Datasets:

Modalities:
Image
Size:
< 1K
DOI:
Libraries:
Datasets
License:
caobin's picture
Upload 224 files
56c956f verified
<!DOCTYPE html>
<html lang="en" data-content_root="../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>The tutorial 6th &#8212; PyXplore Book</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../../_static/styles/theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../../_static/styles/bootstrap.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link href="../../_static/vendor/fontawesome/6.5.2/css/all.min.css?digest=dfe6caa3a7d634c4db9b" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../_static/vendor/fontawesome/6.5.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=b76e3c8a" />
<link rel="stylesheet" type="text/css" href="../../_static/styles/sphinx-book-theme.css?v=eba8b062" />
<link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../_static/mystnb.8ecb98da25f57f5357bf6f572d296f466b2cfe2517ffebfabe82451661e28f02.css" />
<link rel="stylesheet" type="text/css" href="../../_static/sphinx-thebe.css?v=4fa983c6" />
<link rel="stylesheet" type="text/css" href="../../_static/sphinx-design.min.css?v=95c83b7e" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b" />
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b" />
<script src="../../_static/vendor/fontawesome/6.5.2/js/all.min.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../../_static/documentation_options.js?v=9eb32ce0"></script>
<script src="../../_static/doctools.js?v=888ff710"></script>
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../_static/copybutton.js?v=f281be69"></script>
<script src="../../_static/scripts/sphinx-book-theme.js?v=887ef09a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script src="../../_static/design-tabs.js?v=f930bc37"></script>
<script>const THEBE_JS_URL = "https://unpkg.com/thebe@0.8.2/lib/index.js"; const thebe_selector = ".thebe,.cell"; const thebe_selector_input = "pre"; const thebe_selector_output = ".output, .cell_output"</script>
<script async="async" src="../../_static/sphinx-thebe.js?v=c100c467"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>const THEBE_JS_URL = "https://unpkg.com/thebe@0.8.2/lib/index.js"; const thebe_selector = ".thebe,.cell"; const thebe_selector_input = "pre"; const thebe_selector_output = ".output, .cell_output"</script>
<script type="application/vnd.jupyter.widget-state+json">{"state": {"1c892a6a58f644abb68470a9a3adf139": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b3cab6091794b95be1ff96836a6cde4": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "acb597422101443d85dddcad98e2c13f": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntSliderView", "behavior": "drag-tap", "continuous_update": true, "description": "elevation", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_1c892a6a58f644abb68470a9a3adf139", "max": 90, "min": -90, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_4b3cab6091794b95be1ff96836a6cde4", "tabbable": null, "tooltip": null, "value": 30}}, "30b598229ef14565abeb4b2f9d30d598": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57bbc7d6537c449687212578138a4c57": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "70410f1ea9bf48999c90b4f86c38de8e": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "IntSliderView", "behavior": "drag-tap", "continuous_update": true, "description": "azimuth", "description_allow_html": false, "disabled": false, "layout": "IPY_MODEL_30b598229ef14565abeb4b2f9d30d598", "max": 180, "min": -180, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_57bbc7d6537c449687212578138a4c57", "tabbable": null, "tooltip": null, "value": 60}}, "0c5c51e7065f4f7e820e44a56c152938": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d33d260182c4f3c8cc38e2239270477": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_acb597422101443d85dddcad98e2c13f", "IPY_MODEL_70410f1ea9bf48999c90b4f86c38de8e", "IPY_MODEL_90cb7b6c4f0744868127057bfc84653e"], "layout": "IPY_MODEL_0c5c51e7065f4f7e820e44a56c152938", "tabbable": null, "tooltip": null}}, "46050c18d3b54c2b85102c5cbcdfeca9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90cb7b6c4f0744868127057bfc84653e": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_46050c18d3b54c2b85102c5cbcdfeca9", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "<Figure size 640x480 with 1 Axes>", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACU1ElEQVR4nOydd1gU1/rHPzOzIGAvARVL7KjYExM1dgEbYCFEY8w15kYTa4qm/JLc5OYm98ZYbkQ0Yq7GFFvsAjbsBVsUC6jBkkQxKiHGClJ2z++P2V0BKbvLwi44n+eZR4HdmXeX5XznnPO+31cSQgg0NDQ0NDQA2dEBaGhoaGg4D5ooaGhoaGiY0URBQ0NDQ8OMJgoaGhoaGmY0UdDQ0NDQMKOJgoaGhoaGGU0UNDQ0NDTMaKKgoaGhoWFGEwUNDQ0NDTOaKGhoaGhomNFEQUNDQ0PDjCYKGhoaGhpmNFHQ0NDQ0DCjiYKGhoaGhhlNFDQ0NDQ0zGiioKGhoaFhRhMFDQ0NDQ0zmihoaGhoaJjRREFDQ0NDw4wmChoaGhoaZjRR0NDQ0NAwo4mChoaGhoYZTRQ0NDQ0NMxooqChoaGhYUYTBQ0NDQ0NM5ooaGhoaGiY0URBQ0NDQ8OMJgoaGhoaGmY0UdDQ0NDQMKOJgoaGhoaGGU0UNDQ0NDTMaKKgoaGhoWFGEwUNDQ0NDTOaKGhoaGhomNFEQUNDQ0PDjCYKGhoaGhpmNFHQ0NDQ0DCjiYKGhoaGhhlNFDQ0NDQ0zGiioKGhoaFhRhMFDQ0NDQ0zmihoaGhoaJjRREFDQ0NDw4wmChoaGhoaZjRR0NDQ0NAwo4mChoaGhoYZTRQ0NDQ0NMxooqChoaGhYUYTBQ0NDQ0NM5ooaGhoaGiY0URBQ6MUkJyczH/+8x+efvpp3NzccHd3Z9++fY4OS6MMIgkhhKOD0NDQyMnt27f55ptvWLNmDcePH+f27dsAyLKMJEno9XokSWLq1KlMmzbNwdFqlCU0UdDQcAJSU1P54YcfWLVqFT/99BN//fUXAJIkUatWLTp37szIkSPp27cvrVu35tKlS1StWpXff/+dVq1asWfPHqpUqeLYF6FRJtA5OgANjUeRjIwMVq5cyfLlyzl06BB//PGH+Weenp4EBgYybNgwhgwZgk6X88/UYDDg4uLCL7/8wgsvvMDKlSupXbs269evx8/Pr6RfikYZQ5spaGiUAAaDgcjISL7//ntiY2O5du0apj+9atWq0aFDB0JDQxk2bBhubm4FnsvHx4eUlBRSUlIAWLFiBS+99BKZmZlMmDCBOXPmFPvr0Si7aKKgoVEMGAwGdu7cyTfffMOePXtISkoyi0DlypVp27YtgwcPZuTIkVSqVMmqczdt2pS//vorx+zi999/p3v37vz66680a9aMffv2UaNGDbu+Jo1HA00UNDTsxIEDB1i0aBE7duzgt99+Q6/XA1ChQgVatWpFYGAgL730UpEH68aNG3Pnzh2uX7+e4/sGg4GxY8eyePFiypUrx4oVKwgODi7StTQePTRR0NCwkfj4eBYsWEBMTAznz58nKysLAHd3d1q0aEH//v0ZPXo0derUset1GzZsSGpqKteuXcvz5xs2bOD5558nPT2dUaNGsXDhQmRZyz7XsAxNFDQ0LOTChQtERESwefNmEhMTSU9PB6BcuXI0bdqUgIAAXn75ZRo3blyscTz++OOkp6dz9erVfB+TkpJC9+7dSUxM5PHHH2f//v3Url27WOPSKBtooqChkQ9JSUn873//IyoqitOnT5OWlgaAi4sLDRs2pHfv3rz88su0bt26ROOqX78+WVlZXLlypdDHTpw4kfnz5+Pi4sK3337L8OHDSyBCjdKMJgoaGkZSUlJYtGgR69at4+TJk9y7dw8ARVGoX78+PXr04KWXXuLpp592aJx169YF4PLlyxY9PiYmhqFDh5KWlsazzz7L8uXLteUkjXzRREHjkeXu3bssXryY1atXExcXx61btwC1YKxOnTp07dqVF198kZ49ezrVIOrt7Y2iKFy6dMni59y+fZuePXty8uRJateuTWxsLPXr1y/GKDVKK5ooaDwy3L9/nyVLlrBy5UqOHDnCjRs3AFUEatasSefOnXn++ecZOHCgU4lAbmrXro2rqyu//vqr1c999913mTVrFoqiMH/+fF5++WX7B6hRqtFEQaPMkpWVxerVq1m6dCkHDx4kOTnZ/LPHHnuMjh07mquGXV1dHRipddSsWRMPDw8uXrxo0/P37dvHwIEDuXfvHgMGDGDdunUPVU1rPLpooqBRZjAYDGzcuJHvvvuO/fv3c/XqVXPBWNWqVenQoQMhISEMHz4cDw8PB0drO15eXlSoUIELFy7YfI7U1FT69OnDkSNHeOyxx9i7dy/NmjWzY5QapRVNFDRKLQaDgV27dvHtt9+ye/duLl++jMFgAKBSpUq0adOGwYMH8+KLL1K5cmUHR2s/PD09qVy5MufOnSvyuT799FM++eQTJEniyy+/ZOLEiXaIUKM0o4mCRqniyJEjfP311+zcuZNffvnFXDVcvnx5fH19zVXDnp6eDo60+KhRowbVq1fn559/tsv5jh49SkBAALdu3aJ3795s3LixVC2nadgXTRQ0nJqEhAQWLFjA1q1buXDhApmZmQC4ubnRvHlz+vXrx9///ndzmuajQPXq1fH09OTMmTN2O+f9+/fp378/e/fupWrVquzatavE6y80nANNFDScil9++YUFCxawceNGfv75Z3PVsKurK02aNMHf35+XX375kV7/rlatGrVq1SIhIcHu5541axbvvfceQgj+/e9/8+6779r9GhrOjSYKGg7l999/5+uvvyYqKoqEhARz1bBOp6Nhw4b06tWL0aNH065dOwdH6jxUrVqVunXrcvLkyWI5f3x8PH369OHPP/+kc+fObN++vVA7b42yg5aHplGi3Lhxg4ULF7J+/XpOnDjB3bt3AbXNZL169ejRowd/+9vfeOaZZxwcqfMihCjWOgpfX1+SkpIIDg5m69ateHp6EhMTw1NPPVVs19RwHrSZgkaxcvfuXb777jtWrVpFXFwcN2/eBNSCMW9vb7p06cKLL75Inz59nLpgzJmoXLkyDRs2JC4urtivFRERweTJkzEYDLz//vv861//KvZrajgWTRQ07Mr9+/dZsWIFy5cv58iRI/z555/mn9WsWZNOnToxfPhwAgMDtYIpG6lUqRJNmjTh6NGjJXK98+fP06NHD65fv0779u3ZvXs3FSpUKJFra5Q82l+lRpHIyspizZo1LFu2jAMHDuRo/FKjRg369evHc889x7PPPqulOdqJ4l4+yk3jxo25dOkSoaGhrF+/Hi8vL6Kjo+nRo0eJxaBRcmgzBQ2rMBgMbN68me+//569e/fy+++/m6uGq1SpQvv27Rk6dCgvvPBCqa4admYqVKiAr68vBw8eLPFr//DDD7zyyitkZWXxxhtvMGvWrBKPQaN40URBo1D27NnDokWL2L17N5cuXTJXDVesWJHWrVszaNAgRo0aRZUqVRwb6CNC+fLladOmDbGxsQ65/uXLl+nWrRtJSUm0aNGCvXv3Uq1aNYfEomF/tOUjjYf46aefWLhwIdu3b+eXX34xt5n08PDgiSeeYMCAAYwePZqaNWs6ONJHEyEEiqI47Pp169blwoULjBo1imXLluHt7c3q1avp37+/w2LSsB/aTEGDM2fO8PXXX7NlyxbOnTuXo2rYx8eHvn378ve//13z33cSPDw8ePLJJ9m9e7ejQ2H16tW8+OKLZGRkMHbsWObPn+/okDSKiCYKjyC//fYbERERbNq0ibNnz3L//n1AbTPZpEkT/Pz8+Pvf/46Pj4+DI9XIC3d3dzp16sSOHTscHQoA165do0ePHly4cIHGjRuzf//+Mu09VdbRlo8eAa5du8b//vc/IiMjiY+PJzU1FVDbTDZo0MBcNdyhQwcHR6phCSWdfVQYNWvW5OzZs7z66qssXLiQunXrsmTJEkJCQhwdmoYNaDOFMsjNmzdZtGgRa9eu5cSJE9y5cwd4UDXctWtXRo0aRbdu3RwcqYYtuLm50a1bN7Zu3eroUB5i06ZNhIaGcv/+fUaMGMF3333nVAKmUTiaKJQBUlNT+f7771m5ciVHjx7NUTVcu3ZtunTpwgsvvEBAQID2B1oGKFeuHL169WLTpk2ODiVPbty4Qc+ePTl9+jR169YlNjaWOnXqODosDQvRlo9KIRkZGSxfvpwVK1Zw+PBhUlJSzD/z8vIiODiY4cOHExwcrFUNl1Gc+fdarVo1Tpw4wVtvvUVYWBgNGjRg4cKFvPjii44OTcMCtJlCKSArK4v169ezZMkSDhw4wLVr18w/q169Ok888QShoaGEhoZqbpaPAK6urvTr14/169c7OpRC2b17N0FBQaSmpjJ48GBWrVqlzVadHOe93XiEMRgMxMTE8O2337Jv3z6SkpJyVA336NGDIUOGMHLkSM2D5hHFkXUK1tC9e3euXLlCr169WLt2Ld7e3uzbt49GjRo5OjSNfNBEwUnYv38/CxcuZNeuXfz222/mquEKFSrQqVMngoKCeOmll7TKUQ2g9IgCqJ/hw4cP8+GHHzJt2jSaNWvG3LlzGTt2rKND08gDbfnIQRw/fpyvv/6abdu2cfHiRXPVsLu7Oy1btjRXDdeuXdvBkZYt0tLSuH37NpUqVcLd3d3R4diEq6srQ4YMYfny5Y4OxWoOHjxI//79uXPnDgEBAURFRTn1/sijiPbbKCF+/vlnc6/hxMREMjIyADWTpEWLFvTt25fRo0dr0+piIjY2li/DviRyQyQGvQFZkQkMCuSNyW/QqVMnR4dnNaVpppCdp59+mitXrhAQEMCWLVuoWbMmu3fvpmXLlo4OTcOINlMoJi5dusTXX39NdHQ0Z86cyVE13KhRI/r06cPLL7+Mr6+vgyMt+5gaxSg+Clmjs6ARcAF0i3Toz+oJCwtjzJgxjg7TYlxdXRk+fDjffvuto0MpEtOmTePDDz9EkiSmT5/Om2++6eiQNNBEwW4kJyeb20zGx8dz7949QL2je/zxx+nRowcvvfSS1tKwhImNjaVXr16I8QKmA9kTXwzAFJDmSezcubNUzBiEEJQrV44XXniBRYsWOTqcInP8+HH8/f3566+/6NatGzExMVrfDQejLR/ZyM2bN1m8eDFr167l+PHj3L59G1CrhuvUqcPgwYN58cUX6d69u5aC50C+DPtSnSFMz8opCKB+PQOUHQqzw2aXClHQ6/VA6V0+yk3btm1JSkpi4MCB7Ny5E09PT7Zt28YTTzzh6NAeWTRRsJDU1FR++OEHVq1axU8//cRff/0FqFXDtWrVwt/fn5EjR9K3b19NBJyEtLQ0dQ/hc8PDgmBChqzRWax/dz1paWlOv/ls2osqK6IA6nLY1q1bCQ8P56233qJjx458/PHH/OMf/3B0aI8kmihYwNy5c5kwYYL5a09PTwYOHMjw4cMZMmSIlj3hpNy+fRuD3qDuIRREQzDoDdy+fdvpRcFka16WRMHEhAkT6NOnDz179uSjjz4iKiqKXbt2aR38ShjtltYCLl++bP7/u+++y5UrV1i7di2hoaGaIDgxlSpVQlZkuFDIAy+CrMhUqlSpROIqCiZRKKufOx8fHy5fvkz//v05cuQIXl5e7Nu3z9FhPVJoomAB1atXB9RB5vPPP9c8XEoJ7u7uBAYFolukUzeV88KgZiEFBwc7/SwBHiwfFUUU0tLSuH79OmlpafYKy67odDrWr19PREQEaWlpdOvWjXfeecfRYT0yaKJgAaY7yAULFuDr68uyZcvo2rWrueBMw3l5fdLr6M/qYSoPC4Mx+0h/Vs/kSZMdEJ31mD5ztohCbGwsocNCqVa9GvXq1aNa9WqEDgvlwIED9g7TLowePZozZ85Qq1YtvvjiC9q0aWNO6NAoPjRRsACTKKSmpnL06FEGDBjAwYMH8fHx0T6kTk7nzp0JCwtDmiuha6+DMCAKCANdex3SPImwsLBSkXkED2YK1iYzRERE0KtXL6LPRqsb72vA8LmB6LPR9OzZkwULFhRHuEWmQYMG/PLLL4SEhHDy5Elq1qxJTEyMo8Mq02iiYAFVqlQB1I1LWZZZt24dkyZN4rfffqNRo0b89ttvjg3QSXDWZYkxY8awc+dOApsHIr8rw1CQ35UJbB7Izp07S1Xhmi0zhdjYWCZPnowYL8g6lgWTgAHAJMg6loUYJ5g0aZLTzhhkWWbZsmX88MMPZGVl4e/vz8SJEx0dVplFEwULMImCqYMZwMyZMwkLC+PWrVu0bNmSgwcPOig6x1MaliU6derE8mXLufHnDS5dusSNP2+wfNnyUjNDMGESBRcXF4ufY6rVeKh4Dx7UaviotRrOzHPPPcf58+epX78+4eHh+Pj45OglomEfNFGwgLxEAeC1115j/fr16PV6unfvzooVKxwQnWMpbcsS7u7ueHl5lYpN5bywtk7BVKuRNTqP4j0TplqN9eudbpaXm9q1a5OYmMiLL77Izz//TJ06ddiwYYOjwypTaKJgAVWrVgXg7t27D/2sX79+HDlyBDc3N1544QX+/e9/l3R4DqO0L0uURkwzBUtFwZZaDWdHlmUWLlzI6tWrAQgODuall14y281rFA1NFCzA1MMgL1EA8PX15dy5c3h6evLRRx8xevTokgzPYZSVZYnShLV7CmWxVsNEUFAQv/76K02bNmXx4sU0atSI33//3dFhlXo0UbAAk0FXampqvo/x9PTkwoULtGjRgu+//56ePXuW6TuXsrYsUVqwtk6hLNZqZKdGjRokJCTw6quv8uuvv/L4448/ksu49kQTBSsoSBQA3NzciIuLo2/fvuzbt4/mzZvnO7so7ZTFZYnSgLXLR1D2ajXyYs6cOWzcuBGdTsewYcMIDQ0t0zdlxYkmChYiy7JFd7uyLBMZGcm4ceO4ePEiDRs2zGGTUVYoy8sSzozJ5sKa7KOyVquRH35+fly+fJlWrVqxcuVK6tatq6WL24AmChYiy7K5UY4lzJ49m1mzZnHz5k2aN2/O4cOHizG6kqesL0vYSl61GllZWURGRtK/fyDe3o9TtWoNvL0fp3//QCIjI62qjLclJRXKVq1GQVSuXJljx47x1ltvcfXqVRo3bszChQsdHVapQmuyYyGmtplHjhyx6nkbNmwgNDQUgCVLljB06NDiCM8hlLUGNkUhv3afbVq14euvv+Hq1csoypPo9QFABeAuirIFvf4ItWrVZcaMzwkJCSn0OmvXruW5555jwYIFjBo1yqZYy0KfakvYt28fAwcO5N69ewwcOJC1a9eWWSNBe6LNFCxEURTS09Otfl5QUBAHDhzA1dWVYcOG8cUXXxRDdI7hUVmWKIz8ajUiz0TyySefcPVqVeAgev0+4EPgDeBD49cHuXq1AyNGjCAsLKzQa9nDJbW012pYyjPPPMPvv//Ok08+SVRUFLVr1+bnn392dFhOjyYKFqLT6WwSBYB27drx888/U6NGDd5//32bpuqahYRzUlCthiHOAOMBTgH5LT22A5YDbzF16lRWrVpV4PVsXT56VPHw8CA2NpaPPvqIlJQUWrRowZw5cxwdllOjiYKFuLi42CwKALVq1eLixYs0bdqUb775Bj8/P4uyIzQLCefGkloNmipAQbUaEvAZEMxbb73D77//nq/425J9pAEffPABBw4coGLFikyaNIk+ffqY03s1cqKJgoW4uLiYp+624u7uTlxcHK1btzZ3lKpUqSq1a9enf/+BbNiwIcemo2Yh4dxYWqvBK1kgrQcKmuVJwHtcu5ZEgwYN8hV/W7KPNFQ6dOhAUlISXbt2Zfv27dSsWZOTJ086OiynQxMFC3F1dS2yKKxcuZImTZpz6tQpJOkx9Ho9aWkG/vgjlJ07bxISEkKjRs1YuXKlZiFRCrCmVgNhAAqr1WgHcltoLecr/kXpp6Ch1hLt2LGDadOmcevWLdq2bcvnn3/u6LCcCk0ULKRcuXJFaqoTFhbGiBEjuHr1CeAwcA2YBqQC88nKmgMc5urVJxgxYgQTJk7QLCScHGtqNZBkwIJaDcNAuKrkK/6aKNiHN998k6NHj1K1alXee+89unTpYlXKeVlGEwULKYoorFy5kilTpgBTgB+B9gBI0hRgFZAJdEKIS8afTyH+VDyZHTI1CwknxtJaDb7WgQgGLFlWKw/3jCfLQ/xLw0azsyZF5MbX15crV67g7+9PbGwsXl5eHDp0yNFhORxNFCzEzc0NvV5v9fOysrKYMuVdYDDwH9S14wdI0mDgAOACDEWIL42PC4YoHUJfQBmJZiHhcCyxkCBRD1hqIXEPymf7s8wl/s4sCqUhKSI3Op2O6OhowsPDuXfvHp06deLDDz90dFgORRMFC7FVFDZu3MjVq5eB/yO3IJiQpA7Az0A1YApCTADeh7+yYGMBJ9csJBxOQbUatNHBXMn4hYWZWEoUtM71Ocsm/s66fFTakiJyM3bsWE6dOoWnpyeffvopHTp0KLO+ZYWhiYKFuLu722SwNX/+AhSlI2o+ev5IUh3gN6AxMB8h3kOINjAvn1/RI2Yh4cxLEnnVavA2kPgMsBOwtFbjGOiPw7hcn7Ns4u+MM4WykhTRpEkTLl26RHBwMMeOHaNmzZrs2rXL0WGVOJooWIiHhwe2OIIcP37KaG1QOJLkAZwBegDbgMuIfVKZdba0hP379xP6XChVq1Wlbt26VK1WldDnQomNjXV0aDnIXqtx8eJFanp5A1WApy08gwD+A7V10C/bt3OJv2m26kyiUJb6asiyzKpVq/jmm29IT0+nZ8+evPnmm44Oq0TRRMFCPDw8bHpeaupdoKLFj5ckGUnaDowG/oT7Wcit5UfSQmL+/Pn06tWLqJ+jMHxhgHVg+MJA1M9R9OzZk4iICEeH+BDu7u54e3szc+YXwDrgfdQBvyCE8XEbYHoWmOrS8hB/kyiYenw4mrLaV+OFF14gMTGROnXq8N///hdfX19u3rzp6LBKBE0ULKR8+fJA4T0VcuPhUQG4U+jjciNJXwO9ABDnhboc8QhZSOzfv19dkpggyDqepe7TDgQmQ9bxLMR4dUnC2WYMJkJCQpg+fTowExgGxOXzyDggFJiJ7CXD7xQo/qblI1l2jj/dstxXo27duly4cIFhw4aRkJBArVq12LRpk6PDKnac45NVCjCJwo0bN6x6Xtu2rVCULTZdU6e7S6tWrRFCICGxaNGiR8ZCYnbYbJTmijqm5rUkMQuU5tYvSZTk3sSkSZNYsmQJtWodBZ5GUboA/wJmAf8yfv00tWrF8dZbb/FUo6fgbRBD1JuAJ6s+ydq1a3OIv0kUnGWmUNb7asiyzPfff8/y5csxGAz079+fV1991dFhFSuaKFhIhQoVAKyeQr766hj0+sPAMSuveBS9/gj//OfH7N27F51Ox0svvfRIeMOnpaWplh8vF7Ik8bLlSxKOSpcMCQnh/PmzrF69mh49qvHYY4vw8Pg3jz22iO7dq/L+++/TqkVTZs6cSez+WDyQqKnT4YFE7P5YBg0aROCAAWzevBkhhNPtKTwqfTWGDh3KhQsXaNSoERERETRp0oTk5GRHh1UsaKJgIRUrqvsC1opC//79qVWrLmrtgaUb1eqmY+3a9ejfvz8dO3bk9OnTVKlShTfeeIPJk8v25rK9lyQcnS6p0+kYOHAgGzdGkpT0C3/9lcLRowepWMGdTz/9lD927mS+EPwM3DQYSMrK4qbBwM/AfCH4Y8cOgoKCeC40lDt37pjP6Sw8Cu0+AWrWrMnZs2cZPXo058+fp27duqxevdrRYdkdTRQsxDTttXZNVKfTMWPG58Ba4D0s23R8D1jH9On/Mbth1qtXj4sXL9KgQQPmzZtHYGBgme1Ba88lCWdMl0xMTKRzx47sj4piOXBYr+dlVA00VbJIxq9fBg7p9SwH9kVFsdrYlN5Zlo/g0eurERERwYYNG5BlmZCQEF544YUy9beoiYKFmAYeWzIQnn32WWbMmIHqoxxK/ktJx4BngRnMmDGDZ599NsdPK1SowNmzZ+nSpQubN2+mXbt2ZdKvxd3dnaCgIHQLC1mSWFj4koSzpUtev36dfn5+VEhO5ie9nsJ7rakCEQIc1euplZaGDts+h8XJo9ZXo1+/fvz22280b96cJUuW8Pjjj5OUlOTosOyC1o7TQjZs2EBwcDBz5syxeaNJ9UB6N1trxr48aM24OUdrxtyCkJtRo0axZMkSPD09iYuLw9PT06aYCiMlJYVjx44RHx9PWloa7u7u+Pr60r59e2rUqFEs1wQ1+6hXr16ICeLhzWYD8CZIc9VWn507d87zHGlpaVSrXk1dMppUwMXC1AHsxp83inXNWwhB6LPPEhsdzU96Pd42nOMK0AboNnAgK1evRpLyrpJ3JI9Ku0+AAwcOMGLECC5fvowsy2RmZjpNZpitOM/CpJNTrVo1APOari08++yzDB48mE2bNvHVVxGcOLGQe/fuUL58Rdq08eW111bTv39/ixqoLF68mCZNmvDxxx/TpEkT9u/fj6+vr82xZUcIwdatW5k7Zw5bt21DCEF5WaaionBHr+eewYAkSfj36cP4iRPx9/e3++DUpUsXwsLCmDRpEsp2Rd10bghcVGcI+jN6wsLC8hUEsG1vojgHsS1btrB+wwaWg02CgPF584FhUVFs3bqVgADLCiNLEnd39zIrBjdv3mTBggWsXr2a+Ph4c6MeRVHQ6/WlXhBAWz6ymCpVqgBFEwVQ9xgCAwPZuDGKK1d+5ebNP7ly5Vc2bowiMDDQqo5a77//Pt999x3379/nySefZPPmzUWKDdTljWGhoQQFBZG8YwfzhOA08KfBwG+ZmfxpMHAamCcEycYN0GGhoVy/fr3I187N2LFj1SUJn0Dkt2UYDPLbMoE+6pLE2LFjC3y+s6VLzp0zh/aKwtAinmco0E5RmKu1lSwRduzYwbBhw6hduzaPPfYY77//PsePH6d+/fq8/vrrnDt3jr59+zo6TLuhLR9ZSFJSEnXr1mXChAn897//dXQ4OYiNjcXPz4/MzExmz57Na6+9ZtN5EhMT6e/vz/3kZGbr9YUOXgJYA0xSFNw9Pdm4dStNmza16dqFYeuSROiwUKLPRqubzHndAhnUzdDA5oEsX7bcfgHnIiUlBW9vb+YLwct2ON//gNckiStXrli1jPcoLe3YSkpKCvPmzWPdunWcPXvW3FyrSpUqdOrUiVGjRjFo0KAcswJ/f392795tk2mms6HNFCzEtHx07949B0fyMJ07dyY+Pp5KlSoxadIkY+8G67h+/Tr9/f2pkJzMIQsEAdQN0KGo2TMVkpPp7+9fLDMGsL3Vp7OkSx49ehQhBD3sdL4eqMt8x45ZVv9SGm2tSwqDwcDGjRsZOnQoXl5e1KpVi3/961+cPn2axo0b88477/Dbb7/xxx9/sGHDBoYMGfLQMlFaWlqZWDoCTRQsxuR95IyiANCgQQMuXrxI/fr1mT17NoMHD7Y4TU4IwcTx47mfnEy0DRug3kC0Xk9acjKTJkywyTiwuHCWdMmEhATKyzIN7XS+RkB5WSYhIaHQxzq6TsMZ+f3333n//fdp3bo1Hh4eBAcHs2HDBiRJIigoiPXr15OamsrJkyf59NNPqV27doHnS01NdarakaJQNl5FCWKt91FJUqlSJc6ePUvPnj2JioriySef5MCBA4XmtG/dupX1kZEspWgboGF6Pc9v2EBMTAz+/v42nsn+jBkzhlatWjE7bDbr312PQW9AVmQCgwOZ/NXkEsmfT0tLo6KiINkpn10CKshyoZ/HHHUa03MuoWVNyIIpqh1Hq1atykwdQV4YDAbWrl3L4sWLOXjwoDml18XFhRYtWjBkyBBeffVVmzPq7t+/r4nCo4gkSU7v8qjT6di7dy8jR45k+fLlNG7cmGPHjhX4YZ87Zw7tFIUhRVwPHQK0NW6AOpMogGpt3alTJ7usqaekpHD06FESEhLMabotW7akQ4cO+b7P7u7u3NHrEeTXask6BHDXYCjUvddUp5FbEIAHdRo71DqNsiYKv/76K+Hh4WzcuJELFy6YZ86enp6EhIQwZswYevbsaZdr3b9/32msR4qKJgpWIMuy04uCie+//57GjRvz6aef0qRJEw4cOICPj89Dj0tJSWHrtm3ME6LIg5UEjNHrGR8TQ0pKSrHWMdiKremSQgi2bNlicZpuQEBAjjTdli1bcs9g4CKFZ8hawgXgnsFAy5Yt832Mydba8LmhcFvrd9ebBa60kFvgs7KyWLFiBd999x1HjhwxZwqWK1eOtm3bEhISwiuvvGLOJLQnGRkZZUYUtD0FK1AUpVRVEH/00UcsWrSI1NRU2rdvT0xMzEOPOXbsGEIIutvpmt1RB9C4uPysoksf169f5zljmu4fO3bk9CnKzMzXpyj7pnuHDh2QJIlddoppF+rMtX379vk+pqzaWmffNK9Tpw6VK1emcpXKeHh4MGrUKHbs2EGFChV4/vnn2bNnD3fv3uXQoUNMnTq1WAQBVFEoV65csZy7pNFEwQpKmygAjBw5kpiYGCRJYsCAAfzvf//L8fP4+Phi2QCNj4+30xkdS1F8ijp37EhiYiIANWrUwL9PHyIUxWJbxPwQQISiEODnV+BszNnqNOzB3Llz6dGjB+s2rSNLUm3EhRCkpqYihCAkJISbN29y6dIlvv322xJbEsvMzNRE4VFEURTS09MdHYbVdOvWjZMnT1KxYkVee+013nvvPfPPzBugdrqWpRugzkZefRaK6lNUITmZfn5+5hnD+IkTOabXU1RfzdVAnF7P+IkTC3xcWbG1PnnyJGPGjMHb25vXX38dIQQiTYAnMAo4DPJ9GXmizNq1azl58mSJx5iVlYWbm1uJX7c40ETBClxcXMxl7aWNRo0aceHCBerUqZPDbC/7Bqg9sHQD1FnIrwf0/v37mWBM091sY5ruZmOa7kRjmm5AQACDgoOZoChcsTHeK8CrwOBBgyzazHeWOg1rSE1NJTw8nK5du1KpUiU6dOjAN998w59//gkewFzgNsi/yMhfy8jtZIf3gtbr9ZooPIqUZlEAtSLz3LlzPPHEE6xbt46OHTvi4+Nj3gC1B6YNUHv5MBUnBfaA7tWT9Rs2MMdG4zpQhSFcr2fd+vVs3boVSZKYEx6Ou6cnfW0QhiuAH3AXCJszxyK/KWep0yiMw4cPM2rUKOrXr0/lypV54403OHToEF5eXowdO5bDhw8jyRLyv2TkMTKyWx5DlwN7Qev1+lJzI1QYmihYgYuLi7nkvbSi0+k4cOAAQ4cOJS4ujrFjxyKEYLedzr8bdQO0Xbt2djpj8VBYD2jGq4+rVcTr5PYp8vLyYlNMDHc9PemgKKzCsg4bq4AOisJlFxeEouDl5WVxDM5oa3379m1mzpzJ008/TYUKFejSpQtLlizhzp079OzZk4ULF5Kamsq5c+cIDw+ndu3aTr1pbihFs+PC0FJSraBcuXJFNsRzFpYvX84HH3zAtGnTUBSFMOClIqalCmCBohDQu7dTpqNmx9QDOmtmPvn7s0DeCrMToUsRriMBY/V6XsuWptu0aVNiDx9m4oQJDFu/nvaKwhi9nh482MAWqLOuXaibynF6PYMDA/nl118tqmLOjT3rNGxl9+7dREREsGfPHvM+iyzLNGjQgAEDBjBu3DgaNcp71DdtmhsuFFL856BNcyGEuWVvaUcTBSsoV66cuXF6WeDTTz+lYcOGvPrqqyQIwSfAR0Xwb1kDHNfriSxkA9TRmHpAG74oOH/fMBbWTYE0AUUZPnvwwKfItA/g5eXFih9/NFuUvxYTY659qCDL3DUYzLUPAb17E2m0KC/qMk9RbK2t7a1x48YNvvrqK9auXcvp06fNs+zKlSsTEBDA3/72N4YOHWqRZ5Bp0zx6UbRaiZ2fueEiHYHBgSUqeKYxQROFRxA3N7cy4YKYndGjR/P444/Tt29fPhWCSgYDb9ggDFdQ3VIHDxyIn5+f/QO1I1bl7wu4TdFEIbtPUfbNYUmSCAgIICAgwDzgJiQkkJqaioeHBy1btnxowDUYhaKksKa3xmvjxyNJEgsXLmTv3r3qxjBq1l6TJk0YOHAg48ePp06dOjbF8vqk19nQa4O6aZ67k172TfOvSnbT/MaNG8CDPu6lHU0UrMCRolCc0/5evXqxa9cuevTowdtC8JvBwJdWCMMVYIDRPnu2hRugjsSqpQgJKhUxNcuSNN0aNWrg7+9P165dC/w9l6QoXL9+nUkTJrBuwwbaKQrzjEWODQ0GJIMBARw2GPg3sHPLFjZt2WJ+brVq1Rg4cCCjR49mwIABdnEQNW2amxsvjc7WeGmRDv1ZvUM2zcuaKGgbzVbg7u5e4g26rbU8zsrKIjIykv79A/H2fpyqVWvg7f04/fsHEhkZme/yV+fOndm3bx+KLDMX6Gr8oy8IgZoz31FRuOvpyaaYGKs2QB2FxT2gI2BQEZeOwLI0XUt/zyUlComJiXR56in2R0ezFDio1zMaaGAwsMFgINhgwMtg4BlgI5AJ1AU8ZBlvLy/27t3L2rVrCQwMtKultDNumptEoXLlyiV+7eJAEwUrKGlRsNbyeNWqVTRu7ENISAi7dv1FSsrLpKa+T0rKy+za9RchISE0buzDqlWr8rxex44dOX/hApUrV+YgUNVgIMJg4DwPMmQEcB5YCDytKDwPdB04kNjDh2nSpEmxvRf2ZvKkyejP6OEt8s7ffxP0ifC6Ha5VmE+RNb/nkhCF69ev09fPD7fr19mdlUVHg4F3DAZaGgx4oBbnbURdZhgMbALSZJmLssxpoMqNG8XaW6NTp04sX7acG3/e4NKlS9z48wbLly13WFqtyXG1rIgCQsNinn32WQGIzMzMYj92794tFEUR8iRZyOmykDOzHemykCfKQlEUsWfPHpGZmSlmzpwpZFkWsjxEyPJhIcuZeRyHjT+XxcyZM/O9dkZGhujUqZNA1QABiIo6najl6ioq6nRCltVr9+/bV0RHR4uMjIwSeU/sfYSHhwtZloVLSxchzZKEtE4S0ixJ6FrqhCRJYoQkCb0djghJErIsi6tXrxb599y8eXNRvnz5YntPdu7cKWrWqpnjd286XEG0BfEpiOsgMmU5z+NXWRaeLi5iyKBBpfazYc2xePFiAYjly5c7eoiyC9qeghWUL18eUM2vCutRUFSssTy+cuUKU6dORb3t/Yz8zZnbAcuB95k6dSq1a9cmJORh8wZJktizZw/vvPMOs2bNwsPDg9cmTMDDwwMPDw98fX1p166d06edFsbYsWMf9Fl4+0GfhaDgIK54XOZsXBxCry9ymm5EAWm61lpbF9dM4fz584wdO5Y9e/bk/EFFY4rsHZglSYy14NrO3FujOLh16xZAsZntlTiOVqXSxIQJEwQgLl++XKx3Hrdv3xY6F52QZ+a6c8x9zJSFzkUnateua5wBZOQzQ8h9ZAhZHiy8veuL+/fvFxjL3LlzhSRJwtXVVezYscOm15KUlCRu375dbO9XWlqaWLNmjfDz6ys8Pb1FhQqVhaent/Dz6yvWrFkj0tLSrI4zMjJSSJIkVhRxlrBCkoQkSSIqKqrIv+fbt2+LJk2aiIoVKxb5Pbt37574+uuvRffu3UWFChUezAgUBE8imIHgFkLSS0LKlIQ0URKyJIndkpTvDCH7kSHLor2Li+jft6/D7+SL+/jkk08EIA4fPuzoIcouaHsKVmDKQzatIRYX1loeX7t2BXgPy9u3SMB7XL16mU2bNhX4yDFjxhAdHY3BYKBPnz4sWbLEoivk5ykUGxtrYYyWUdR9FBO5e0Dby6dogqLk61Nki7W1wWCweeM2Pj6ecePG0bhxYypUqMArr7zC7t27qVy5MvXq1UNuICPdl5AOSkhvSEgVjJ8nYzGf0hRmW/gRM/XW2LJ1a6GfsdKOqXra1Me9tKOJghWUlChYY3mMBLLcAWhr5VXaoShPMG9eRKGP9PPz49ixY7i7uzNq1Cj++c9/Fvj4Aj2FevYkIqLwa1pCWFgYI0aM4OrVDsBB9Pp9wIfAG8CHxq8PcvVqB0aMGEFYWJjF57aHT1FfY5pufj5FtlhbW7N8dP/+febPn0/37t2pXLky7dq14+uvvyY5OZlOnToRFhbGnTt3OHPmDFd+v4KYKApuxjMW1gNpFvbg7o46/Rg0aFCZ7gNtEoXHHnvMwZHYCUdPVUoTYWFhAhCRkZHFPiUdPHSwcG3p+vDmY7ZNSNeWrsLN3V3I8j8sXDbKffxDeHnVsTimq1evipo11U3I4cOH5/mYXbt2CVmWhTTJuOygz3aYliFkWezevdvq9yT7Es+yZcuMG+tTLVg2yzA+ThbLli2z6poJCQmiXu3a4jGdTqyQJJFVyHJRlnHJ6DGdTtSrXVucPn3aLr/noSFDRWZmpqhfv76oWrVqvuc7ePCgePHFF4W3t7d5SUiSJFGvXj3xyiuviLi4uIeek5SUJCRJEtL6XL+v3Mc6dSksyYolJA+dLOQuOTfLy9rx/PPPC0Do9XpHD1F2QZspWIHJT6UkzLYstTyWkAFby+vLc++e5V5ONWrU4MKFC7Rq1Yply5bRtWvXh+oeTJ5CzCRfTyGluXX2xnnl8I/++9+BrhS8sW5CMj4umClT3rWqANHkU/TMwIEMA55SFP4Heabp/g+1ZmMY0DUwkANHjhSapmuttXXu5aO7d+/y5Zdf0rlzZypWrMjTTz/Nd999x61bt+jevTsLFizg7t27XLhwgXnz5uXpXmvVjEUCS12FJMBDBvwcZ2ldVFJSUti6dSuzZs3is88+Y9asWWzdupWUlBTzY+7duwdg13oMh+JoVSpNrFmzRgDiq6++KpE7kLlz5wpFUdQ7yZmykNeqm46uLV2Foihi7ty5wtPTu8RmCqYjPT1dDBgwQACifv364s8//zTfySs6RU3vLOiOc5YkFJ1i0eZzeHh4zvdgnfoeyD6ycaYw14rXe1jIsizWrl1r9WvOyMgQUVFRol9AgDoTkiRRQVFETRcXUUFRhGRMO+0XECCioqKsSsW05Pdseqy3t7eoVKmSGDZsmHnWBghZlkXDhg3F+PHjC52d5HUMHjJYKM2Vh2d32WZ5Ls0kMUS2bJaQY6bwRc7Nckff2Vvzu1YURciyLCrqdKJ2uXI5UrJNv+vevXsLSZIcPTzZDUkICxcINdi1axc9e/Zk2rRpvPnmmyVyzQMHDqgpk+sfpEwGBwczedJkOnXqRP/+geza9Zdx/dw6FKULPXpUY+PGSJtimzJlCrNnz6Zy5cr89NNPuLu7U7duXViHakOdH5HAYLh8+XKBFdCxsbH06tULMV7k63XDXAnYCVhWuKQoXejWrTLffvuNzZYhlvoUWUNBv+fmzZszf/581qxZk6P3daVKlWjbti1PPfUUVapUITMzs1CTuvzYv38/PXv1hAk8PMszFvNJ4eo73dnCPY3zQEtQ+zekA0Ph0qVLTl31ntvaY4xer1p78MC99iKqRfwCo3tt1SpVuHnrVtkxy3S0KpUm4uLiBCA+/PDDEr97yS+1c82aNcY75vwK1vI7Dtl815z9CAsLE5IkiXLlyomYmBi7zhQsWW+XfVyFLA+1anYky+WELKt3roOHDnaqtW7T73n9+vViyJAh4rHHHssxG1AURXh4eIhvvvnG4jtZS2ct06ZNE5IkCaWZlKOYz6WZmo4abuFegumYL8tCVmQhXy0dM4WEhARR39tbeLm4iOUWzoSWy7LQGX8/P//8s6OHKLugiYIV/PrrrwIQr7/+usM/wKYjLS1NeHvXt6lOoU6dxwutU7Dk2LBhg9AZB6MnnnxCrRAuaBmipYsYMnRIoYOjpTn8sqITsnzbwtc+TcjlXMzLUHkt0TjiuHLlivjggw+Er6+vcHFxMQtBlSpVRP/+/cXKlStFenq6eOyxx4S7m5uQZVl0cHEREbIszhoHKNNAdVaWRYTx57IsiyGDBomkpCSL4ni6Y0dRVZGEIqubyoqsLhlZWp+QfcBs7SILXd+HN8ud8UhKShL1vb1FSxcX8asVrzNTlkVjEBKIurVqiWvXrjl6mCoymihYwa1btwQgXn75ZYd/iLMflmbiSFKakKTVQpIaCUlyFeXKlRePPVZb+PkFiNWrV1tU5JXfERcXJzw8PB5kvBQx+ygpKUl9TesKEYW1pr2FJMtnCl7lCrSSKIkjPT1drF27VgwcOFBUq1bN/L7pdDrRokUL8X//938PFUkmJCQIRVGEIklW3cl6uriI+t7eIiEhodC4oqKihCzL4jtjltFtK8XAdCyXjb+XSMe8v9YcGRkZYnBwsPCyQRAyZVk0AFERRA1FEUMGDRIGg8HRQ1WR0ETBCvR6vQDEsGHDHP5Bzn0U5n0kSUuFJNVSUw+lDkKS/iEkabqQpH8Ine4pIUmSqF27nli6dKnNMVy5ckV4enqaB7jcnkIuLdU71/Dw8ELPVWwzBZf2QvbTFZj2WVzHL7/8IqZOnSp8fHyEoijm96l69eoiODhYREZGivT09Dyfa7qT1UmSqGXlQP2rLIuWRmEobMaQkZEhhgwaJDxtHCBN16umk4XSSvWVcoaZWEGHSQgtEdq8jtogaoD40fj73LRpk6OHqiLhNKJg+gMp6Pjoo48cHaYARHBwsMM/yHkdy5YtMy4lycLFpaNx/XyakCR/oxgMFpJ0REiSPo/jiJCkIUKSpALN8go77ty5I1q0aGEe7CTTMoROEUOGDrGqPsH+ewrqPoq8tmArCXv9PtLT08WyZctEQECAqFy58gOxdHERrVu3Fv/85z/zNMnLa6A23clWkSRRz4a7d2tM6oqylPKrLItmsixcZVkoOkUMDRnqtDME09EvIEB0cHExL8FZe9QAURuEAUR7o1FkacZpso9++OGHfH/28ccfc+HCBTZu3Ei/fv1KMKqHkWWZPn36sHHjRofGkR9ZWVls3ryZefMiOHkynlu3bpCenoaaqvMfCs7pF6h2GTNYsmQJzz77rE0xGAwGgoOD2bx5M48//jibN2+mdu3aVmf62Df7SAChUHsjnM8CJdePo7BLdszFixeZO3cuGzdu5OLFi2ardS8vL7p168bYsWPp3r27VefcsmULQUFBLAVeFYKKQIIkWd3nYTXwPBAZGVmoSV1iYiL9/f1JS04mTK9nCIV/ctagdt9ze+wxlv74I61bty7xPtDWkpKSQp06dZgnBKNtPEcNg4HqqGUeXwNjJYnk5OTSaxjpaFUqjK+//loAYuLEiY4ORQghhKIo4plnnnH43Y0lR1pamqhdu55xBpCVzwwh95ElJGmwqF27XpE3oceNGycAUbVqVXHx4kWbzpFfDr+upc64XOZnwQb7g4pmeVnhpnPWvseLFi0SPXv2FBUrVjTPBsqVKyc6dOggPv/8c3MdR1HuZH10OjHIOOuSJEnoFFkMVmSxx4o7WmtN6pKSksSQQYPMm9rzZVmckXNuap+R1Syj9sZN7aGDB4srV644/LNv6REdHS1kWd2ct2WWkCnLwgNEcxACxDnj73/z5s2OHqpsxqlFIT4+Xri7u4t27dqJ+/fvOzocIYQQLi4u4oknnnD4h9mSY/Xq1cZB5CcLBSH7UpIk1qxZU+QYZs2aZU5Z3b9/v03n2LNnjxgaMlTdY5DVwXtoyFAxceLEAvdRHhSsqQObPMMyK4nCjlOnTokxY8aIxx9/XEiSZBaC2rVrixEjRoh9+/bZ7Xd49epVYSqWc2kmCamhJKRekpo55SMLRZbFXCsGsPmyuulrybJVZqa6dBUdHS369+2bI/21rPTWmDZtmqio09m8dJQpy6IciPZGUTCAKC/LYsaMGY4eqmzGafsppKamEhoaiqIoLF++nHLlyjk6JEBtQn7//n1Hh2ER8+cvQFE6ote3s/KZ7VGUJ/nqqwgCAwOLFMPEiRNp0KABISEhdOvWjSVLljB06FCrztGpUyc6deqUZ5/qzp07M2XKu1y9+jSK8gR6fV+gPHAPRdmMXv8T1at78eefwCXUZScrG76np6fz3XffsXTpUo4dO2butezu7s5TTz3Fc889x+jRowtst2kr33//PUIImAhZM4FuQH1gEmRNUGOfNBdaYVn5XndACEFcXBx+fn6FPl6SJPz9/fH39yclJYW4uDji4+PNRXulvbdGWloaFRUFqQgdFfU8aNlqST9uZ8dpRWHixImcPn2ab7/9lqZNmzo6HDOKopCenu7oMCzi+PFT6PV/t+m5en1fTpxYaJc4Bg4cyMGDB+nWrRvDhg3js88+4+2337b6PO7u7g+tUYeEhDBo0KBs+yiLuHfvDuXLV6R1a1/GjVtNv379WLhwoVUN348fP87cuXPZvn07SUlJCCGQJIk6deowbNgwXnvtNdq2bVvEd6Zwvvv+O2jKgypjPQ9EzdSEJwZmJ1omCo2A8rJMfHy8RaKQnRo1auDn52f185wZd3d37uj1CCw3ns+NHjDdDljSj9vZcUpRWLp0KYsWLWLkyJG8+OKLjg4nBy4uLqVGFFJT7wIVbXx2BavM8kzkdTcP0LZtWxITE2nfvj3vv/8+58+ft5udsk6nY+DAgQwcmNNbIyUlhaNHjzJ79mzS0tIYO3YsJ06e4OA7BxEGgazIBAYHMvmrybRp04Y5c+awYsUKTpw4YZ4Nli9fnmeeeYbnn3+eF198sdg77mUnLS2N06dP59xk15Nzk1yGrFdg/duQJih087ks3MnaE19fX+4ZDFyk8LYW+SFQ56bwoB93XsaDpQWnE4Vz587x6quv0rRpU+bNm+focB7CxcWFjIwMR4dhER4eFUhNtX5gV7mLq6ubxY+OjY3ly7AvidwQafbuCQwK5I3Jb5jvwGvWrMnFixfp0KED33zzDb/88gtbtmyxq7ukEIItW7Ywd84ctm7bhhCC8rJMRUXhjl7PPWM/gh5du+LXty+nTp3iueee4+rVq4C6XPL4448TEBDA+PHj8fHxsVts1nL79m2EQeQcrXKLAqhNeATcpnBRKAt3svakffv2SJLEbiFsEgVTdplJFHaifoY6dOhgrxBLHKfyek1PT+e5554jIyOD5cuXm5vaOBMuLi5kZmY6OgyLaNu2FYqyxcZnR+Hqatk9Q0REBL169SL6bDSGzw2wBgyfG4g+G03Pnj1zzAjc3Nw4deoUffr0YdeuXfj6+trtrvX69es8FxpKUFAQf+zYwXwh+Bm4aTCQlJnJJb2eKUJQ12Bg5+7dvPfeeyxdupQ7d+7Qq1cvFi9eTGpqKomJicyZM8ehggCq4Z2kSDktrXPviYBVltZl4U7WntSoUQP/Pn1YoCjYkpt/1/hvRVTBna8o9AsIKLV7LOBkojBlyhTi4uL44osvaNfO2s3RksHV1bXUuCG++uoY9PrDwDErn3kUiOOPlGukpaUV+MjY2FgmT56MGC/IOpYFk4ABqBuhx7IQ4wSTJk3iwIED5ufIssymTZsYM2YM586do0GDBiQlJVkZY04SExPp3LEj+6OiWA4c1ut5GbgkBMOFoJYQVENdibkMNAb6A1VlmWqVKjFnzhxGjBiBTuc8k2d3d3f69u0LETzotZB7pmAA3dcQbMHSEajunpIkOe3flyMYP3EicXo9a2x4rqmrQkVgFXBMr2fi5LwTFkoLTiMKa9euJTw8nKCgICZNmuTocPLFzc2t1IhC//79qVWrLmrRmqX3QQL4N1TTIQyi0IZCX4Z9ieKjPFxcBg82QvNpsDJ37lymTZvGjRs3aN68OceOWSte6rp7QkICAX36UCE5ma1ZWZwRgnZC4CYEfYCVQAbQF1iB6uJ8VpKIlCROCEGF5GT6+flx/fp1q69f3Lw95W04B7yFKgwGHoiCKXMqESwZhgSq3XOAn1+pvpO1N/7+/gwKCmKSDW1X/8z2/3GKwtDBgwkICLBneCWOU1Q0X716lZYtW3L79m1mzZqVbwPsRo0a5cgQcQRt27bl7Nmz3L17t/AHOwErV65kxIgRWFvRzEiQl8r8deOvfKtS09LSqFa9mrpkVJCOh4H8rsyNP2/kea5169YxbNgwAJYvX86gQYMKfV379+9ndths1q1bp667Ay6AaWFPQU3aCQLGA94F9AC4AnRQFJ4ZOJAVP/5ocQ/kkuL1119n3rx5yE3B8BfQGaSuErqvVUEIA8ZYcB5rKpofNa5fv06Xp56iQnIy0Xo93hY+b6vBwADAS5JwrVmTI3FxTt0vwiIcWCNhZufOnRZ5H/3tb39zdKjiqaeeEjqdzuFFN9YcM2fONBaxDSnE+2iQ+riZltlbW+tkWpAZ28GDB4Wbm5sAxLRp0wq87qeffqp+JsohkLN9Roz/fxVEJhTYSzn3scJYKWyPgj17HxkZGaJ7166inJKzonmobHlFs8n7aOjgwaWuwKykDlM/BU9jP4XCCtoyZFlMMn72qlWpIhITEx09PNkFp5gplCZ69uzJnj17Sk1aqomVK1cai7wuI8tPYDD0Q+3tfBeUKNDHQS0dzMiCAyDNldi5cyedO3fO95z2mimYSEpKokOHDty4cYNXXnnFnH1mMBhYv34933zzDXv37n0wS3MBfIAhwKsg1ZDMHcJ2A/lH/jACaA8kAEGDB/H65NcLfO0ljelO9tLvv9Ma2GuF99EVYICicNfTk/2HDpX+O9liJHfntVeMndca8aDz2gUedF47Zkw6+f7773nhhRccFrc90UTBSvr378/mzZtLTVpqdrKysti0aRNffRXBwYNHuHv3NigyNNLDUANUA903OvRn1GKusWPHFnrO0GGhRJ+NVjeZ89qhMoCuvY7A5oEsX7a80POlpqbSoUMHzp8/T7NmzTAYDFy4cMGc+udazpVM10zESoHkl8cyjwF0vhCUCD8WerWc/A94FVCaKhjOGSx+Dwrjwfu+gBMnTpGaehcPjwq0adOK114bQ79+/Sza4E5MTMTX1xcd8L0kWWVS5+7pyaaYGJo0aVLk11PWEUIQExPD3Dlz2BITY05rriDL3DUYzGnNAX5+eNasyeLFi9m3bx9dunRxdOh2QRMFKwkJCWH16tV2SUs19fqNj48nLS3N5v66thIbG5tvX2BL75ItcTKV5qmzDkv3gwwGA08++SQnT57ExcWFVq1aMXToUEaOHEmDhg0wfGEoeGd1NshT4JaFGTkmzqNOPIgCNls2W8pN7uK9VatWmWdoivIken0AphmaomxBrz9CrVp1mTHjc0JCQgo9v5ubG9WqVuXPGzcsupM9rtczODiYsPBwPD09rXg3NIBCrT0+/PBDPv/8c06fPk3z5s0dHa59cNzKVenkxRdfFIDNXcoyMjJEVFSU3fvrFuXIr/+zpUd+TqZFaXUZHh4uALFu3Trz95KSktQ19fWF9IBep667/27FnoJekkSWJAl3RRLSdMvbhpqO3bt3i8FDB+cw7WvVppWFhn1DhCzLFvWxUBRF9OzZs0yb1JWmY/z48QIQ169fd/TQZDecJym7lFC+vFq7ePPmTavv5nOvV84Tgu5AQ4MByWBAABeB3UKwYMcOgmJiGBQURFh4eLGuA+flKWQNY8aMoVWrVuqs490Hsw6ThYQtGWOm5ZTMbDOySpUqISsyhguFmJeZirmsnANLgIcM91NR7SNezmL92+vNs7j8iIiIYPLkySg+irq/0ggMFwwkfJ1gfEQvIL+6gHbAcuB9pk6dSo0aNejdu/dDNiEmhBAoilKmTepKE3fuqI4B+WVMlkY0UbASU5X1X3/9ZdUfnalpyf3kZJYCQ/X6hx4joS4DNAJeMhbTTIqOpsuRI2zcutWpjAFzU5CTqS2YREGf7X1yd3cnKCiIqIVRZE0sYA8jAoKsXDoCdekl1cADd7OGYNAbuH37dr6vJUfx3vRcMRldTJk7GWhN/pZ1EvAZcI6XXnoFyMrTJsSEojyoXiuLJnWliXv37gE4VdFjUXGa4rXSgkkUbt68afFzrl+/Tn9/fyokJ3NIr8cS42gJGIpamVshOZn+/v5OWVyVG3d3d7y8vIrcccs08OUuFJw8aTL6M/oHxVzZMQBvqrn7r9twzQvAfQNgcoC4CLIiU6lS/gYSlhTv0VQBHi7ey4kE/B+QBe/lbxMCOUWhILKystiwYQP9+w+kdu36VKlSndq169O//0A2bNhQaoownZm7d+86XV1LUdFEwUpMA4SloiCEYOL48dy3sijGhDcQrdeTlpzMpAkTVG/9RwAXFxfgYVHo0qULYWFhSOESSltFHWsjgdlq1pEUDuFYl45qYheoY3N71BnHQh3BwcEFFu9FbohUrbjz+0uSgVeyQFoPFGwZAu1AaQuH5XxtQkzLR4WxcuVKGjVqRkhICDt33iQl5e+kpn5ISsrf2bnzJiEhITRq1IyVK1cWei6N/ElNTbWroaMzULZeTQlQsaJqRV2Y/YOJrVu3sj4yktk2CIIJbyBMr2fdhg3ExMTYeJbSRX4zBYCxY8eyc+dOgnyC1OWZwWq2UVCimnVjSxKpAOYqIPsD1VBnHGf0TJ6Uf5rT7du3MegNhXsuN0TtyYUFnxn9QDhpHPTzsQkpbBAKCwtjxIgRXL36BHAYvT4W+Eh9UXxk/PowV68+wYgRIwgLC8vx/LS0NK5fv16o75WG+l5ZOnMrLWiiYCWVK1cGLBeFuXPm0E5RGFLE6w4B2ioKc+fMKeKZSgemNdr8ljg6d+7MiuUrWPmjeqe7WKh1CbaWm60GTunBUA90bXVIcyXCwsIKTEc1bXzncDHNi4uAJGOZj2l5uJdtXUyGrNFZrF+/3jxIF7R+rRYpTkFVyx9Rpz150d748ylMmTKFlStXEhsbS+iwUKpVr0a9evWoVr0aocNCc5gZauREEwUNq0QhJSWFrdu2MUavt7mrkwkJGKPXsyUmhpSUlEIfX9rJa6M5L4KCghgUHMybNpiZmbiCWrQmAdJCiUCfQHbu3Flo4Zq7uzuBQYHoFuke3t8wYQC+1oEIxrKt73tQPtefZUPQZ+nNDacuXbqU5zOzsrKYMuVdYDCF+1xh/Pl/gEG89tokevbsaZH9eUGkpaVx5coVVq1aRf/+gXh7P07VqjXw9n6c/v0DiYyMLFN7Gffv3y9Tm8ygiYLVVK1aFXiQilYQx44dQxjTTu1B9v66ZZWUlBS2bNlCZGQkoC6/bdmyJV8hlCSJOeHhuHt60tcGYbgC9FUUKtSsybG4OG7+dZMVy1dYXLD2+qTX0Z/Vw1Ty3vieAiTqsczHFNVypLUekSoQswWis0CEqvtI69evR1EUfvrpJ4YMGWKu8jaxceNGrl69jLphbeltiLrBffv2n4j+ltuf58Y0y6havSoNGzZkxAsj2L7zCCkpfqSmvk9Kysvs2vUXISEhNG7sw6pVqyyMz7lJT08373+VFTRRsBKTKFjikhofH095Waahna6dvb9uWUIIwebNmwkcMABvb28CAwNZ+s03AGzasIHAwED1+wMGsHnz5oc22728vNgUE8NdT086KAqrKNwoXKD633cwegJt2b6dli1bWp011blzZ3Xje66Err1OtSyNQv23jQJzJeMXhddqCLEckRWHOKaHKqhCcwyQoXGTxpw/f547d+7w1FNPERUVRevWrXN8DufPX4CidCT/moj8aK8+575stf05PGiyFHkmEvG5UL01vgAa3wG+R+1L9iF6/T7gIFevdshzL6M0kpGRUaItWksCTRSsxJqZQlpaGhUVpchLRybKYn/d/LqlRRoH/k+NX88Xgj927CAoKIiQoUMfSs9t2rQpsYcP88zAgQwDnlIU/odqXWESCGH8+n9AR0VhGNA1MJADR44UyRNozJgx7Ny5k8Dmgcjvymou8dtAohewg/yMrYXIQIiFCNETISoDxn7kGUAPYBHwKshZMgv/t5B69eqh0+nYu3cvo0ePJjExkQYNGnDu3DkAjh8/ZbTRsIVsG9y5yWNfw0T2Og1DnCHHLIMTWTBeGL8wzTJMxXpvMXXq1FI/Y8jMzKRcuXKODsOulK3FsBKgSpUqwIOilYJwd3fnjl6PwPLJfEGUtf66iYmJ9PPz435yMsuBkGz7B1eN/+p5UNA3Wq9nNfBaVBTNt23jq6+/5rnnnjM/x8vLixU//sjWrVuZO2cOrxVkZta7N5ETJ+Lv759vnrk13lS5i/e2b9/OSy+9hDpt6ITpEyDEOWAOsBn4DcyfjopAGgSBNEqCi6CboUN/VjUnzF3ANn/+fNq2bcvkyZNp06YNq1evJjX1rvE8tlAh5wZ3bvIp5DPVaTxUuAcP6jRiFEiczYPZkqlY7zxTprzL4MGDS+1mrSYKGuZ0QEvu1n19fblnMHCRwrMWLaEs9de9fv06/fz8qJCczL480nVNQ0T2bWYJCEEdWvrcv89LI0dy+fJlY7aN8TGSREBAAAEBAeZBPSEhwWwB0bJlywINB4UQZlHZum2bWVQqKgp39HqzqPj36cP4PETFZBny/PPPk5KSYoxtlzH6s4BphukOPA10A04jSVH4tmrF6Y2nMURaZhPy6quv0rx5cwYOHEhwcDAeHpWznd9a7ho3uPMRhjwK+Ux1GobPDYXXaby9HkQaDzbbJeA9rl59mk2bNjFw4EAb43YsWVlZuLm5OToMu6KJgg1IkmSRKLRv3x5JktgthF1Eoaz01xVCMMFY0JeXIIDaKgEgrzwVb2Ab0EaC9//v/+jcuXOeG8M1atQwewRZgr28qZKSkpg7dy4bNmxAkiSE+Cnbq2oN9ECSKqMom9HrvzC6pC4hJCTEapuQ7t27c/r0aZ566ilSUm4gSRsR4iOLXm9O1A3uPDGAbpGOwODAHDHZVqeR/TW1Q1GeYN68iFIrCnq9vsjV+86GJgo2IEmSRYU9NWrUwL9PHxbs2MFLRUxLNffX7d271BudbdmyhfUbNrAc8i3oM30w80tI9QbmCxgG/N/7/8eunbuKFFNRvKk6HTrEex9+SHR0NLGxseZqd1dXV9q1a8ezzz5L3bp1Wbz4e06ejOfevcWUL1+R1q19GTduNf369TMvn9hiTli3bl0uXrxImzZt+OWXo6i70/nVJ+TFUSAO3ACDlKf9uf6snslf5cygssagEEkG8XCdhl7fl5MnF1kRq3Oh1+vLzHKuCU0UbECWZe7fv2/RY8dPnEhQTAxrwCLPo/xYAxzX64mcOLEIZ3EO5s6ZQ3tFyXPgNVGYKID6fraS4eD+2EKdTAsiuzfVbgsrz/8UggSgWlYWP1+7xvjx4wF47LHHCAkJ4bXXXqNr1645nhMaGmpTfJbg5uZGQkIC1ap5cf/+v4GVWLaTJYD/ULlydW5vvIGuvU617WiIuq+xKP99DVOdxvqv16vmf/kYFKp1GoHkXadRnnv3bF3ycjwGg8HsnFxW0LKPbEBRFItFwd/fn0FBQUwqYnHVJEVhcHBwqXfDNBX0jS1k5lTQ8pEJCRhvUMedX3/91aZ4rPGm2i0Ew4WgthDUBj5F3efxATxkmQH9+pGUlMTSpUsfEoSSQKfTsXDhfGAd8B6WJea+B6xj3rwwdu3alSODSn5XJrC5Wsg3ZkzeGVSvT3odEilCncY9ype3dXPcOTCZZJYVtJmCDeh0OotFQZIkwsLD6XLkCANsMMUz9dd19/Rk9pw5pd6R8ejRowgh6FHI4yyZKQDm81y4cMGmzlcmb6qlPLyUdUcIIlDNIE6jZooCVAUGAq8AAYAsSawWguc3byYmJsbiPYzi4Nlnn+Xq1avGDe7zqIVseS0lHQP+DaxjxowZPPvsswBW25937twZH5/mnA0/A1t16qaycZbB1zqjIORfp6Eom2ndunQmTpj2FcuaKGgzBRvQ6XRW9Wj28vJi49at3PX0pKOisBrL7uFWo+bT3zX21y0LDdcTEhIsKugzzRQKE4VGqIsSplx9a8ntTXVUCEYJQT0hqI46pJ4EGqDeDP8CXJck1kgS/SQJ2SjSlnhTlZTR3KRJk1iyZAmPPXYY6Ag8CfwTmAn8E0XpBHSkVq2jLFmyhEmTJuV4vrX2559++i/1P4nPwNumOg0ZEgOBneRXpwHH0Ot/Yty4ovfBdgQ3btwAHphklhU0UbABa0UB1OKq/YcO8cyAATwPdFIUFpJ3cdVC4GlF4Xmg68CBxB4+XGYarlta0GfpTEECKiqKTQV9KSkpbN66laZZWXQXgkpC0AlYCqQCfbL9/5Qk8Zkk4Z3PTK0gb6r9+/cT+lwoVatVpW7dulStVpXQ50KJjY21OmZLheXZZ5/lt9/Os3TpUsqXPw98jix/QI0aC+nZsyqrV6/m4sVE8wyhKPTr149ateoCVUD8CVwCcQO1SC2/Sm4BfE7t2vXo169fkWNwBCZRKKjfRmlEEwUbcHV1tVoUQJ0xLP/xRyIjI/Hq3ZvxkkRLoLosU0+no7os0xIYL0nU7N2byMhIlq1YUaYarmcv6CsIS/YUQB1a7glhVQbI2bNnGTduHG3atAHUoesQUAsYD5wBUiSJjZJESLbZQGHk5U01f/58evXqRdTPURi+MMA6MHxhIOrnKHr27ElERIRF57bFwVSn0xESEsKff/5BcHB/DIZMIIPw8DACAwPtVjCm0+mYMeNz1L2MTwFPCjb/E8D7wHqmT/9PqS1c++uvv4CyJwranoINuLq62rwEIElSqeqvm5WVxaZNm/jqqwWcOHGK1NS7eHhUoE2bVrz22hj69etnlUtky5YtLSros3T5yFTQ17JlywJfw7Jly/juu+/46aefzNXoLi4uyMB84HnAtYj7Ndm9qfz8/Ni/f79qATFBkDUzZ8Vv1sQseFNd6mnVqlWBBnz59YCOXhTNhp4bCAsLy3cjGODgwYNIioQkS6SkpODj40PXbl359F+f2tQ/Oy9CQkL4/fffmTp1Kupv5V3y9mCKQ3VmXc/06dMJCQmxy/UdgUkUTM7JZQahYTVNmjQR5cuXF5mZmWXmuH37tkhKShK3b982f2/ZsmXC27u+kGVZuLg8JWT5H0KWvxCy/A/j17Lw9q4vli1bZvF1rl69KmRZFgskSegLOG6pt5PiZSjwcRGSJGRZFlevXs1xnfPnz4tJkyaJxo0bC1mWhSRJQpIkUbduXfHyyy+LuLg48fHHH4va5cqJTFm221HL1VV8/PHHIjMzUwweMli4tHQRUqYkJH0eR6YkXFq6iKc7Py38/PoKT09vUaFCZeHp6S38/PqKNWvWiO3btwtFUYQ8SRZyuizkzGxHuizkibJQFEXs2bMnz/c7PDxcKIoiXFu6CnmmLKT/k4SkSOb3Y+7cuXb9HOX8zHQ0fmamGT8zHXN8ZtLS0sSaNWvyfe1paWkO/7so6Pj6668FIFatWuXoIcmuaKJgA61atRJubm4O/1Da49i9e7cYPHSw0LnohCzLQueiE4OHDhYTJ04UsiwLWR4iZPmwkOXMPI7Dxp/LYubMmeZz5iUw2Y++/v6ig04nsgoY7NOMojCqAFHIkiTRXqcT/QICRHp6uvjxxx9F3759RZUqVcyDnpubm3jqqafEl19+KW7dupUjjmnTpomKOp3IsJMgZMiyqKjTiS+++ELcvn1bKDpFSLPyEQTTMUsSkiwJne7JPEXXw6OS0NXVPSwI2YTBtaWrGBoyNM/fbV6CIp2ShFT5gTDkJyi2HmlpaWLt2rXCz6+v8PKqIypUqCy8vOoIP7++Yu3ateL+/fvFcsNR0sf06dMFILZv3+7oIcmuaKJgA08++aRwcXFx+IeyqEfuu0h5nSzkmbLQtdQZBcFPyHJGPoJgOjKELE8VsiyLjz/+OE+ByT3oREZGCkmSxIoCRCHTKAovFiAK3xoHtXr16gmdTmce5GrVqiWef/55sXfv3gJff3R0tJBlWZy1kyickWUhy7LYuHGjSEpKUuNZX4gorDMNzkn5iO5g9XcxMx9RyDT+zlx0D4nw4KGD1d9tHoIi/SkJqZF67Ro1apToXfnMmTNtvuFwpuPDDz8UgIiLi3P0kGRXNFGwgW7duglFURz+oSzKkd9dZPZlCVlWhCzvKUQUTMIwSMiyq3Bp6ZJDYFxbugpFUXIsU2RkZIjBgwaJx3Q6cakAYQDE87lE4YwkiVmSJLpJD+50XV1dRdu2bcVnn30m/vjjD4vfg6tXrwpFUUSEnURhvqwu5Vy9etXKmYIiJOl2oaIrL8tHFNaqYpSUlGR+bbdv31bFuQAxkdIlITVX30Nvb++HluCK41i2bJlREKZadcPhjDOGyZMnC0D89ttvjh6S7IqWfWQD7u7uD3W9Km2YLI+ZTv6Wx00VIO/GKjlRu3dBFvpP9IV27rKmW1omsBV4A7VyuIXxSkcBDzc3li5dyr179zhy5Ahvv/222drcEszeVIpSaDZUYZi9qfz8qFGjBu7u7gQFBaFbWEirzggdEIwk5ZetY7KZDoIpurx33vNwMLXErE6SJaR/q5vrv//+O40bNy7Wrn4P2oUOQn1NlrQL/QwIZsqUdwttzVrSmHqqOEtSiL3QRMEGPDw8Hur+VZowWR5njc7DA9+EyfJYWg9YkmnVDpS2MD/XCfPp3FVQt7TfAFOi5hqgP2qyYy/UArKKikKN2rU5cvRokbNXxk+cSJzR3K4omLypxmfzppo8aTL6M3p4i7wtIN5ErfgVhbXqNIru1SzY9PB5dIt0BAcH5yg2M5nVcaGQU18ERaewcOFC0tPT6dSpE0uXLi3kSbaxadMmY7vQ97CuXeh7XL16mU2bcr94x2LqelfWDPE0UbAB04egtM4WbLM8tgB9Pt278uncZeqW1qlvX4ah2kzUQw3LVGPrA2xAHUaO6HTMkCS6BQbaraCvOL2punTporbqDJfQtdWpk65I1H99dRCutuqUJEv6QRtFd162P9nsDqaTcgqLyaxOt6jgmYpJUEaOHMnBgwdxd3dn1KhRvPvuu1a8A5bx1VcLUJQngbZWPvOBxTaUXGV4YVjSaKs0oomCDZi8Tm7ftnCwdDKsuYtEkgFLi3PK59+9K1vnLoBTp07xyiuv8PTTTxMZHQ1AMvC78eFuxmZGZyWJYEligiwXS0GfyZvKtUYNussy/0RdsJiFumyVUvDTC/WmGjt2rNqq0ycQ+W0ZBgNTJDinWkBIkhUWD/qBcFAx94DWtdchzZPydDAF1axOf1ZfoFlddkFp06YNFy5coG7dusyaNYt+/frZ9cbnxAnb24Xq9X05ejTO6gK+4iQ1NdXcdKssUfZeUQlgsso1Fa+UNiy9i1Qtj4MpuDo1O/eM3bseRiQKkFT76CpVqtChQwe+/fZbbt26RY8ePfjmm29ITU3l999/Jzo6mn/85z8ANGvenKioKJKSklgfGflQp7Oi3DUKIdiyZQuvvPwyV5OTuWww8F/UpatPgUCgDhAEbCGnX5U13lSdO3dmxfIV/HXjLzw8KoD4FxIrLJwhZMcouhY6mHbu3FmdqcyV0LXXqb50hQhKtWrVOHfuHN26dWP79u34+PiY+0MUFbVdqK3mceW5efMG0Wej1QK+NWD43ED02Wh69uzJggUL7BKjNZRVUdCyj2zgo48+EoA4fPiwwzMgnCP7yHi4tBeyn+5BdssZSUjjJCE1eJApJMuyePzxx8XYsWPFqVOnCowREP3798/zZ7t27RKDhwxWM3wkSSg6RQweMljs3r3boteflJQkhgwaJGRZFh1cXESEMTXVVLOQYfw6QpZFB2Oq6RBZFvuNWUbtXVyELMti6ODB4sqVKxa/756e3sacfAvf0xzHP4Snp3eBNSB5HXv27BFDQ4bmSBUeGjK00PqECRMmCEmSRKVKlcTJkyeL/Jkr6muXy5ezqYCvuI7WrVsLNzc3Rw9HdkcTBRuYMWOGAMTWrVsdPrgX5Zg7d27OOoW1xnx4H9mYNjj3oT9OSboqJClKSNI0IUkfG/+NEpK0RR3435CE1EcSUqUHQiC5qP++9dZb4s6dOxbHJ0mSCAgIeOj7c+bMUYueWrqoKZ3r1dROl5bqQB0eHl7geRMSEkR9b2/h5eIilltYlLZclkV1WRauRoHo37eviI6OFhkZGTnOXVjhnp9fX2NxlvUDo4tLR+Hn19fm33dhseV1fP3110JRFKHT6cSPP/5YpM9bUV67LOe84bC0gK84j6ZNm4ry5cs7ejiyO5oo2EBERIS5vN3RA3tRj7zuIt3Llxey3N2cRy5JGUKSIoUi+QtJUi0j3CVF1JBchbukmAd/JVvtgFRdEtKTktA11D1Up2DpIUmS8PPzy/G9Xbt2CVmWhTRJetg+IlMS0kS1QnjcuHEiOjr6odz7pKQkUd/bW7R0cRG/WlmH8KssixY6nahbq1aOmoDMzPwrw3Pfva5Zs8YouPkVbeV3HBKyLIu1a9eW+Gdk//79wt3dXUiSJD744AObz1PU1y6vtb6ArziPevXqiSpVqjh6OLI7mijYwPLlywUgFi5c6PBB3V5H9rvI7AVGknRZyNIgIUmSaCPpxAJJEolGiwmT1USiJIkFkiTamJaIjP9aukyR3yFJkujVq1eO71niJyQ1k4ROVpeqFEUR/QICRFRUlEhPTxeDg4OFlw2CkF0YPF1cxJBBg8yzhPwqw/Mq3EtLSzPaOwwRhRdvZS/iGizq1Hlc3L9/3yGfj8uXL4vatWsLSZJEYGCgSE9Pt/octr/2QUKu4Srk+wWIQh4FfMV91KxZU3h6ejp6OLI7mijYwMaNGwUg/vvf/zp08C7O68ycOVNIkiRcJHdRTVIKtKTI7kW0QpLEYzqdqFOzpjh27FiRYpBlWfTo0SPHa7e0SliRJXFCktQ9AeP6f+dOnYRsXAoqSuXycuMSUnR0tEV7M7nXu0trVW9aWpp46qmnhCRJolmzZuKvv/6y+hy2vnb5xQIEwUEzhWrVqok6deo4ejiyO2Vw67z4MVXNmioaSwJb/PSLQr169XB3caEB9zmOAUtKxCQgBDiq11MpJYVBAwdy/fr1IsWRPSXSmvoKg4DqwGjggF7PUiDu0CFag7nLmq1k77JmSWV47sK9kJAQpk+fjtoJbRiqnXRexAHPATOdwmZap9Oxb98+XnrpJRITE2nYsKHVHe9see0tfVuiO2pZvYWl3eLsQWZmJm5ubiV2vZJCEwUbqFatGvCgorG4iYiIoFevXsWajnf37l1mzpzJU089Rfny5XkuNBS3zEy28XDv4sLwBjbr9aQlJzNxwgSbq78lScphbWBNfYUsPaiukFAb4GQAr2F5LW2+cfGgy9qG9RsKrQzPq3DP1DKzVq2jwNMoShfgX6gVEv8yfv00tWody7NlpiOJiIhg9uzZ3Lp1i7Zt21pdaWztaw+fE25VvUVJkZWVVSZFQVs+soHr168LQIwbN67Yp6i2LE9Yehw6dEiMHDnSvFYsSZJQFEXUqVOnUBdTS44VxnNGRUXZ9Np1Op3o1KmT+euMjAxR27u2kJrlscmcvUdBM0kMkaUcSz7RxiUfezuiyrJxD6GgpY0C1rstsZl25JKRKca8+h506PCkcHV1FZIkic8++8ym81r62vPLlMtr36akDldXV/HEE084ejiyO5oo2EBmpppD/+KLLxb7B68g+2Nr0/Hu3LkjwsPDRadOnczZJKY8dD8/P7Fs2TKRnp5uUb8DS47s/Q5sFYWOHTuav46KinqQ3VRA9pEsSWK3lFMUpsmyqJitDsFevRMURSnY1tpB6932Ogrre2C6kZAkSYSGhhZrLLbWWxTXoSiK6Natm6OHI7ujteO0AVP7SVuaxVuDybjO8Lmh8OWJd9XlidxrqmfPniUsLIytW7dy+fJlhBBIksTjjz9O//79mTBhAo0aPVikT0lJYeu2bcwXwi7LLGP1el4zNrO31k1SkqQcewpz58yhvU7HS1lZTJoDyhbIGovq0XQRdBGgT1QLdzvnsptIAypS9KUjc2xABVmmXpMmnFt0jqwJ+SwhGde7A4MDS3S92x6EhYUZ22sOAlai1+dsr6nXf4gkxWEwfApEsnLlSs6cOUNsbGyxLKt06tSJTp06kZaWxu3bt6lUqZJD31ODwVDmzPBA69FcJIpbFKzaWDX6Crm4uLB8+XK+/fbbHP2IPTw8eOaZZxg5ciTPP/88rq6ueZ7q6NGjCCHoYafX0APVTuLYsWP4+/tb9dzsomASq3lCMFqSaCUEs8/B+inqprIsqbYUk3lYEEA16riDak9hD2EQwF2DgSE9enB2/ll1vTv3ZnP29e6vSna9u6isWrXKKAhvUbDNdTskaRXwPkLMID4+ngYNGnDo0CHq1atXLLG5u7s7hcAKIcyWN2UJTRRsRJblYhcF08aq4ULBpmTiqEBConv37vz666/mgbROnTqEhoYyceJEfH19LbpmQkIC5WWZhnYyQjM1s09ISCiSKBw7dgwhBN2NP+ssSXQG0oTgNlBJgLsk5Tt2+QL3UD3+CtNYS7gA3DMYGDBgAC1atGDSpEko2xV109k0c1mkQ39Wn69hnbNia98DSTpPxYq7uHHjBi1atCAqKooePXoUc7SOISsrC3hgjlmW0LKPbESWZe7fv1+s18jPuE4YBGKdQAQKRA0Bn6l3LVeuXOGJJ55g1qxZ3Lx5k4sXLxIREWGxIIC6ZFVRUey+zPLHH3/YZFpnEoX4+HhVrHL93F2S8JIkVRAKoL0xlt1WR5A3u1FFq127dowZM0Z1Qm0eiPyubLFhnbNSlL4Hd+7c4v3330cIQUBAAOHh4cUXqAO5ceMGABUrVnRwJPZHEwUbURSl2EUBHtgfi/EC8aFAtBFQHghFte5Ub1gIDw/nzp077Nu3jwkTJti81unu7s4dvb7InchMCOBWVhYzZsywurYi+0yhqGJVA/AHFoDdu6yBut69fNlybvx5g0uXLnHjzxssX7a8VM0QTBS178HBg0c4efIkVapU4c033+SVV14phigdiyYKGg9REqKwbds2/vvf/6rrpwuBaUAiaieafqA0U5Dvy4SHh9vtbrRly5bcMxi4aJezqcss9wH+YX1tRXZRsIdYjUctiSqOLmsm3N3d8fLycoo1b1spat+DkyfjadSoEb/88gs+Pj58++23dOrUiYyMDDtH6jhMopC9BWpZQRMFG9HpdKSnp9v1nDdv3uTzzz/niSeeoHz58vTv35/169fj5uZG165d6dylM4qkIP0qocQoBPsG2315okOHDkiSxC47nW8XqCsLr5Jvz+b8yC4Kvr6+RRYrf9RV8klg9y5rZYmi9j24d0+t9Pfw8OD48eMEBQVx9OhRGjVqxNWrV+0WpyMx9ZioWrWqYwMpBrSNZhvR6XR2ufM5ePAgc+fOZdeuXWZLCEVRaNasGcHBwYwbNy5H85biTsczNbOP2LGD0Xp9kfYWBDBXAbk3iBrGM5msH3ao1g8FLa9kF4X27dsjSRK7hbB5o1htfgldUPs+b8S6au3CuqyVFTw8KhiFwRbuUb78gyUVWZZZtWoVn376KZ988gnNmjVjy5YtpXJZLTumBlsmy5uyhDZTsBFXV1ebRCE1NZU5c+bQpUsXKlasSLdu3VixYgX379+nb9++rFy5knv37nH8+HH++c9/PtTNqySWJ8ZPnMgxvZ7VRTzPauCUHgy5V1nysX7ITXZRMInVAkUp0hKSFxAN/AY8IUmspvA9Bmu6rJUF2rRphaJssem5irKZ1q0fTmz44IMPWL16NVlZWfTo0YOFCxcWNUyHcuvWLUATBY1suLi4mNPSCuPUqVOMGTOGBg0aUKVKFd566y2OHj1K3bp1mTx5MufOneOPP/5gw4YNBAcHO7zFX0BAAIOCg5lQxGb2ryogDUJdt8lNrp7NeZG7eG38xInE6fVF3hOIRy1ma9axI88DnRSFhcB5HgiEMH69EHhaUXge6DpwILGHD9OkSZMiRuDcvPbaGPT6I+RvVpcfx9Drf2LcuLz7TgcGBnLs2DEqVKjAa6+95lR+TtZiWj4y+aCVJTRRsJFy5cqRmZmZ588yMjJYtGgRvXr1MvcjXrx4MTdv3jT3I7579y6nT59m+vTp1K9fv4SjLxhJkpgTHo67pyd9bRCGK0AfGe56gphD3sssF0FW5AI36iRJymGm5+/vz6CgICYVUaxMewI7du0iMjISr969GS9JtASqyzL1dDqqyzItgfGSRM3evYmMjGTZihV4enraeOXSQ79+/ahVqy7wOZbnagngc2rXrke/fv3yfZSPjw+//PILDRs2ZP78+fTs2dPimytnwuSQXBZFQdtTsBE3N7ccDp4XLlxgzpw5bNy4kd9++81sJ1G3bl0CAgKYOHEiPj4+DozYOry8vNgUE0M/Pz86JCcTrtczlIKz1k3LLOMkiduyIGsrSF55PMNC64fcMwVJkggLD6fLkSMMSE4mWq8v0p6ALMv4+/vj7+9PSkoKcXFxxMfHk5qaioeHB76+vrRr185qe47Sjk6nY8aMzxkxYgTwPoUXsAnj49YzffoSFEUp8PyVKlXi9OnTBAUFsXXrVpo2bcrhw4dL1ftsmuFWr17dwZEUAw5zXSrldOjQQSiKIvr06SMqVapkNmpzd3cXnTt3FuHh4Vb1I3bWIykpSQwepHZe66DTiQhJEj/n6rz2sySJCKP5nSRJonu3bqp7aBGdXatWrSrq1av30PdNPZY9jT2WCzO5M/VY9nRxEfW9vcXp06cd/r7a+8jPydTPr69Ys2aNSEtLs/qcM2fONDrBDimgheZhIcuDhSzLYubMmVZf4+233xaSJIny5cuLw4cPO/x9tPR4/vnnBSD0er2jhyK7o4mCjbRs2VKg3iKJ2rVri5EjR4pDhw45/MNaHEdGRoaIiooS/QIC1P7IkiQqKIqo6eIiKhgdMmVZNre9zMjIsIvVsamzVV4/S0pKEkMGDRKysbPafKOddUY2ITgjy2K+LIv2xs5rQwcPFleuXHHY+1jUrnn5Pb8wJ1NZloW3d32bOrflPHdH47mnGc/dsUjnNh0//PCD0BkdZ7/77juHf94tOYKDg0VZvaeWhLCxA8ojzqFDh+jatSt6vZ41a9YwYMAAR4dUIqSkpHDs2DESEhLMyywtW7akffv2D03/Dxw4wOyw2axfvx6D3oCsyAQHBzN50mSLUhJr1qxJuXLl+O233/L8uRCCmJgY5s6Zw5aYGNWgTJapIMvcNRi4ZzAgSRIBfn6MnzgRPz8/h6SRxsbG8mXYl6rjrfF9CAwK5I3Jb1j0PhT0/CNHjmRzMn0XaJfHGeJQ9wfWMX36dKs3eLOysti8eTPz5kVw8mQ89+7doXz5irRu7cu4cWPp169foUtGhXHixAl69OjBvXv3eOutt/jPf/5TpPMVN/369WP79u05ljfLCpooFIGEhASeeOIJ0tPTWblyJcHBwY4OySmxtbaiVq1auLi4cOnSpUIf66x7AhEREUyePBnFx2iW1wi4kNMsr6Diw4Ken3U2y7gPXJiTKTxY95/JkiVLHN7aMy9u3LjBk08+yeXLl+nduzfR0dEOz8TLj+7du3Po0KFSuUleGJooFJGff/6Ztm3bkp6ezrJlyxg6dKijQ7IJZ/Goz463tzeSJJGUlOToUGwiNjaWXr16IcaLfG21pXkSO3fuzHPGYMnzmQuwE+hsQUQCeI5atY5x4cLPRb67Lw4MBgP+/v7s2bOHBg0acPjwYSpXruzosB6iY8eOnD59ukT8z0oa55ThUkSzZs04efIkbm5uDB8+nB9//NHRIVlFbGwsocNCqVa9GvXq1bPatK44yZ2SWtr4MuxLFB/l4QEdHlR2+6iV3bY+n6YKap22JahOplevXra6r3JJIcsy27ZtY/z48ebU1TNnzjg6rIe4f/++U4qqPdBEwQ40adKEhIQE3N3deeGFF1i2bJmjQ7KIiIgIevXqRfTZaLW72xrrTeuKk9wpqaUJU9e8rNH5dGSDAiu7LX0+r+hBWo9ajmcJqpPpvHkRFj7eMfz3v/9lwYIF3Lt3j/bt27N27VpHh5SD+/fv4+Li4ugwigVNFOxEgwYNOH36NB4eHvztb3/j+++/d3RIBRIbG8vkyZMR4wVZx7JUl7gBWG1aV5zIslxqZwq2dM2z9fkIA5B/ZXhuTE6mzs6oUaPYs2cPLi4uPPfcc3zyySeODslMenp6mRUFrXjNjtSvX5/Tp0/TsmVLRo8eTVZWFi+99JKjw8oT09JE1vQ87kStMK0rTuwhCqZsqfj4eHMPa19f3zyzpeyJpV3z8qvstub5SDIIayycHziZOjsdO3YkMTGRjh078umnn3LixAlWrlzp8A3ojIyMfFvalnY0UbAz9erV48yZM7Ro0YIxY8aQlZXldE1GTEsThs8NhS9tvLvePJiWNLIs27R8JIRg69atzJ0zh63btplTVSsqCnf0enOqqn+fPoyfOBF/f3+7p6qauuZFL4oma0I+S0AFVHZb+ny+1oEIRO1CbSk5nUydnZo1a3Lx4kV69OhBZGQkbdq04cCBAw5thZmZmVkmG+yAtnxULNSpU4fExEQqV67MuHHj+OqrrxwdUg6KurRRUtiy0Xz9+nWGhYYSFBRE8o4dzBOC08CfBgO/ZWbyp8HAaWCeECTv2EFQUBDDQkPNtuX2xNQ1j6nkaKcKmLOH9Gf1TJ402ebnk6gH8n5+fuTnZOrM6HQ69u3bx8iRI/n5559p0KAB586dc1g8mZmZlCtXzmHXL040USgmatasSWJiIlWqVGHSpElO1avWtDTBhUIeaIFpXXFi7fJRYmIiXZ56iv3R0SwFDur1jEbVPtM8QDJ+PRo4oNezFNgXHU2Xp54iMTHRrvF37tyZsLAwpLkSuvY6NUkoCggDXXsd0jyJsLCwfJfnCnq+3F42pqNOBaxZ3ivYydRZMWXJLV22FFCtq319fZk1a5ZD4tHr9U6Tum1vNFEoRjw9PTl37hxVq1bljTfe4Msvv3R0SMCDpQndIt3Dd6AmjEsbwcHBDvvwWyMK169fp7+/PxWSkzlkNO8rDAkYChzW66mQnEx/f3+7zxjGjBnDzp07CWweiPyuDENBflcmsHmgRV3z8n2+TyDVq3ui9me1r5Ops5E7S05aK8FrIBC8++67PPvssyUeU1kWBa14rQS4ceMGTZs25c8//+Q///kPU6ZMcXRIRS6sKgmaN2/OtWvXzF2u8iItLY1bt24x/rXXOLRlC4esdE41cQW1ic6TffqwdPlyPDw8bI47P4paIJj7+atWrTI6mZaNiua8KOhzKn4T0Aq4D7169WLz5s0lFperqyu9e/cmJiamxK5ZUmgzhRKgWrVqnD9/nho1avDee+8xbdo0R4dU5KWNkqCgmcL+/fsJfS6UqtWqUq9ePSI3RlNPn8VvNt7jeANhej2btmwptgK+onbNy/38kJAQpk+fDswEhpF/U5w44DlgJtOnTy81ggAFF/BJ9SW4BrjBjh07aN++fYlVGAshHLrRXZxoM4US5Pbt2zRp0oTk5GQ++ugjPvjgA0eHVGTTuuKkVatWXLp0ydz60MT8+fNVP6DmClkvZ/MDigB9oqpvY23IJhLAEzKcbgqyZJk3kTOwatUqpkx5l6tXL6MoT6DX9wXKA/dQlM3o9T9Rq1ZdZsz4PE9BcFTabmGkpaVRrXo1NUuuIA+/MGCqOlBXr16dw4cPU7du3WKLy2AwUK5cOUaMGMEPP/xQbNdxFJoolDC3b9+mWbNmXLt2jffff5+PP/7Y0SEBJet9ZOkg1KZNG3755Zcc2U/79+9XlxMmCPUGOfey15sghRvdgGwQhoXAOAm4BHzu+CU0S7HWydQZ0nYL4/r169SrVw/WoBZW5kcUMBTef/99PvvsM1xcXIiKiqJHjx7FEtetW7eoUaMGr776qtNlFtqFErLo1sjGnTt3RK1atQQg3nnnHYd7w5fEkb0ng6IoQpZlUVGnE7XLlRMVdTohy2rjnew9GXx9fYWbm1uO8wweMli4tHQRUqYkJH0eR6YkXJpJYogsFdh4J7/jjCyrjWU2qg2BXFu6iqEhQx3+/tnzyN2LIkKWxdlcvSjOyrKIMP5clmUxZNAgkZSUVKJx3r59W+hcdGo/jswCjpmy0LnoxO3bt0VUVJRwdXUVsiyL//73v8US188//ywAMXXqVEcPJcWCtqfgACpUqMD58+fx9vZm2rRpvPfee44OqVixtXbAYDDk2FNIS0tjw4YN6pJRQUV3Y2E9kGbDJLgR4CYD8RToTVRacba03YKwJUsuICCAkydPUrlyZd58881iKRy9ceMGgMNStYsbTRQchIeHB+fPn6du3brMmDHDKTKSioOiDELnz53LUdFsVdGdsMYN6AES4CEDqdnO5cACPnvirGm7BWFLAWCjRo349ddf8fHx4dtvv6VTp05kZGTYLSaTKDijpbc90ETBgbi5uZGYmEj9+vWZPXs2b7zxhqNDsitFHYTkzEwyMzPNg5BVRXcS2HIfJ4BUA2DKSHVwAZ+9EEIwcfx47icnE21D2q43EK3Xk5aczKQJE0rMqNDWLDkPDw+OHz9OUFAQR48epVGjRly7ds0uMd28eRPQREGjmDAJQ8OGDQkPD2fixImODsku2GMQamb8v2kQcnd3JygoCN3CQpYTIiAYcLdhY/QCcN8A+OIUBXz2YuvWrayPjGS2jXUc8CBtd92GDSWan29rAaAsy6xatYp//OMfXL9+naZNm3Lw4MEix2MShSpVqhT5XM6IJgpOgKurK2fOnKFx48bMnz+fV1991dEhFRl7DEJugAI5BqHJkyajP6NX67XyWk54U01LnWzjjexuUKcrbSjUm6g0MXfOHNopCkOKeJ4hQFtFYe6cOfYIy2I6derE8mXLufHnDS5dusSNP2+wfNlyi7LCPvjgA1auXElWVhY9evRg4cKFRYrFlCJdrVq1Ip3HWdFEwUkwCUOzZs1YuHCh0zmrWos9BiEZdXzOPgh16dJFXU4Il9C11cFsIBKYDTpfNR01DNvSUQUwTwa5Gej8naOAzx6kpKSwdds2xuj1BdY8W4IEjNHr2RITQ0pKij3CswpbCwCDg4M5evQo5cuX57XXXmPyZNuF3rS/VLVqVZvP4cxoouBE6HQ64uPjad68OYsXL2bUqFGODskm7DUIyagDde5BaOzYsepygk8g8tsyDAamQLtzan2CLYVroKbDxxtAJEoWexOVBo4dO4YQgu52Ol931OXBuLj8Kqidk+bNm5tbfH711Vf07NmTrKwsq89z547ai+Kxxx6zd4hOgSYKToZJGFq1asWSJUsYOXKko0OyGnsNQiZRyGsQ6ty5MyuWr+CvG39x6dIlggYM5FdFR30bBeEKMElR6Ne3r1VLE6WB+Ph4yssyDe10vkZAeVkmPt75u7flplKlSpw+fRp/f3/2799P06ZNrZ7xmERBWz7SKDFkWeb48eO0adOG5cuXM3z4cEeHZBW5B6E04DqWdxE2Yaq/LWgQcnd3p2bNmsz96ivcPT0ZoChcsfI6V4ABioK7pycRCxYUixmeI0lLS6OiohR56ciEBFSQZVJTUwt9rDMiyzJRUVFMnTqVpKQkGjdubNWs5969e4B6A1cW0UTBSZFlmWPHjtG+fXtWrVrlEHtgWzENQgeAUAmqSVAP9d9QCSy1mTPNFCwZhLy8vNi4dSt3PT3pqCispnBDaQGsRnVHvevpyaaYGLy8vCyMrvTg7u7OHb3eYoPtwhDAXYOh1IvnZ599xvfff096ejqdOnVi2bJlFj3v3r17JW75UZJoouDEyLLMkSNHePLJJ1m3bh2DBw92dEgW4e7uzo2sLHoB0U3A8AWwRv03ugn0BBZYcB7TTMHSQahp06bsP3SIZwYM4Hmgk6KwEDjPA4EQxq8XAk8rCs8DXQcOJPbwYZo0aWL1ay0N+Pr6cs9g4KKdzncBuGcw4Otburq35cVzzz3HgQMHcHNz429/+5tF7gKpqakO7xFdnJTdV1ZGkGWZgwcP0qlTJ6KioggKCnJ0SBaRIQRiAmSdQHW4HKD+m3UCxHj1W4XNGEwfTmsGIS8vL5b/+CORkZF49e7NeEmiJVBdlqmn01FdlmkJjJckavbuTWRkJMtWrMDT09P2F+vktG/fHkmS1HRbO7AbtVVqu3bt7HRGx9K2bVsuXLhA3bp1mTlzJv369SuwN3hZFwXNJbWUYDAY6NGjB3v37sXPz4+NGzc6OqR8GTR4EJvOb4IT5N+wvg0EJsLyAs4TbDCwEZgvy4yXJJKSkqy2ck5JSSEuLo74+HhSU1Px8PDA19eXdu3aOdQWuqQJGjiQ5B07OFDEjDCBOsOq2bs36yMj7RWeU2AwGPD392fPnj00aNCAI0eO5FnJ3rZtWy5evFhq91QKQxOFUkbPnj3ZtWsXPXv2ZOvWrY4O5yGs8cCX34YbAvLLOB9sMBAFtHdxKZODUEmyZcsWgoKCWAoW2Y3kx2rgeSAyMhJ/f3/7BOdkvPHGG8ydO5eKFSuyb98+mjdvnuPnPj4+JCcnlwk/rLwou3OgMsrOnTvp3bu3+d+CprmOwJ6mdaY9heN6PePLiP2Ho/D392dQUBCTbMjOMmFK2x0cHIyfn589w3Mq/vvf/7JgwQLu3btH+/btWbduXY6fp6en4+Li4pjgSgBNFEoh27ZtIyAggD179tCrVy+nEgZ7mtaZfC3L+iBUEkiSRFh4uF3SdmfPmVOms28ARo0axa5du3BxcSE0NJRPPvnE/LOMjAxcXV0dGF3xoolCKWXz5s0MGDCA/fv30717d6cRBos98L+G4AKWjq4A+40Dz6MwCJUEWtqudTz99NMkJiZSs2ZNPv30U4YOHYrBYCAjI4Ny5co5OrxiQxOFUkxUVBTBwcEcPHiQLl26OI0wWOSBnwh5uc9kH4Sy3NwAyswglJaWxvXr1x3asEdL27WOmjVrcvHiRZ588kkiIyNp06aNJgoazs26desYOnQoP/30E08//bRTCENBHvi0AebCh8DTxsfnNwj17dfPEeHbndjYWEKHhVKtejXq1atHterVCB0WyoEDlpbx2Rctbdc6dDod+/fv56WXXuLs2bOkpqaW6T0FLfuojDBs2DBWrFhB69atOXLkiFPkUR84cIDZYbNZv349Br0BWZF57LHHuH5NbZpTXpapIMvcNRjMjeID/PwYP3Eifn5+jB49mh9++IH09HSneD22EBERweTJk1F8FLJGZ6kb8BfUPg36s3rCwsIcbrqnpe0WTEZGBv/73/9YvHgxJ06cwGCsmTl16pSjQysWNFEoQ7zwwgssWbKEFi1acPToUafxZklLS+P27dtUqlQJd3d3iwehV155hcWLF3Pv3r1SubEXGxtLr169EOMFTCfnvNy4jCbNk9i5c2eZMd8rK9y9e5ewsDCWLl1KYmIiQghkWaZ58+Y8//zzvPHGG6W+8VJ+aKJQxhg1ahTffvstPj4+xMXFOY0w2MLYsWNZtGgRf/31FxUqVHB0OFYTOiyU6LPRZB3Lyr+Ir72OwOaBLF9WUBmfRklw7do1Zs6cydq1a/ntt98Ademobdu2vPLKK4wePbpU/z1ZStl/hY8YixcvRqfTsXDhQtq0acOJEydK7QfZFLctnveOJi0tjcgNkWoRX34rXzJkjc5i/bvrSUtLK7N3ns7MhQsX+OKLL4iOjjb3Andzc6NHjx6MHz+eIUOGlNqlS1spnaOFRoH873//Q6fTERERga+vLydPniyVyy+mP8bMzEwHR2I9VhXx6Q3cvn1bE4US4ujRo8yYMYPt27fz119/AVCxYkUGDBjAm2++Sa9evRwcoWPRRKGMMn/+fBRFYd68efj6+hIfH1/qhME0UyiNomAq4jNcKCQb7CLIipynx46G/YiJiSEsLIy9e/ea+yFUr16d4cOH8/bbb9O2bVvHBuhEaKJQhpk7dy46nY6wsDBatGhBfHw8bsbc/9KAoqhGF3/88QenTp0iISHBvMzSsmVLOnTo4LTZMaYivuhF0WRNKGBPYZGOwOBAbZZgZwwGAytXrmT+/PkcOXKE9PR0AGrVqsXIkSN5++23adCggYOjdE40USjjzJ49G1dXV2bMmEHz5s1JSEgoFc1RhBBcunQJgCeeeAJJkigvy1RUFO7o9eYUVv8+fRg/cSIBAQFOV/X8+qTX2dBrg1rEl0/2kf6snslf2d5EXuMBGRkZLFy4kG+++YZTp06RlZWFJEk0aNCAkJAQpk6d6rQ3Ec6Eln30iPDOO+/wxRdfULt2bc6cOePUwnD9+nUmTpjAWqMR2T+B4ZJEQ9QubAK4COwCIhSFY3o9g4KDmRMe7nTVzwsWLGDSpEkP6hQaAhedq06hNGNKHV22bBk///yzOXXUx8eHkSNHMmnSJKf+rDsjmig8Qrz//vv8+9//pmbNmpw5c8Yp0zwTExPp5+fH/eRkumRlsRa1LYNvPrMAky3GBKNZ26aYGJo2bVqCERdOXkV8wcHBTJ40WatPsIHk5GRmzpzJ6tWrH0od/fvf/87LL79cajPunAFNFB4xPv74Y/75z3/i5eXF6dOnnWqD8/r163Tu2JEKycls1uv5nxB8AhwF2hayNHQF6Gs0bYs9fNjpZgzwcBGfhuXklzr69NNPP7Kpo8WF9i4+Ynz88cf861//4vr16/j4+HDz5k1HhwSoewgTxo/nvlEQvHnQT8GSKgVvYLNeT1pyMhMnTMAZ73Xc3d3x8vLSBMFC4uLieP755/H09MTHx4dFixaRmprKgAED2L59O2lpaezcuZOQkBBNEOyI9k4+gnzwwQf85z//4Y8//qB58+bcuHHD0SGxZcsW1m/YwByjIMADUbA0IdUbCNfrWbd+vVN2pdMonJiYGAIDA6lSpQodO3Zk5cqVSJLE8OHDiYuL4/bt20RFRT3ytQTFibZ89Agzffp03n77bapVq0ZCQoJDMzMCBwzgjx07OJSth/B0IXgXtVH8MxZmFglU222v3r3ZEBVVTNFq2AuDwcCqVav46quvHkodDQoK4p133tFSR0sYbTfmEWbq1Km4uLjwxhtv0KJFCxISEnjsscdKPI6UlBS2btvGfCFyNJW3dqYAanbSWL2e12JiSElJ0VIQnRBT6ujixYs5efKkOXX08ccf59lnn9VSRx2MJgqPOK+//jo6nY6JEyfSokULTp06Rc2aNQt9XkpKCseOHSM+Pt5cUObr60v79u2t/oM+evQoQgh65Pq+6cNprfNRD9Q9imPHjpXZ5vKljbt37zJnzhyz66jBYNBSR50UTRQ0mDBhAoqiMG7cOFq2bMmpU6eoXbv2Q48TQrB161bmzpnD1m3bEEIUWFDm7+9vUUFZQkIC5WWZhrkaBFmz0ZydRqi9GhISEjRRcCCm1NE1a9bw66+/AmrqaPv27bXUUSdG+41oAPDaa6+hKApjx441m+jVqVPH/PPr168zacIE1m3YQDtFYZ4QdAcaGgxIBoO5oGy3ECzYsYOgmBgGBQURZkFBWVpaGhUVBSmXKNg6U5CACrJMamqqlc/UKCqm1NGNGzdy7do1QE0d7d69OxMmTNBSR0sBmihomBkzZgwuLi6MHj2aVq1acfLkSerWrUtiYiL9/f25n5zMUmCoXv/QcyXUO/RGwEt6PWuASdHRdDlyhI1btxZYUObu7s4dvR5hPI8JW0VBAHcNBm05ooSIi4tj+vTpbNu2zew6WqFCBc11tJSiSbZGDl566SW+//577t27R6tWrfjpp5/o7+9PheRkDun1DLXgHBIwFDis11MhOZn+/v7mgqO8aNmyJfcMBi7m+r6ty0cXgHsGAy1btrTymRqWsn37dgIDA6latWqO1NFhw4Zx9OhR7ty5o6WOllK0mYLGQ7zwwgsoisKIESN45plnqIK6LORd2BNz4Q1E6/V0TE5m0oQJLP/xxzz3GDp06IAkSewSIkf7AVNrdGtFYRcgSRLt27e38pka+WFKHZ0/fz6HDx/OkTo6YsQILXW0DKHNFDTyZPjw4bzzzjvo9Xru6PWkGgrpC5AP3kCYXs+6DRuIiYnJ8zE1atTAv08fIhSF7EUztswUBKpJXoCfn5bWWESysrKIiIjgqaeeonz58owYMYK9e/dSu3Ztpk6dyvXr1/n999+ZP3++JghlCG2moJEvJ+LiaChJ/CIE7YEjBgM+NmwSDgHaKgpz58zJNxto/MSJBMXEsBoIMX7PlpnCaiBOrydy4kSr49R4kDpqch3Nnjr6wgsvMHHiRKc0UtSwH1pFs0aepKSk4OnpyQIheAwYDLgCh4EWNgjDQmC8JJGUlJTnHbwQgudCQ9kXFcVRo9XFOiEYCswHXrEgtfUK0EFR6BoYyPIVK5yuv4Kzkl/qaJs2bXjllVe01NFHDG35SCNPfvrpJ4QQ9ASCgQ2olcUdgVM2LCV1Rx344+Li8vy5JEnMCQ/H3dOTvorCFR5MYx/OdXoYk0uqu6cnYXPmaIJQCBcuXODVV1+lbt26eHt7M2vWLK5du0b37t1ZsWIF6enp/PTTT4wdO1YThEcMTRQ08iQ+Pl4tKDN+PRCIQhWGp4HjVgqDqaAsPj4+38d4eXmxKSaGu56edFAUDhq/X5AoCGAV6gzhrqcnm7dtc0rbbGfA5Drq5eWFj48PCxcu5O7du/Tv359t27aRlpbGrl27CA0N1WoJHmG0W4ASpF+/fhw8eJCzZ88+NHDdunULHx8f6tWrx4EDBxz+R5lXQVk/YCsQAHQG9hoMdLAwTksLypo2bUrs4cNMnDCB/xg7r+01XrMRDzqvXeBB57U4vZ7BgYHMCQ/H09PTmpdpM/a0+ShOtm/fzuzZs9m7dy93794FoFq1agwbNoypU6dqGVoaDyM0SoyLFy8KDw8PMXz48Id+Nm7cOKHT6cTx48cdENnDTJ8+XZSXZWEAIXId20EoIFxA7AeRKcuFHhmyLCrqdOKLL74QmZmZhR4ZGRni3//+t0DVACFJkqigKKKmi4uooChCkiQhy7LoFxAgoqKiREZGhkXnLcqRkZEhoqKiRL+AAKEoipCNr6l2uXKiok4nZFkWiqKUaEy5j/T0dLF06VLRtWtX4ebmZn7/atWqJcaOHSsuXrzo6I+WhpOjzRRKkAYNGvDRRx/xzjvvMGrUKHMmzpEjR5g/fz5TpkyhTZs2Do5SxdfX11xQ1ijXz3oBO4z/dgd2Ggw8XciMwVRQ5uvra9H1JUkyt6r8v//7P7p06UJCQgKpqal4eHjQsmXLEr0rL06bj6KSlZVlblh/4sQJsrLUfC1Tw/opU6aU2AxKo/SjZR+VMFlZWXTo0IF79+4RHx+Pi4sLHTt25K+//iI+Pt5prBmyZx/9PZ/H7Aezs2kM8EwBwlBY9lFeHDp0iGeeeYZPPvmE9957z/Lg7Ux2m4/ZFlR1C1BtPowb34XZfNjC3bt3mTt3LkuWLMmROtqsWTNGjhyppY5q2Iw2UyhhdDodCxYsoHPnzvzrX//C09OTY8eOsXnzZqcRBFALyvr6+zN/2zZeztb4JjtdgH3AM0AfYIvBQPc8hEEACxSFgN69rbqzN2W96PPwWioprl+/brb52J2tK1xBmGw+ntbrGWC0+dh/6FCRZwzJycnMmjWL1atX50gdbdeuHS+//DIvv/wyrq6uRbqGhoYmCg7gqaeeYty4cUyfPp1y5coxfPhwAgICHB3WQ0ycPJn+W7awCng2n8c8BRxA3XgOAKINBnrnEoY1wHEbCsoURa1pNi2HlDRCCCYa+0ZbKgjZsdTmoyB++eUXpk2bRnR0dA7X0W7dujF+/HitP7GG/XHwnsYjy61bt0TNmjVFpUqVxLVr1xwdTp4YDAYxZNAgUUNRRFIeG87Zj6MgXEHIIKKzbT7/KsvC08VFDB082OqN1xMnTghAvPvuuyW+YZuZmSmioqKELMtiuQUb6QUdy2VZyLIsoqOjLbru4cOHRWhoqKhWrZp5o7hChQqif//+Ytu2bY7+WGiUcbRbDAdRqVIlmjVrRt26dZ02r16SJObNn4+7pyd+xoKy/GgPHEGdegYCmwwGrgADjOvqs20oKHP0TGHunDm0UxSGFPE82W0+8mP79u0EBQWZXUd//PFHgByuo9HR0fTu3buI0WhoFIwmChoF4uXlxbZdu7jr6UlbRWElkF9mQmvgGKpnUTDQRpK46+nJppgYm4TPtD5usNGMryiY+kaPyWc/xRokYIxezxZj32h44Drau3dvKlasSN++fdm0aRMVK1bklVde4fz58/z5558sW7ZMqyXQKFG0PQWNQmnatClH4uIY9+qrhK5bRwdFYaxeT08eLiiLBRpKEmeE4JZez6xPPqFJkyY2Xde00eyImcKxY8cQxrRTe9AddcP8008/5eDBgzlSR00N67XUUQ1nQJspaFiEl5cXq9asYdOmTXj5+TFWkmgCVJRlaup0VJRlmgBjJYkGAQEsWLAAd3d3/v73v7N69WqbrunI7KPcNh+2ctdgYJrBwBDjbGfu3LnExcXRpEkTPv30U+7cucMvv/zCF198oQmChlOgzRQ0LEaSJPr27Uvfvn1JSUnh6NGjxMfHmwvKfH196dChgznttFevXrRq1Yrhw4fz/fff89xzz1l1PRcX1TzbEaKQX99oS0g2GJiFauP9q/F7OuPRd+BAVq9eraWOajgtmiho2ESNGjUICAgoMJW2UaNGJCQk0KpVK0aOHElWVhYjRoyw+BqOnCnk1zc6P34xGJgORALXjN8rB3QDxqH2iKgsy/To0UMTBA2nRhMFB7Jr1y5Hh1DsNGjQgNOnT9OiRQtGjRqFXq/nxRdftOi5psHTEaJQkM2HieNGIdgG3DB+rwLQH3gTyJ4ndB7rbD40NByFtqegUezUq1ePs2fPUrFixf9v7+5Cot7zOI5/phGNtGDcNLGBFk4+YIEPHb0Q3D1wTg9jnbbl7BxpEYJqo5w2IUjLpAfCCoUI0VWSHq5iaQNBPGfA2BYJInM9eFOMoycjkUTaizBtCOf/3wv1B5Y914wn3687//5n+OHN2//T969du3bp4sWL7/S5aF5ozsvLk8PhUOdL229alv5kWXJZlvIlXZveXqKpW3LHJP2k2UGQpP9o6vTbunXrPuu6gY9FFBARbrdbgUBAy5Yt0969e3XhwoW3fmYmCtG4JXXmvdHNDof+ZVn61rK01LK0UdLPmjoi+JumjgD+J+mfkr5+zXfZkpqdTnk2bpxXY7WBuXD6CBGTmpqqvr4+ZWZmyufzKRwOa9++fa/df2Z8Q6RPH01OTurSpUvq//VXDYTD+uv09t9r6trAIUnvc5/QdUm/hMPyl5d/4pUCnx5RQESlpKQoGAwqIyNDBw4c0OTkpP7+lplIkYjC+Pi4GhoadPXqVQUCATN1NCEhQdb4uH6xbWV8wPcOSypzOvXD1q3zcr4V8DJOHyHikpOT1d/fr8TERB08eFDnzp174/6fKwpPnjzRkSNHlJaWJpfLperqagWDQeXm5qqxsVHPnz/XwMCAfpeSoj+/ZczHXIYlrZ8e89HY1MR7o/GbwJEComL58uXq7+9Xenq6KisrNTk5qYqKijn3/ZRRGBwcVF1dndrb2/X48WNJUlxcnIqKilRWViav1ztr6ujMmI/vvvlGOaOj+kc4rL/ozbepzrw3umw6CP/u7Jy3862Al3GkgKhJTEzUwMCAkpKSdPToUZ0+fXrO/T72QnNvb69KS0u1YsUKpaenq6WlRWNjY/J4POro6FAoFFJnZ6dKSkrmHEM9M+bjD99/rx8l5TudatHUReaZOVD29M8tkr52OvWjpD9u3ar/9vZ+8JgPICqiPaYVePr0qZ2cnGxLso8dOzZrjLQke/Pmze899rqjo8MuLi62ExISzPhpl8tll5SU2N3d3R+0TsuybL/fbxdv2mQ7HA5bkh2/aJG9IibGjl+0yLxLunjTJtvv99uWZX3ivxTw+fE6TswLz549U1pamkZGRlRVVaWTJ09Kmhp14fF41NbW9sbPW5al1tZWNTU1qaurS6FQSNLUhe0tW7bo8OHD+uqr1z2G9v7eZcwH8FtEFDBvTExMKD09XcPDw6qoqFBNTY1iY2O1YcMGtbe3v7L/zK2jly9fVm9vr3nIbdWqVfJ6vTp06BBD5oD3xDUFzBtLlixRMBiU2+1WbW2tKisrJc2+0DwxMaHa2lplZ2crPj5ePp9PPT09Wr16tZk6+vDhQ9XV1RGEd1RaWqrFixcrGAy+8ruzZ8/K4XDMGWV8mThSwLwTCoWUkZGhR48eSZIKCwtVWFhoXlhv27ZiYmKUnZ2tnTt3avfu3QyZ+wijo6PKzMxUTk6Obt68abYPDg5qzZo1Ki4u1vXr16O4QkQSUcC8FAqFlJWVpcHBQbMtLi5OBQUF8vl8r9w6io/T0tKiPXv26MqVK9qxY4ckyePx6Pbt27p//75WrlwZ5RUiUogC5q0XL14oJydHLpdLJ06c0Pr166O9pC+WbdsqKipSX1+fAoGAbty4oe3bt6u+vv6tT5zjy0IUAEiS7t27p9zcXG3btk23bt2S2+1WV1cXR2QLDFEAYFRVVenMmTNyOp26e/eu8vLyor0kRBj/AgAwZp6xSE1N5YVACxRRACBJGhoa0vHjx7V27VoNDQ2ptrY22ktCFBAFAJKk/fv3S5L8fr+8Xq9qamr04MGDKK8KkUYUAKi1tVVtbW06deqU3G63zp8/r9jYWPl8vmgvDRHGhWZggRsbG1NWVpaSkpLU3d0tp9MpSaqvr1d5ebmuXbsmr9cb5VUiUogCsMCVl5eroaFBd+7cUX5+vtkeDodVUFCgkZERBQIBLV26NIqrRKRw+ghYwHp6etTY2KiysrJZQZAkp9Op5uZmjYyMqLq6OkorRKRxpAAAMDhSAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAAZRAAAYRAEAYBAFAIBBFAAABlEAABhEAQBgEAUAgEEUAAAGUQAAGEQBAGAQBQCAQRQAAMb/Acb0MdQTnMPlAAAAAElFTkSuQmCC"}}], "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0}</script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script crossorigin="anonymous" data-jupyter-widgets-cdn="https://cdn.jsdelivr.net/npm/" src="https://cdn.jsdelivr.net/npm/@jupyter-widgets/html-manager@1.0.6/dist/embed-amd.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'tutorials/solid_solution/6th';</script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="The tutorial 7th" href="../EXAFS/7th.html" />
<link rel="prev" title="The tutorial 5th" href="../atomic_dis/5th.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<input type="checkbox"
class="sidebar-toggle"
id="pst-primary-sidebar-checkbox"/>
<label class="overlay overlay-primary" for="pst-primary-sidebar-checkbox"></label>
<input type="checkbox"
class="sidebar-toggle"
id="pst-secondary-sidebar-checkbox"/>
<label class="overlay overlay-secondary" for="pst-secondary-sidebar-checkbox"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search this book..."
aria-label="Search this book..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<a class="navbar-brand logo" href="../../intro.html">
<img src="../../_static/logo.png" class="logo__image only-light" alt="PyXplore Book - Home"/>
<script>document.write(`<img src="../../_static/logo.png" class="logo__image only-dark" alt="PyXplore Book - Home"/>`);</script>
</a></div>
<div class="sidebar-primary-item">
<script>
document.write(`
<button class="btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
`);
</script></div>
<div class="sidebar-primary-item"><nav class="bd-links bd-docs-nav" aria-label="Main">
<div class="bd-toc-item navbar-nav active">
<ul class="nav bd-sidenav bd-sidenav__home-link">
<li class="toctree-l1">
<a class="reference internal" href="../../intro.html">
Welcome to PyXplore
</a>
</li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../parameter.html">Parameters and Functions Documentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../resultsFiles.html">Results Files Documentation</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="../index.html">Tutorial Overview</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="../basic_opt/1st.html">The tutorial 1st</a></li>
<li class="toctree-l2"><a class="reference internal" href="../multi_phases/2nd.html">The tutorial 2nd</a></li>
<li class="toctree-l2"><a class="reference internal" href="../amorphous/3rd.html">The tutorial 3rd</a></li>
<li class="toctree-l2"><a class="reference internal" href="../simulation/4th.html">The tutorial 4th</a></li>
<li class="toctree-l2"><a class="reference internal" href="../atomic_dis/5th.html">The tutorial 5th</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">The tutorial 6th</a></li>
<li class="toctree-l2"><a class="reference internal" href="../EXAFS/7th.html">The tutorial 7th</a></li>
<li class="toctree-l2"><a class="reference internal" href="../XPS/8th.html">The tutorial 8th</a></li>
</ul><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="sbt-scroll-pixel-helper"></div>
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item"><button class="sidebar-toggle primary-toggle btn btn-sm" title="Toggle primary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-bars"></span>
</button></div>
</div>
<div class="header-article-items__end">
<div class="header-article-item">
<div class="article-header-buttons">
<div class="dropdown dropdown-source-buttons">
<button class="btn dropdown-toggle" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Source repositories">
<i class="fab fa-github"></i>
</button>
<ul class="dropdown-menu">
<li><a href="https://github.com/Bin-Cao/PyWPEM" target="_blank"
class="btn btn-sm btn-source-repository-button dropdown-item"
title="Source repository"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fab fa-github"></i>
</span>
<span class="btn__text-container">Repository</span>
</a>
</li>
<li><a href="https://github.com/Bin-Cao/PyWPEM/issues/new?title=Issue%20on%20page%20%2Ftutorials/solid_solution/6th.html&body=Your%20issue%20content%20here." target="_blank"
class="btn btn-sm btn-source-issues-button dropdown-item"
title="Open an issue"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-lightbulb"></i>
</span>
<span class="btn__text-container">Open issue</span>
</a>
</li>
</ul>
</div>
<div class="dropdown dropdown-download-buttons">
<button class="btn dropdown-toggle" type="button" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download this page">
<i class="fas fa-download"></i>
</button>
<ul class="dropdown-menu">
<li><a href="../../_sources/tutorials/solid_solution/6th.md" target="_blank"
class="btn btn-sm btn-download-source-button dropdown-item"
title="Download source file"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file"></i>
</span>
<span class="btn__text-container">.md</span>
</a>
</li>
<li>
<button onclick="window.print()"
class="btn btn-sm btn-download-pdf-button dropdown-item"
title="Print to PDF"
data-bs-placement="left" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-file-pdf"></i>
</span>
<span class="btn__text-container">.pdf</span>
</button>
</li>
</ul>
</div>
<button onclick="toggleFullScreen()"
class="btn btn-sm btn-fullscreen-button"
title="Fullscreen mode"
data-bs-placement="bottom" data-bs-toggle="tooltip"
>
<span class="btn__icon-container">
<i class="fas fa-expand"></i>
</span>
</button>
<script>
document.write(`
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto"></i>
</button>
`);
</script>
<script>
document.write(`
<button class="btn btn-sm pst-navbar-icon search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass fa-lg"></i>
</button>
`);
</script>
<button class="sidebar-toggle secondary-toggle btn btn-sm" title="Toggle secondary sidebar" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="fa-solid fa-list"></span>
</button>
</div></div>
</div>
</div>
</div>
<div id="jb-print-docs-body" class="onlyprint">
<h1>The tutorial 6th</h1>
<!-- Table of contents -->
<div id="print-main-content">
<div id="jb-print-toc">
<div>
<h2> Contents </h2>
</div>
<nav aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#coding">coding</a></li>
</ul>
</nav>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section class="tex2jax_ignore mathjax_ignore" id="the-tutorial-6th">
<h1>The tutorial 6th<a class="headerlink" href="#the-tutorial-6th" title="Link to this heading">#</a></h1>
<p>Demonstrates how to determine solid solution structures using powder XRD.</p>
<section id="coding">
<h2>coding<a class="headerlink" href="#coding" title="Link to this heading">#</a></h2>
<blockquote>
<div><p><strong>1. Save your diffraction data to the root directory and rename the file to <code class="docutils literal notranslate"><span class="pre">intensity.csv</span></code>.</strong></p>
</div></blockquote>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># import PyXplore package</span>
<span class="kn">from</span> <span class="nn">PyXplore</span> <span class="kn">import</span> <span class="n">WPEM</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>██╗ ██╗██████╗ ███████╗███╗ ███╗
██║ ██║██╔══██╗██╔════╝████╗ ████║
██║ █╗ ██║██████╔╝█████╗ ██╔████╔██║
██║███╗██║██╔═══╝ ██╔══╝ ██║╚██╔╝██║
╚███╔███╔╝██║ ███████╗██║ ╚═╝ ██║
╚══╝╚══╝ ╚═╝ ╚══════╝╚═╝ ╚═╝
A Diffraction Refinement Software : WPEM
Bin Cao, Advanced Materials Thrust, Hong Kong University of Science and Technology (Guangzhou)
URL : https://github.com/Bin-Cao/WPEM
Executed on : 2025-07-22 11:13:34 | Have a great day.
====================================================================================================
</pre></div>
</div>
</div>
</div>
<blockquote>
<div><p><strong>2. Parse your diffraction data (<code class="docutils literal notranslate"><span class="pre"></span></code>, intensity) and perform background processing.</strong></p>
</div></blockquote>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">intensity_csv</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="sa">r</span><span class="s1">&#39;intensity.csv&#39;</span><span class="p">,</span><span class="n">header</span><span class="o">=</span><span class="kc">None</span> <span class="p">)</span>
<span class="n">var</span> <span class="o">=</span> <span class="n">WPEM</span><span class="o">.</span><span class="n">BackgroundFit</span><span class="p">(</span><span class="n">intensity_csv</span><span class="p">,</span><span class="n">lowAngleRange</span><span class="o">=</span><span class="mi">17</span><span class="p">,</span><span class="n">poly_n</span><span class="o">=</span><span class="mi">13</span><span class="p">,</span><span class="n">bac_split</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span><span class="n">bac_num</span><span class="o">=</span><span class="mi">300</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<img alt="../../_images/aef21596334ce6f490a2526bc5fad55f09e54a82db7a9cd1be5d6bbd153f14ff.png" src="../../_images/aef21596334ce6f490a2526bc5fad55f09e54a82db7a9cd1be5d6bbd153f14ff.png" />
<img alt="../../_images/16171239acea6bfcc15d02295c612fc20ca8c05252e8d4be1da7c0185068dd57.png" src="../../_images/16171239acea6bfcc15d02295c612fc20ca8c05252e8d4be1da7c0185068dd57.png" />
<img alt="../../_images/bd82c740555d0962c82da60bb973052160e8eb6ac62a5b2e7291124e8db988d0.png" src="../../_images/bd82c740555d0962c82da60bb973052160e8eb6ac62a5b2e7291124e8db988d0.png" />
<img alt="../../_images/11049e0b7d8aafa36de7c37dfe510fdeca704dcf18e8ccc5a933a5e75f64b536.png" src="../../_images/11049e0b7d8aafa36de7c37dfe510fdeca704dcf18e8ccc5a933a5e75f64b536.png" />
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>================================
</pre></div>
</div>
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;Figure size 640x480 with 0 Axes&gt;
</pre></div>
</div>
</div>
</div>
<blockquote>
<div><p><strong>3. After running the code, a new folder named <code class="docutils literal notranslate"><span class="pre">ConvertedDocuments</span></code> will be created in the root directory. This folder contains the background information.</strong></p>
</div></blockquote>
<blockquote>
<div><p><strong>Copy the two important files — <code class="docutils literal notranslate"><span class="pre">bac.csv</span></code> and <code class="docutils literal notranslate"><span class="pre">no_bac_intensity.csv</span></code> — from <code class="docutils literal notranslate"><span class="pre">ConvertedDocuments</span></code> into the root directory, as they are required for the next steps.</strong></p>
</div></blockquote>
<blockquote>
<div><p><strong>4. After background subtraction, the next step is to parse the reference structure.</strong></p>
<p>Save the reference <code class="docutils literal notranslate"><span class="pre">.cif</span></code> file in the root directory. For example, if the structure is Mn₂O₃, place a file named <code class="docutils literal notranslate"><span class="pre">Mn2O3.cif</span></code> in the root directory as the reference phase.</p>
<p>If you are unsure of the reference phase, you must perform phase identification first. Please visit our website for assistance: <a class="reference external" href="https://xqueryer.caobin.asia/">https://xqueryer.caobin.asia/</a></p>
</div></blockquote>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">latt</span><span class="p">,</span> <span class="n">AtomCoordinates</span><span class="p">,</span><span class="n">des</span> <span class="o">=</span> <span class="n">WPEM</span><span class="o">.</span><span class="n">CIFpreprocess</span><span class="p">(</span><span class="n">filepath</span><span class="o">=</span><span class="s1">&#39;Mn2O3.cif&#39;</span><span class="p">,</span><span class="n">two_theta_range</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">75</span><span class="p">))</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>the space group of input crystal is : I 21 3
cif file parse completed
atom locations claculated by parsed cif file
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>retrieval of all reciprocal vectors satisfying the diffraction geometry is done
extinction peaks are distinguished
There are 21 extinction peaks
Diffraction condition judgment end !
The input crystal system is: Cubic | The initial lattice constants : 9.41 9.41 9.41 90.0 90.0 90.0
</pre></div>
</div>
</div>
</div>
<blockquote>
<div><p><strong>5. After running the code, a new folder named <code class="docutils literal notranslate"><span class="pre">output_xrd</span></code> will be created.</strong></p>
<p>Inside this folder, locate the file named <code class="docutils literal notranslate"><span class="pre">xxxHKL.csv</span></code>, copy it to the root directory, and rename it to <code class="docutils literal notranslate"><span class="pre">peak0.csv</span></code>. This file will be used in the refinement step.</p>
</div></blockquote>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># The wavelength is set according to the actual light source</span>
<span class="n">wavelength</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.540593</span><span class="p">,</span> <span class="mf">1.544414</span><span class="p">]</span>
<span class="c1"># The file name of non-background data (2theta-intensity data)</span>
<span class="n">no_bac_intensity_file</span> <span class="o">=</span> <span class="s2">&quot;no_bac_intensity.csv&quot;</span>
<span class="c1"># The file name of raw/original data (2theta-intensity data)</span>
<span class="n">original_file</span> <span class="o">=</span> <span class="s2">&quot;intensity.csv&quot;</span>
<span class="c1"># The file name of background data (2theta-intensity data)</span>
<span class="n">bacground_file</span> <span class="o">=</span> <span class="s2">&quot;bac.csv&quot;</span>
<span class="c1"># Input the initial lattice constants {a, b, c, α, β, γ}, whose values need to be assumed at initialization.</span>
<span class="n">Lattice_constants</span> <span class="o">=</span> <span class="p">[</span><span class="n">latt</span><span class="p">,]</span>
<span class="c1"># Execute the model</span>
<span class="n">WPEM</span><span class="o">.</span><span class="n">XRDfit</span><span class="p">(</span>
<span class="n">wavelength</span><span class="p">,</span> <span class="n">var</span><span class="p">,</span> <span class="n">Lattice_constants</span><span class="p">,</span><span class="n">no_bac_intensity_file</span><span class="p">,</span> <span class="n">original_file</span><span class="p">,</span> <span class="n">bacground_file</span><span class="p">,</span>
<span class="n">subset_number</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span><span class="n">low_bound</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span><span class="n">up_bound</span><span class="o">=</span><span class="mi">70</span><span class="p">,</span><span class="n">bta</span> <span class="o">=</span> <span class="mf">0.85</span><span class="p">,</span><span class="n">iter_max</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> <span class="n">asy_C</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="n">InitializationEpoch</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Started at Tue Jul 22 11:13:50 2025
Initialization
--------------------------------------------------------------------------------
The input HKL document is matched with WPEM
Diffraction indexs have been obtained by WPEM
The input crystal system is: Cubic | The initial lattice constants : 9.41 9.41 9.41 90.0 90.0 90.0
—————————— Initilize the parameters by WPEM ——————————
Parameter initialization has been completed
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> 0%| | 0/5 [00:00&lt;?, ?it/s]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WARNING:tensorflow:From /Users/jacob/miniconda3/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:576: calling function (from tensorflow.python.eager.polymorphic_function.polymorphic_function) with experimental_relax_shapes is deprecated and will be removed in a future version.
Instructions for updating:
experimental_relax_shapes is deprecated, use reduce_retracing instead
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM 1-th iteration
[array([ 9.40989, 9.40989, 9.40989, 90. , 90. , 90. ])]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> 20%|█████████ | 1/5 [00:07&lt;00:28, 7.09s/it]
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Rp:3.603 | Rwp:5.039 | Rsquare:4.349
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WARNING:tensorflow:From /Users/jacob/miniconda3/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:576: calling function (from tensorflow.python.eager.polymorphic_function.polymorphic_function) with experimental_relax_shapes is deprecated and will be removed in a future version.
Instructions for updating:
experimental_relax_shapes is deprecated, use reduce_retracing instead
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM 2-th iteration
[array([ 9.40961, 9.40961, 9.40961, 90. , 90. , 90. ])]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> 40%|██████████████████ | 2/5 [00:13&lt;00:20, 6.78s/it]
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Rp:3.385 | Rwp:4.664 | Rsquare:3.518
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WARNING:tensorflow:From /Users/jacob/miniconda3/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:576: calling function (from tensorflow.python.eager.polymorphic_function.polymorphic_function) with experimental_relax_shapes is deprecated and will be removed in a future version.
Instructions for updating:
experimental_relax_shapes is deprecated, use reduce_retracing instead
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM 3-th iteration
[array([ 9.40934, 9.40934, 9.40934, 90. , 90. , 90. ])]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> 60%|███████████████████████████ | 3/5 [00:20&lt;00:13, 6.70s/it]
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Rp:3.241 | Rwp:4.423 | Rsquare:3.047
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WARNING:tensorflow:From /Users/jacob/miniconda3/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:576: calling function (from tensorflow.python.eager.polymorphic_function.polymorphic_function) with experimental_relax_shapes is deprecated and will be removed in a future version.
Instructions for updating:
experimental_relax_shapes is deprecated, use reduce_retracing instead
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM 4-th iteration
[array([ 9.40913, 9.40913, 9.40913, 90. , 90. , 90. ])]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span> 80%|████████████████████████████████████ | 4/5 [00:26&lt;00:06, 6.66s/it]
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Rp:3.140 | Rwp:4.243 | Rsquare:2.758
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WARNING:tensorflow:From /Users/jacob/miniconda3/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:576: calling function (from tensorflow.python.eager.polymorphic_function.polymorphic_function) with experimental_relax_shapes is deprecated and will be removed in a future version.
Instructions for updating:
experimental_relax_shapes is deprecated, use reduce_retracing instead
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM 5-th iteration
[array([ 9.40901, 9.40901, 9.40901, 90. , 90. , 90. ])]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>100%|█████████████████████████████████████████████| 5/5 [00:33&lt;00:00, 6.63s/it]
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>100%|█████████████████████████████████████████████| 5/5 [00:33&lt;00:00, 6.69s/it]
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Rp:3.062 | Rwp:4.109 | Rsquare:2.577
</pre></div>
</div>
<div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>After update the background : Rp = 1.555 | Rwp = 3.076 | Rsquare = 1.690
</pre></div>
</div>
<img alt="../../_images/775928bcfdc02036451df7b0bec83cb51ef9e3dc96a7c68f96ebb63ff7f2f43a.png" src="../../_images/775928bcfdc02036451df7b0bec83cb51ef9e3dc96a7c68f96ebb63ff7f2f43a.png" />
<img alt="../../_images/71c85b5daec8a90059dbf2f5589b75579eaba24753816838cff228188dab8aa6.png" src="../../_images/71c85b5daec8a90059dbf2f5589b75579eaba24753816838cff228188dab8aa6.png" />
<img alt="../../_images/190307293664ee80df15ed5b3a02370514e177dd9b071a827e3f4f0697d46f73.png" src="../../_images/190307293664ee80df15ed5b3a02370514e177dd9b071a827e3f4f0697d46f73.png" />
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>Mass fraction without structure factor estimate in % : [100.0]
Saved at the result documents
5-th iterations, reach the maximum number of iteration steps.
Rp: 1.555
Rwp: 3.076
WPEM program running time : 0 hours 0 minute 38 second
</pre></div>
</div>
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>(&#39;0 hours 0 minute 38 second &#39;,
[array([ 9.40901, 9.40901, 9.40901, 90. , 90. , 90. ])])
</pre></div>
</div>
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>&lt;Figure size 640x480 with 0 Axes&gt;
</pre></div>
</div>
</div>
</div>
<blockquote>
<div><p>Copy the decomposed file <code class="docutils literal notranslate"><span class="pre">CrystalSystem0_WPEMout.csv</span></code> from the <code class="docutils literal notranslate"><span class="pre">WPEMFittingResults</span></code> folder to the root directory.</p>
</div></blockquote>
<div class="cell docutils container">
<div class="cell_input docutils container">
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">WPEM</span><span class="o">.</span><span class="n">SubstitutionalSearch</span><span class="p">(</span>
<span class="n">xrd_pattern</span><span class="o">=</span><span class="s1">&#39;CrystalSystem0_WPEMout_2025.7.20_17.27.csv&#39;</span><span class="p">,</span> <span class="n">cif_file</span><span class="o">=</span><span class="s1">&#39;Mn2O3.cif&#39;</span><span class="p">,</span>
<span class="n">random_num</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">wavelength</span><span class="o">=</span><span class="s1">&#39;CuKa&#39;</span><span class="p">,</span><span class="n">search_cap</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span><span class="n">SolventAtom</span> <span class="o">=</span> <span class="s1">&#39;Mn3+&#39;</span><span class="p">,</span> <span class="n">SoluteAtom</span><span class="o">=</span> <span class="s1">&#39;Ru2+&#39;</span><span class="p">,</span><span class="n">max_iter</span> <span class="o">=</span> <span class="mi">15</span><span class="p">,</span><span class="n">cal_extinction</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">)</span>
</pre></div>
</div>
</div>
<div class="cell_output docutils container">
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>the space group of input crystal is : I 21 3
cif file parse completed
atom locations claculated by parsed cif file
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>retrieval of all reciprocal vectors satisfying the diffraction geometry is done
extinction peaks are distinguished
There are 29 extinction peaks
Diffraction condition judgment end !
The input crystal system is: Cubic | The initial lattice constants : 9.41 9.41 9.41 90.0 90.0 90.0
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>initial error is 6.1900258466634135
WPEM uses a random optimization method based on the current settings
WPEM Site optimization | 1-th | random
WPEM Site optimization | 2-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM Site optimization | 3-th | random
WPEM Site optimization | 4-th | random
WPEM Site optimization | 5-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM Site optimization | 6-th | random
WPEM Site optimization | 7-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM Site optimization | 8-th | random
WPEM Site optimization | 9-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM Site optimization | 10-th | random
WPEM Site optimization | 11-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM Site optimization | 12-th | random
WPEM Site optimization | 13-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WPEM Site optimization | 14-th | random
WPEM Site optimization | 15-th | random
</pre></div>
</div>
<div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>optimized error is 5.582748221411304
</pre></div>
</div>
<script type="application/vnd.jupyter.widget-view+json">{"version_major": 2, "version_minor": 0, "model_id": "8d33d260182c4f3c8cc38e2239270477"}</script><img alt="../../_images/a91d26804a1cfc50a4e3b9639e666b5dff2976389100e03f692b7fc6543373d5.png" src="../../_images/a91d26804a1cfc50a4e3b9639e666b5dff2976389100e03f692b7fc6543373d5.png" />
<div class="output text_plain highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[[&#39;Ru2+&#39;, 0.25, 0.25, 0.25],
[&#39;Ru2+&#39;, 0.021, 0.0, 0.25],
[&#39;Ru2+&#39;, 0.542, 0.0, 0.25],
[&#39;O2-&#39;, 0.125, 0.125, 0.375],
[&#39;O2-&#39;, 0.125, 0.375, 0.375],
[&#39;Ru2+&#39;, 0.75, 0.25, 0.75],
[&#39;Ru2+&#39;, 0.75, 0.75, 0.25],
[&#39;Mn3+&#39;, 0.25, 0.75, 0.75],
[&#39;Mn3+&#39;, 0.75, 0.75, 0.75],
[&#39;Mn3+&#39;, 0.25, 0.75, 0.25],
[&#39;Mn3+&#39;, 0.25, 0.25, 0.75],
[&#39;Ru2+&#39;, 0.75, 0.25, 0.25],
[&#39;Ru2+&#39;, 0.0, 0.25, 0.021],
[&#39;Ru2+&#39;, 0.25, 0.021, 0.0],
[&#39;Mn3+&#39;, 0.521, 0.5, 0.75],
[&#39;Mn3+&#39;, 0.5, 0.25, 0.979],
[&#39;Mn3+&#39;, 0.75, 0.479, -0.0],
[&#39;Ru2+&#39;, 0.979, 0.5, 0.25],
[&#39;Mn3+&#39;, -0.0, 0.75, 0.479],
[&#39;Ru2+&#39;, 0.75, 0.521, 0.5],
[&#39;Ru2+&#39;, 0.479, -0.0, 0.75],
[&#39;Ru2+&#39;, 0.5, 0.75, 0.521],
[&#39;Mn3+&#39;, 0.25, 0.979, 0.5],
[&#39;Ru2+&#39;, 0.0, 0.25, 0.542],
[&#39;Ru2+&#39;, 0.25, 0.542, 0.0],
[&#39;Ru2+&#39;, 0.042, 0.5, 0.75],
[&#39;Ru2+&#39;, 0.5, 0.25, 0.457],
[&#39;Ru2+&#39;, 0.75, 0.958, -0.0],
[&#39;Mn3+&#39;, 0.457, 0.5, 0.25],
[&#39;Ru2+&#39;, -0.0, 0.75, 0.958],
[&#39;Mn3+&#39;, 0.75, 0.042, 0.5],
[&#39;Mn3+&#39;, 0.958, -0.0, 0.75],
[&#39;Mn3+&#39;, 0.5, 0.75, 0.042],
[&#39;Ru2+&#39;, 0.25, 0.457, 0.5],
[&#39;O2-&#39;, 0.125, 0.375, 0.125],
[&#39;O2-&#39;, 0.375, 0.125, 0.125],
[&#39;O2-&#39;, 0.625, 0.375, 0.625],
[&#39;O2-&#39;, 0.625, 0.125, 0.875],
[&#39;O2-&#39;, 0.875, 0.375, 0.875],
[&#39;O2-&#39;, 0.875, 0.625, 0.125],
[&#39;O2-&#39;, 0.875, 0.875, 0.375],
[&#39;O2-&#39;, 0.625, 0.625, 0.375],
[&#39;O2-&#39;, 0.375, 0.875, 0.875],
[&#39;O2-&#39;, 0.375, 0.625, 0.625],
[&#39;O2-&#39;, 0.125, 0.875, 0.625],
[&#39;O2-&#39;, 0.625, 0.625, 0.875],
[&#39;O2-&#39;, 0.625, 0.875, 0.625],
[&#39;O2-&#39;, 0.875, 0.625, 0.625],
[&#39;O2-&#39;, 0.125, 0.875, 0.125],
[&#39;O2-&#39;, 0.125, 0.625, 0.375],
[&#39;O2-&#39;, 0.375, 0.875, 0.375],
[&#39;O2-&#39;, 0.375, 0.125, 0.625],
[&#39;O2-&#39;, 0.375, 0.375, 0.875],
[&#39;O2-&#39;, 0.125, 0.125, 0.875],
[&#39;O2-&#39;, 0.875, 0.375, 0.375],
[&#39;O2-&#39;, 0.875, 0.125, 0.125],
[&#39;O2-&#39;, 0.625, 0.375, 0.125],
[&#39;O2-&#39;, 0.375, 0.375, 0.125],
[&#39;O2-&#39;, 0.375, 0.125, 0.375],
[&#39;O2-&#39;, 0.625, 0.125, 0.625],
[&#39;O2-&#39;, 0.875, 0.125, 0.875],
[&#39;O2-&#39;, 0.875, 0.375, 0.625],
[&#39;O2-&#39;, 0.875, 0.875, 0.125],
[&#39;O2-&#39;, 0.625, 0.875, 0.375],
[&#39;O2-&#39;, 0.625, 0.625, 0.125],
[&#39;O2-&#39;, 0.375, 0.625, 0.875],
[&#39;O2-&#39;, 0.125, 0.625, 0.625],
[&#39;O2-&#39;, 0.125, 0.875, 0.875],
[&#39;O2-&#39;, 0.625, 0.875, 0.875],
[&#39;O2-&#39;, 0.875, 0.875, 0.625],
[&#39;O2-&#39;, 0.875, 0.625, 0.875],
[&#39;O2-&#39;, 0.125, 0.625, 0.125],
[&#39;O2-&#39;, 0.375, 0.625, 0.375],
[&#39;O2-&#39;, 0.375, 0.875, 0.125],
[&#39;O2-&#39;, 0.375, 0.375, 0.625],
[&#39;O2-&#39;, 0.125, 0.375, 0.875],
[&#39;O2-&#39;, 0.125, 0.125, 0.625],
[&#39;O2-&#39;, 0.875, 0.125, 0.375],
[&#39;O2-&#39;, 0.625, 0.125, 0.125],
[&#39;O2-&#39;, 0.625, 0.375, 0.375]]
</pre></div>
</div>
</div>
</div>
<div class="admonition seealso">
<p class="admonition-title">See also</p>
<p>After searching the solid solution configurations, the one that provides the best fit to the experimental PXRD data is selected.</p>
</div>
</section>
</section>
<script type="text/x-thebe-config">
{
requestKernel: true,
binderOptions: {
repo: "binder-examples/jupyter-stacks-datascience",
ref: "master",
},
codeMirrorConfig: {
theme: "abcdef",
mode: "python"
},
kernelOptions: {
name: "python3",
path: "./tutorials/solid_solution"
},
predefinedOutput: true
}
</script>
<script>kernelName = 'python3'</script>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="../atomic_dis/5th.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">The tutorial 5th</p>
</div>
</a>
<a class="right-next"
href="../EXAFS/7th.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">The tutorial 7th</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> Contents
</div>
<nav class="bd-toc-nav page-toc">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#coding">coding</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
<div class="bd-footer-content__inner container">
<div class="footer-item">
<p class="component-author">
By Bin CAO
</p>
</div>
<div class="footer-item">
<p class="copyright">
© Copyright 2023.
<br/>
</p>
</div>
<div class="footer-item">
</div>
<div class="footer-item">
</div>
</div>
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script src="../../_static/scripts/bootstrap.js?digest=dfe6caa3a7d634c4db9b"></script>
<script src="../../_static/scripts/pydata-sphinx-theme.js?digest=dfe6caa3a7d634c4db9b"></script>
<footer class="bd-footer">
</footer>
</body>
</html>