| # === OLD === | |
| # data_dir = r'D:\data\public-records\Rhode Island\Rhode Island' | |
| # data = [] | |
| # for root, dirs, files in os.walk(data_dir): | |
| # for file in files: | |
| # if 'no data' in file.lower(): | |
| # continue | |
| # print('Reading:', file) | |
| # datafile = os.path.join(root, file) | |
| # if file.endswith('.csv'): | |
| # df = pd.read_csv(datafile, usecols=columns.keys(), encoding='latin1') # Use 'latin1' encoding | |
| # elif file.endswith('.xlsx'): | |
| # df = pd.read_excel(datafile, usecols=columns.keys()) # Read .xlsx files correctly | |
| # df.rename(columns=columns, inplace=True) | |
| # data.append(df) | |
| # data = pd.concat(data, ignore_index=True) | |
| # print('Number of Rhode Island tests:', len(data)) | |
| # # Extract test_name, units, and product_type from test_type. | |
| # data[['test_name', 'units', 'product_type']] = data['test_type'].str.extract(r'(.+?) \((.+?)\) (.+)') | |
| # # Restrict to passed tests. | |
| # data = data[data['status'] == True] | |
| # # Pivot the data to get results for each sample. | |
| # results = data.pivot_table( | |
| # index=['sample_id', 'producer_license_number', 'lab', 'label', 'date_tested', 'product_type'], | |
| # columns='test_name', | |
| # values='test_result', | |
| # aggfunc='first' | |
| # ).reset_index() | |
| # results['date_tested'] = pd.to_datetime(results['date_tested'], errors='coerce') | |
| # results['month'] = results['date_tested'].dt.to_period('M') | |
| # print('Number of Rhode Island samples:', len(results)) | |
| # # Calculate the total cannabinoids. | |
| # ri_cannabinoids = [ | |
| # 'CBD', | |
| # 'CBDA', | |
| # 'Delta-9 THC', | |
| # 'THCA', | |
| # ] | |
| # ri_terpenes = [ | |
| # 'Alpha-Bisabolol', | |
| # 'Alpha-Humulene', | |
| # 'Alpha-Pinene', | |
| # 'Alpha-Terpinene', | |
| # 'Beta-Caryophyllene', | |
| # 'Beta-Myrcene', | |
| # 'Beta-Pinene', | |
| # 'Caryophyllene Oxide', | |
| # 'Limonene', | |
| # 'Linalool', | |
| # 'Nerolidol', | |
| # ] | |
| # results['total_thc'] = results['Total THC'] | |
| # results['total_cbd'] = results['Total CBD'] | |
| # results['total_cannabinoids'] = results['total_thc'] + results['total_cbd'] | |
| # results['total_terpenes'] = results[ri_terpenes].sum(axis=1) | |
| # # Calculate the total THC to total CBD ratio. | |
| # results['thc_cbd_ratio'] = results['total_thc'] / results['total_cbd'] | |
| # # Calculate the total cannabinoids to total terpenes ratio. | |
| # results['cannabinoids_terpenes_ratio'] = results['total_cannabinoids'] / results['total_terpenes'] | |
| # === Analyze Rhode Island lab results === | |
| # # Visualize market share by lab by month as a timeseries. | |
| # market_share = results.groupby(['month', 'lab']).size().unstack().fillna(0) | |
| # market_share = market_share.div(market_share.sum(axis=1), axis=0) | |
| # market_share.plot.area( | |
| # title='Market Share by Lab by Month in Rhode Island', | |
| # figsize=(13, 8), | |
| # ) | |
| # plt.xlabel('') | |
| # plt.savefig(f'{assets_dir}/ri-market-share-by-lab-by-month.png', dpi=300, bbox_inches='tight', transparent=False) | |
| # plt.show() | |
| # # Visualize tests per capita by month. | |
| # ri_population = { | |
| # 2023: 1_095_962, | |
| # 2022: 1_093_842, | |
| # 2021: 1_097_092, | |
| # 2020: 1_096_444, | |
| # 2019: 1_058_158, | |
| # } | |
| # results['year'] = results['date_tested'].dt.year | |
| # results['population'] = results['year'].map(ri_population) | |
| # tests_per_capita = results.groupby('month').size() / (results.groupby('month')['population'].first() / 100_000) | |
| # fig, ax = plt.subplots(figsize=(13, 8)) | |
| # tests_per_capita.plot(ax=ax, title='Cannabis Tests per 100,000 People by Month in Rhode Island') | |
| # ax.set_ylabel('Tests per 100,000 People') | |
| # plt.show() | |
| # # Visualize average total THC by month over time. | |
| # results['date_tested'] = pd.to_datetime(results['date_tested']) | |
| # results['total_thc'] = results['total_thc'].astype(float) | |
| # results['month'] = results['date_tested'].dt.to_period('M') | |
| # average_total_thc = results.groupby('month')['total_thc'].mean() | |
| # fig, ax = plt.subplots(figsize=(13, 8)) | |
| # average_total_thc.index = average_total_thc.index.to_timestamp() | |
| # ax.plot(average_total_thc.index, average_total_thc.values, label='Monthly Average Total THC', color='royalblue', lw=5) | |
| # ax.scatter(results['date_tested'], results['total_thc'], color='royalblue', s=10, alpha=0.5, label='Daily Individual Results') | |
| # ax.set_xlabel('') | |
| # ax.set_ylabel('Total THC (%)') | |
| # ax.set_title('Average Total THC by Month in Rhode Island') | |
| # ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) | |
| # ax.xaxis.set_major_locator(mdates.MonthLocator((1,4,7,10))) | |
| # plt.xticks(rotation=45) | |
| # plt.ylim(5, 37.5) | |
| # plt.savefig(f'{assets_dir}/ri-total-thc.png', dpi=300, bbox_inches='tight', transparent=False) | |
| # plt.show() | |
| # # Visualize average total CBD by month over time. | |
| # results['total_cbd'] = results['total_cbd'].astype(float) | |
| # sample = results.loc[results['total_cbd'] < 1] | |
| # average_total_cbd = sample.groupby('month')['total_cbd'].mean() | |
| # fig, ax = plt.subplots(figsize=(13, 8)) | |
| # average_total_cbd.index = average_total_cbd.index.to_timestamp() | |
| # ax.plot(average_total_cbd.index, average_total_cbd.values, label='Monthly Average Total CBD', color='royalblue', lw=5) | |
| # ax.scatter(sample['date_tested'], sample['total_cbd'], color='royalblue', s=10, alpha=0.5, label='Daily Individual Results') | |
| # ax.set_xlabel('') | |
| # ax.set_ylabel('Total CBD (%)') | |
| # ax.set_title('Average Total CBD by Month in Rhode Island in Low CBD Samples (<1%)') | |
| # ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) | |
| # ax.xaxis.set_major_locator(mdates.MonthLocator((1,4,7,10))) | |
| # plt.xticks(rotation=45) | |
| # plt.ylim(0, 0.33) | |
| # plt.savefig(f'{assets_dir}/ri-total-cbd.png', dpi=300, bbox_inches='tight', transparent=False) | |
| # plt.show() |