|
|
lab = failure_rate_by_lab.index[i] |
|
|
ax.annotate( |
|
|
f'{failures_by_lab[lab]:,.0f} / {samples_tested_by_lab[lab]:,.0f}', |
|
|
(p.get_x() + p.get_width() / 2., p.get_height()), |
|
|
ha='center', |
|
|
va='bottom', |
|
|
fontsize=24, |
|
|
color='black', |
|
|
xytext=(0, 3), |
|
|
textcoords='offset points' |
|
|
) |
|
|
plt.ylabel('Failure Rate (%)', fontsize=28, labelpad=10) |
|
|
plt.xlabel('') |
|
|
plt.title('Total Yeast and Mold Failure Rate by Lab in MA in 2021', fontsize=34) |
|
|
plt.xticks(rotation=45) |
|
|
plt.figtext( |
|
|
0, |
|
|
-0.075, |
|
|
'Note: Statistics are calculated from 35,825 package lab tests for total yeast and mold performed between 1/1/2023 and 9/30/2023 in Massachusetts. The number of tests above the state limit, 10,000 CFU/g, and the total number of tests are shown for each lab.', |
|
|
ha='left', |
|
|
fontsize=24, |
|
|
wrap=True |
|
|
) |
|
|
plt.tight_layout() |
|
|
plt.savefig(f'{assets_dir}/ma-yeast-and-mold-failure-rate-by-lab-2023.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def determine_method(x): |
|
|
"""Determine the method of testing based on the value. |
|
|
If the value is divisible by 10 and has no decimal component, it's `plating`. |
|
|
Otherwise, it's considered `qPCR`. |
|
|
""" |
|
|
if pd.isna(x): |
|
|
return None |
|
|
|
|
|
if x % 10 == 0 and x == int(x): |
|
|
return 'plating' |
|
|
else: |
|
|
return 'qPCR' |
|
|
|
|
|
|
|
|
|
|
|
sample['method'] = sample['yeast_and_mold'].apply(determine_method) |
|
|
test_count_per_method = sample['method'].value_counts() |
|
|
|
|
|
|
|
|
average_results_per_method = sample.groupby('method')['yeast_and_mold'].mean() |
|
|
|
|
|
print(test_count_per_method) |
|
|
print(average_results_per_method) |
|
|
|
|
|
|
|
|
plt.figure(figsize=(15, 8)) |
|
|
filtered_df = sample.dropna(subset=['yeast_and_mold']) |
|
|
subsample = filtered_df.loc[ |
|
|
(filtered_df['yeast_and_mold'] <= 15_000) & |
|
|
(filtered_df['yeast_and_mold'] > 100) |
|
|
] |
|
|
plating_values = subsample.loc[subsample['method'] == 'plating']['yeast_and_mold'] |
|
|
qpcr_values = subsample.loc[subsample['method'] == 'qPCR']['yeast_and_mold'] |
|
|
plating_values.hist( |
|
|
bins=100, |
|
|
alpha=0.75, |
|
|
density=True, |
|
|
label='Plating', |
|
|
) |
|
|
qpcr_values.hist( |
|
|
bins=100, |
|
|
alpha=0.75, |
|
|
density=True, |
|
|
label='qPCR', |
|
|
) |
|
|
plt.axvline(10_000, color='r', linestyle='dashed', linewidth=1, label='State Limit (10,000)') |
|
|
plt.xlabel('Yeast and Mold (CFU/g)') |
|
|
plt.ylabel('Frequency') |
|
|
plt.title('Histogram of Yeast and Mold Detections below 10,000') |
|
|
|
|
|
plt.legend() |
|
|
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f'{int(x):,}')) |
|
|
plt.xlim(0, 15_000) |
|
|
plt.savefig(f'{assets_dir}/below-10k-methods.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
plt.figure(figsize=(15, 8)) |
|
|
filtered_df = sample.dropna(subset=['yeast_and_mold']) |
|
|
subsample = filtered_df.loc[filtered_df['yeast_and_mold'] > 10_000] |
|
|
plating_values = subsample.loc[subsample['method'] == 'plating']['yeast_and_mold'] |
|
|
qpcr_values = subsample.loc[subsample['method'] == 'qPCR']['yeast_and_mold'] |
|
|
plating_values.hist( |
|
|
bins=1000, |
|
|
alpha=0.75, |
|
|
density=True, |
|
|
label='Plating', |
|
|
) |
|
|
qpcr_values.loc [ |
|
|
qpcr_values != 200001 |
|
|
].hist( |
|
|
bins=1000, |
|
|
alpha=0.75, |
|
|
density=True, |
|
|
label='qPCR', |
|
|
) |
|
|
plt.axvline(10_000, color='r', linestyle='dashed', linewidth=1, label='State Limit (10,000)') |
|
|
plt.xlabel('Yeast and Mold Counts') |
|
|
plt.ylabel('Frequency') |
|
|
plt.title('Histogram of Yeast and Mold Detections above 10,000') |
|
|
plt.legend() |
|
|
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f'{int(x):,}')) |
|
|
plt.xlim(0, 500_000) |
|
|
plt.savefig(f'{assets_dir}/above-10k-methods.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
group = sample.groupby('lab')['method'].value_counts() |
|
|
group.sort_index(inplace=True) |
|
|
group.plot(kind='bar', figsize=(14, 7), width=0.8) |
|
|
plt.title('Estimated Number of Tests per Method per Lab') |
|
|
plt.xlabel('Lab') |
|
|
plt.ylabel('Number of Tests') |
|
|
plt.legend(title='Method') |
|
|
plt.tight_layout() |
|
|
plt.savefig(f'{assets_dir}/methods-by-lab.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def first_significant_digit(number): |
|
|
return int(str(number).split('.')[0][0]) |
|
|
|
|
|
|
|
|
subsample = sample.dropna(subset=['yeast_and_mold']) |
|
|
subsample = subsample.loc[ |
|
|
(subsample['yeast_and_mold'] <= 200_000) & |
|
|
(subsample['yeast_and_mold'] > 0) |
|
|
] |
|
|
subsample['first_digit'] = subsample['yeast_and_mold'].dropna().apply(first_significant_digit) |
|
|
|
|
|
|
|
|
digits = range(1, 10) |
|
|
benford = [np.log10(1 + 1/d) * 100 for d in digits] |
|
|
|
|
|
|
|
|
np.random.seed(420) |
|
|
random_sample = np.random.uniform( |
|
|
0, |
|
|
100000, |
|
|
size=len(subsample['yeast_and_mold'].dropna()), |
|
|
) |
|
|
random_first_digit = [first_significant_digit(num) for num in random_sample] |
|
|
|
|
|
|
|
|
actual_counts = subsample['first_digit'].value_counts(normalize=True).sort_index() * 100 |
|
|
random_counts = pd.Series(random_first_digit).value_counts(normalize=True).sort_index() * 100 |
|
|
|
|
|
|
|
|
from scipy.interpolate import make_interp_spline |
|
|
xnew = np.linspace(min(digits), max(digits), 100) |
|
|
spl = make_interp_spline(digits, benford, k=2) |
|
|
benford_smooth = spl(xnew) |
|
|
|
|
|
|
|
|
plt.figure(figsize=(15, 8)) |
|
|
plt.plot(xnew, benford_smooth, '-', label='Benford\'s Law') |
|
|
plt.plot(actual_counts.index, actual_counts, 's-', label='Yeast and Mold Counts') |
|
|
plt.plot(random_counts.index, random_counts, 'd-', label='Random Sample') |
|
|
plt.xticks(digits) |
|
|
plt.xlabel('First Significant Digit') |
|
|
plt.ylabel('Percentage') |
|
|
plt.title('First Significant Digit Distribution Comparison') |
|
|
plt.legend() |
|
|
plt.grid(True) |
|
|
plt.savefig(f'{assets_dir}/benford-ym.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
qpcr = subsample.loc[subsample['method'] == 'qPCR'] |
|
|
plating = subsample.loc[subsample['method'] == 'plating'] |
|
|
plating_counts = plating['first_digit'].value_counts(normalize=True).sort_index() * 100 |
|
|
qpcr_counts = qpcr['first_digit'].value_counts(normalize=True).sort_index() * 100 |
|
|
plt.figure(figsize=(15, 8)) |
|
|
plt.plot(digits, benford, 'o-', label='Benford\'s Law') |
|
|
plt.plot(plating_counts.index, plating_counts, 's-', label='Plating') |
|
|
plt.plot(qpcr_counts.index, qpcr_counts, 'd-', label='qPCR') |
|
|
plt.xticks(digits) |
|
|
plt.xlabel('First Significant Digit') |
|
|
plt.ylabel('Percentage') |
|
|
plt.title('First Significant Digit Distribution Comparison') |
|
|
plt.legend() |
|
|
plt.grid(True) |
|
|
plt.savefig(f'{assets_dir}/benford-methods.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
print(plating.sample(5, random_state=420)['yeast_and_mold']) |
|
|
print(qpcr.sample(5, random_state=420)['yeast_and_mold']) |
|
|
|
|
|
|
|
|
from scipy.stats import chisquare |
|
|
|
|
|
|
|
|
total_qpcr = len(qpcr.dropna(subset=['first_digit'])) |
|
|
total_plating = len(plating.dropna(subset=['first_digit'])) |
|
|
|
|
|
qpcr_observed_counts = (qpcr_counts / 100) * total_qpcr |
|
|
plating_observed_counts = (plating_counts / 100) * total_plating |
|
|
|
|
|
|
|
|
benford_percentages = np.array([np.log10(1 + 1/d) for d in range(1, 10)]) |
|
|
|
|
|
|
|
|
benford_expected_qpcr = benford_percentages * total_qpcr |
|
|
benford_expected_plating = benford_percentages * total_plating |
|
|
|
|
|
|
|
|
chi2_stat_qpcr, p_val_qpcr = chisquare(f_obs=qpcr_observed_counts, f_exp=benford_expected_qpcr) |
|
|
|
|
|
|
|
|
chi2_stat_plating, p_val_plating = chisquare(f_obs=plating_observed_counts, f_exp=benford_expected_plating) |
|
|
|
|
|
print(f"qPCR Chi-squared Stat: {chi2_stat_qpcr}, p-value: {p_val_qpcr}") |
|
|
print(f"Plating Chi-squared Stat: {chi2_stat_plating}, p-value: {p_val_plating}") |
|
|
|
|
|
|
|
|
|
|
|
lower_deviation = 'Plating' if p_val_qpcr < p_val_plating else 'qPCR' |
|
|
print(f"The method with lower deviation from Benford's Law is {lower_deviation}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_metric_over_time(metric, metric_name, y_label, color='skyblue'): |
|
|
""" |
|
|
General function to plot any calculated metric over time. |
|
|
""" |
|
|
plt.figure(figsize=(15, 8)) |
|
|
metric.plot(color=color) |
|
|
plt.gca().yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f'{int(x):,}')) |
|
|
plt.title(f'{metric_name} Over Time') |
|
|
plt.xlabel('Date') |
|
|
plt.ylabel(y_label) |
|
|
plt.grid(True) |
|
|
plt.tight_layout() |
|
|
title = metric_name.replace(' ', '-').lower() |
|
|
print(title) |
|
|
plt.savefig(f'{assets_dir}/timeseries-{title}.png', bbox_inches='tight', dpi=300, transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
sample = pivot_df.copy() |
|
|
sample['yeast_and_mold'] = pd.to_numeric(sample['yeast_and_mold'], errors='coerce') |
|
|
sample['date_tested'] = pd.to_datetime(sample['date_tested']) |
|
|
sample = sample.loc[sample['date_tested'] >= pd.to_datetime('2023-01-01')] |
|
|
|
|
|
|
|
|
sample['count'] = 1 |
|
|
num_tests = sample.resample('M', on='date_tested')['count'].sum() |
|
|
plot_metric_over_time(num_tests, 'Number of Tests', 'Number of Tests') |
|
|
|
|
|
|
|
|
cost_of_tests = num_tests * 20 |
|
|
plot_metric_over_time(cost_of_tests, 'Cost of Tests', 'Cost ($)', 'green') |
|
|
|
|
|
|
|
|
sample['failure'] = sample['yeast_and_mold'] > 10_000 |
|
|
failures_per_month = sample.loc[sample['date'] >= pd.to_datetime('2023-01-01')].resample('M', on='date_tested')['failure'].sum() |
|
|
cost_of_failures = failures_per_month * 21_464 |
|
|
plot_metric_over_time(cost_of_failures, 'Estimated Cost of Failures', 'Cost ($)', 'red') |
|
|
|
|
|
|
|
|
total_cost_of_tests = cost_of_tests.sum() |
|
|
avg_monthly_cost = cost_of_tests.mean() |
|
|
estimate_2023 = total_cost_of_tests + (avg_monthly_cost * 3) |
|
|
print(f'Estimated cost of testing in 2023: ${estimate_2023 / 1_000_000:,.0f} million') |
|
|
|
|
|
|
|
|
total_cost_of_failures = cost_of_failures.sum() |
|
|
avg_monthly_cost = cost_of_failures.mean() |
|
|
estimate_2023 = total_cost_of_failures + (avg_monthly_cost * 3) |
|
|
print(f'Estimated cost of total yeast and mold failures in 2023: ${estimate_2023 / 1_000_000:,.0f} million') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_timeseries( |
|
|
df, |
|
|
title, |
|
|
x='date_tested', |
|
|
y='total_thc', |
|
|
y_label='Total THC (%)', |
|
|
outfile=None, |
|
|
y_min=0, |
|
|
y_max=15_000, |
|
|
ma=30, |
|
|
dot_color='royalblue', |
|
|
line_color='navy', |
|
|
): |
|
|
""" |
|
|
Plot the timeseries data with dots for actual values and separate trend lines |
|
|
for periods before and after the compliance date. |
|
|
""" |
|
|
plt.figure(figsize=(15, 8)) |
|
|
df[x] = pd.to_datetime(df[x]) |
|
|
|
|
|
|
|
|
sns.scatterplot( |
|
|
data=df, |
|
|
x=x, |
|
|
y=y, |
|
|
color=dot_color, |
|
|
s=75, |
|
|
alpha=0.6, |
|
|
) |
|
|
|
|
|
|
|
|
df[f'{ma}_day_avg'] = df[y].rolling( |
|
|
window=ma, |
|
|
min_periods=1 |
|
|
).mean() |
|
|
sns.lineplot( |
|
|
data=df, |
|
|
x=x, |
|
|
y=f'{ma}_day_avg', |
|
|
color=line_color, |
|
|
label=f'{ma}-day Moving Average' |
|
|
) |
|
|
|
|
|
|
|
|
selected_dates = ['2023-01-01', '2023-04-01', '2023-07-01', '2023-10-01'] |
|
|
plt.xticks(ticks=pd.to_datetime(selected_dates), labels=selected_dates) |
|
|
|
|
|
|
|
|
plt.title(title, pad=20) |
|
|
plt.xlabel('Date') |
|
|
plt.ylabel(y_label) |
|
|
plt.legend(loc='lower left') |
|
|
plt.tight_layout() |
|
|
plt.ylim(y_min, y_max) |
|
|
plt.gca().yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f'{int(x):,}')) |
|
|
if outfile is None: |
|
|
outfile = f'{assets_dir}/{y.replace("_", "-")}-timeseries.pdf' |
|
|
plt.savefig(outfile, dpi=300, bbox_inches='tight', transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
sample = pivot_df.copy() |
|
|
sample['yeast_and_mold'] = pd.to_numeric(sample['yeast_and_mold'], errors='coerce') |
|
|
sample['year'] = pd.to_datetime(sample['date_tested']).dt.year |
|
|
sample = sample.loc[sample['year'] == 2023] |
|
|
|
|
|
|
|
|
plot_timeseries( |
|
|
sample.copy().loc[ |
|
|
(sample['yeast_and_mold'] > 100) & |
|
|
(sample['yeast_and_mold'] < 10_000) |
|
|
], |
|
|
title='Yeast and Mold Values Over Time in MA', |
|
|
x='date_tested', |
|
|
y='yeast_and_mold', |
|
|
y_label='Yeast and Mold (CFU/g)', |
|
|
outfile=f'{assets_dir}/timeseries-yeast-and-mold.png', |
|
|
y_min=100, |
|
|
y_max=10_000, |
|
|
ma=30, |
|
|
) |
|
|
|
|
|
|
|
|
plot_timeseries( |
|
|
sample.copy().loc[ |
|
|
(sample['yeast_and_mold'] > 10_000) & |
|
|
(sample['yeast_and_mold'] < 500_000) |
|
|
], |
|
|
title='Yeast and Mold Values Over Time in MA', |
|
|
x='date_tested', |
|
|
y='yeast_and_mold', |
|
|
y_label='Yeast and Mold (CFU/g)', |
|
|
outfile=f'{assets_dir}/timeseries-yeast-and-mold-above-10k.png', |
|
|
y_min=10_000, |
|
|
y_max=500_000, |
|
|
ma=30, |
|
|
dot_color='firebrick', |
|
|
line_color='darkred', |
|
|
) |
|
|
|
|
|
|
|
|
labs = list(pivot_df['lab'].unique()) |
|
|
lab_colors = sns.color_palette('tab10', n_colors=len(labs)) |
|
|
for i, lab in enumerate(labs): |
|
|
y_min, y_max = 100, 500_000 |
|
|
lab_sample = sample.copy().loc[ |
|
|
(sample['yeast_and_mold'] > y_min) & |
|
|
(sample['yeast_and_mold'] < y_max) & |
|
|
(sample['lab'] == lab) |
|
|
] |
|
|
if len(lab_sample) < 100: |
|
|
continue |
|
|
print(len(lab_sample)) |
|
|
plot_timeseries( |
|
|
lab_sample, |
|
|
title='Yeast and Mold Values Over Time in MA', |
|
|
x='date_tested', |
|
|
y='yeast_and_mold', |
|
|
y_label='Yeast and Mold (CFU/g)', |
|
|
outfile=f'{assets_dir}/timeseries-yeast-and-mold-{lab}.png', |
|
|
y_min=y_min, |
|
|
y_max=y_max, |
|
|
ma=30, |
|
|
dot_color=lab_colors[i], |
|
|
line_color=lab_colors[i], |
|
|
) |
|
|
print(f'timeseries-yeast-and-mold-{lab}.png') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_failure_rate(df, threshold=10_000, period='W'): |
|
|
""" |
|
|
Calculate the failure rate based on the 'yeast_and_mold' threshold. |
|
|
""" |
|
|
df['failure'] = df['yeast_and_mold'] >= threshold |
|
|
df['date_tested'] = pd.to_datetime(df['date_tested']) |
|
|
return df.groupby(df['date_tested'].dt.to_period(period))['failure'].mean() * 100 |
|
|
|
|
|
|
|
|
def plot_failure_rates(df, color, threshold=10_000, period='W'): |
|
|
""" |
|
|
Plot the failure rates over time with a moving average. |
|
|
""" |
|
|
plt.figure(figsize=(15, 8)) |
|
|
failure_rate = calculate_failure_rate(df, threshold, period=period) |
|
|
failure_rate.index = failure_rate.index.to_timestamp() |
|
|
|
|
|
|
|
|
plt.plot( |
|
|
failure_rate.index, |
|
|
failure_rate, |
|
|
|
|
|
color=color |
|
|
) |
|
|
|
|
|
|
|
|
mean_rate = failure_rate.mean() |
|
|
percentile_25 = failure_rate.quantile(0.25) |
|
|
percentile_75 = failure_rate.quantile(0.75) |
|
|
|
|
|
plt.axhline(y=mean_rate, color='green', linestyle='--', label='Mean') |
|
|
plt.axhline(y=percentile_25, color='blue', linestyle=':', label='25th Percentile') |
|
|
plt.axhline(y=percentile_75, color='red', linestyle='-.', label='75th Percentile') |
|
|
|
|
|
|
|
|
plt.title('Failure Rates Over Time by Lab') |
|
|
plt.xlabel('Date') |
|
|
plt.ylabel('Failure Rate (%)') |
|
|
plt.legend() |
|
|
plt.tight_layout() |
|
|
plt.show() |
|
|
|
|
|
|
|
|
sample = pivot_df.copy() |
|
|
sample['yeast_and_mold'] = pd.to_numeric(sample['yeast_and_mold'], errors='coerce') |
|
|
sample['year'] = pd.to_datetime(sample['date_tested']).dt.year |
|
|
sample = sample.loc[sample['year'] == 2023] |
|
|
|
|
|
|
|
|
labs = list(pivot_df['lab'].unique()) |
|
|
lab_colors = sns.color_palette('tab10', n_colors=len(labs)) |
|
|
for i, lab in enumerate(labs): |
|
|
lab_sample = sample[(sample['lab'] == lab) & (sample['yeast_and_mold'].notna())] |
|
|
if len(lab_sample) >= 1_000: |
|
|
print('N = ', len(lab_sample)) |
|
|
plot_failure_rates(lab_sample.copy(), lab_colors[i]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_failure_rates(df, color, threshold=10_000, period='W'): |
|
|
""" |
|
|
Plot the failure rates over time, segmenting the data to avoid drawing lines across gaps. |
|
|
""" |
|
|
plt.figure(figsize=(15, 8)) |
|
|
|
|
|
|
|
|
periods = [ |
|
|
(pd.to_datetime('2021-04-01'), pd.to_datetime('2021-12-31')), |
|
|
(pd.to_datetime('2023-01-01'), pd.to_datetime('2023-09-30')), |
|
|
] |
|
|
|
|
|
for start_date, end_date in periods: |
|
|
|
|
|
period_df = df[(df['date_tested'] >= start_date) & (df['date_tested'] <= end_date)] |
|
|
failure_rate = calculate_failure_rate(period_df, threshold, period=period) |
|
|
failure_rate.index = failure_rate.index.to_timestamp() |
|
|
|
|
|
|
|
|
plt.plot(failure_rate.index, failure_rate, color=color) |
|
|
|
|
|
|
|
|
mean_rate = failure_rate.mean() |
|
|
percentile_25 = failure_rate.quantile(0.25) |
|
|
percentile_75 = failure_rate.quantile(0.75) |
|
|
plt.axhline(y=mean_rate, color='green', linestyle='--', label='Mean') |
|
|
plt.axhline(y=percentile_25, color='blue', linestyle=':', label='25th Percentile') |
|
|
plt.axhline(y=percentile_75, color='red', linestyle='-.', label='75th Percentile') |
|
|
|
|
|
|
|
|
plt.title('Failure Rates Over Time') |
|
|
plt.xlabel('Date') |
|
|
plt.ylabel('Failure Rate (%)') |
|
|
plt.tight_layout() |
|
|
outfile = f'{assets_dir}/failure-rates-over-time.png' |
|
|
plt.savefig(outfile, dpi=300, bbox_inches='tight', transparent=True) |
|
|
plt.show() |
|
|
|
|
|
|
|
|
sample = pivot_df.copy() |
|
|
sample['date_tested'] = pd.to_datetime(sample['date_tested']) |
|
|
sample['yeast_and_mold'] = pd.to_numeric(sample['yeast_and_mold'], errors='coerce') |
|
|
|
|
|
|
|
|
plot_failure_rates( |
|
|
sample.loc[ |
|
|
pd.to_datetime(sample['date_tested']) >= pd.to_datetime('2021-07-01') |
|
|
], |
|
|
'k' |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_detection_rate(df, threshold=100, period='W'): |
|
|
""" |
|
|
Calculate the detection rate based on the 'yeast_and_mold' threshold. |
|
|
""" |
|
|
df['detected'] = df['yeast_and_mold'] > threshold |
|
|
df['date_tested'] = pd.to_datetime(df['date_tested']) |
|
|
return df.groupby(df['date_tested'].dt.to_period(period))['detected'].mean() * 100 |
|
|
|
|
|
|
|
|
def plot_detection_rates(df, color, threshold=100, period='W'): |
|
|
""" |
|
|
Plot the detection rates over time, segmenting the data to avoid drawing lines across gaps. |
|
|
""" |
|
|
plt.figure(figsize=(15, 8)) |
|
|
|
|
|
periods = [ |
|
|
(pd.to_datetime('2021-04-01'), pd.to_datetime('2021-12-31')), |
|
|
(pd.to_datetime('2023-01-01'), pd.to_datetime('2023-09-30')), |
|
|
] |
|
|
|
|
|
for start_date, end_date in periods: |
|
|
period_df = df[(df['date_tested'] >= start_date) & (df['date_tested'] <= end_date)] |
|
|
detection_rate = calculate_detection_rate(period_df, threshold, period=period) |
|
|
detection_rate.index = detection_rate.index.to_timestamp() |
|
|
|
|
|
plt.plot(detection_rate.index, detection_rate, color=color) |
|
|
|
|
|
|
|
|
overall_rate = calculate_detection_rate(df, threshold, period) |
|
|
mean_rate = overall_rate.mean() |
|
|
percentile_25 = overall_rate.quantile(0.25) |
|
|
percentile_75 = overall_rate.quantile(0.75) |
|
|
plt.axhline(y=mean_rate, color='green', linestyle='--', label='Mean') |
|
|
plt.axhline(y=percentile_25, color='blue', linestyle=':', label='25th Percentile') |
|
|
plt.axhline(y=percentile_75, color='red', linestyle='-.', label='75th Percentile') |
|
|
|
|
|
plt.title('Detection Rates Over Time') |
|
|
plt.xlabel('Date') |
|
|
plt.ylabel('Detection Rate (%)') |
|
|
plt.legend() |
|
|
plt.tight_layout() |
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
sample = pivot_df.copy() |
|
|
sample['yeast_and_mold'] = pd.to_numeric(sample['yeast_and_mold'], errors='coerce') |
|
|
sample['date_tested'] = pd.to_datetime(sample['date_tested']) |
|
|
sample = sample.loc[sample['date_tested'] >= pd.to_datetime('2021-07-01')] |
|
|
plot_detection_rates(sample.copy(), 'k') |
|
|
|
|
|
|
|
|
def plot_detection_rates(df, color, lab_name, threshold=100, period='W'): |
|
|
""" |
|
|
Plot the detection rates over time. |
|
|
""" |
|
|
plt.figure(figsize=(15, 8)) |
|
|
detection_rate = calculate_detection_rate(df, threshold, period=period) |
|
|
detection_rate.index = detection_rate.index.to_timestamp() |
|
|
|
|
|
|
|
|
plt.plot(detection_rate.index, detection_rate, label=f'Lab {lab_name}', color=color) |
|
|
|
|
|
|
|
|
mean_rate = detection_rate.mean() |
|
|
percentile_25 = detection_rate.quantile(0.25) |
|
|
percentile_75 = detection_rate.quantile(0.75) |
|
|
|
|
|
plt.axhline(y=mean_rate, color='green', linestyle='--', label='Mean') |
|
|
plt.axhline(y=percentile_25, color='blue', linestyle=':', label='25th Percentile') |
|
|
plt.axhline(y=percentile_75, color='red', linestyle='-.', label='75th Percentile') |
|
|
|
|
|
|
|
|
plt.title(f'Detection Rates Over Time: {lab_name}') |
|
|
plt.xlabel('Date') |
|
|
plt.ylabel('Detection Rate (%)') |
|
|
plt.legend() |
|
|
plt.tight_layout() |
|
|
plt.show() |
|
|
|
|
|
|
|
|
sample['date_tested'] = pd.to_datetime(sample['date_tested']) |
|
|
sample['yeast_and_mold'] = pd.to_numeric(sample['yeast_and_mold'], errors='coerce') |
|
|
labs = list(sample['lab'].unique()) |
|
|
lab_colors = sns.color_palette('tab10', n_colors=len(labs)) |
|
|
for i, lab in enumerate(labs): |
|
|
lab_sample = sample[(sample['lab'] == lab) & (sample['yeast_and_mold'].notna())] |
|
|
if len(lab_sample) >= 100: |
|
|
plot_detection_rates(lab_sample, lab_colors[i], lab) |
|
|
|
|
|
|