|
|
import sys,os |
|
|
current_dir = os.path.dirname(__file__) |
|
|
sys.path.append(os.path.abspath(os.path.join(current_dir, '..'))) |
|
|
import argparse |
|
|
import copy |
|
|
import logging |
|
|
import math |
|
|
import os |
|
|
from contextlib import contextmanager |
|
|
import functools |
|
|
import torch |
|
|
import torch.utils.checkpoint |
|
|
import transformers |
|
|
from accelerate import Accelerator |
|
|
from accelerate.logging import get_logger |
|
|
from accelerate.utils import set_seed |
|
|
from packaging import version |
|
|
from peft import LoraConfig |
|
|
from tqdm.auto import tqdm |
|
|
from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast |
|
|
from src.hook import save_model_hook,load_model_hook |
|
|
import diffusers |
|
|
from diffusers import ( |
|
|
AutoencoderKL, |
|
|
FlowMatchEulerDiscreteScheduler, |
|
|
FluxPipeline, |
|
|
) |
|
|
from src.SubjectGeniusTransformer2DModel import SubjectGeniusTransformer2DModel |
|
|
from diffusers.optimization import get_scheduler |
|
|
from diffusers.training_utils import cast_training_params, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3 |
|
|
from diffusers.utils import check_min_version, is_wandb_available |
|
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
from src.dataloader import get_dataset,prepare_dataset,collate_fn |
|
|
if is_wandb_available(): |
|
|
pass |
|
|
from src.text_encoder import encode_prompt |
|
|
from datetime import datetime |
|
|
|
|
|
check_min_version("0.32.0.dev0") |
|
|
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
|
|
|
|
|
@contextmanager |
|
|
def preserve_requires_grad(model): |
|
|
|
|
|
requires_grad_backup = {name: param.requires_grad for name, param in model.named_parameters()} |
|
|
yield |
|
|
|
|
|
for name, param in model.named_parameters(): |
|
|
param.requires_grad = requires_grad_backup[name] |
|
|
def load_text_encoders(class_one, class_two): |
|
|
text_encoder_one = class_one.from_pretrained( |
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
|
) |
|
|
text_encoder_two = class_two.from_pretrained( |
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant |
|
|
) |
|
|
return text_encoder_one, text_encoder_two |
|
|
|
|
|
def encode_images(pixels: torch.Tensor, vae: torch.nn.Module, weight_dtype): |
|
|
pixel_latents = vae.encode(pixels.to(vae.dtype)).latent_dist.sample() |
|
|
pixel_latents = (pixel_latents - vae.config.shift_factor) * vae.config.scaling_factor |
|
|
return pixel_latents.to(weight_dtype) |
|
|
|
|
|
|
|
|
def import_model_class_from_model_name_or_path( |
|
|
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" |
|
|
): |
|
|
text_encoder_config = PretrainedConfig.from_pretrained( |
|
|
pretrained_model_name_or_path, subfolder=subfolder, revision=revision |
|
|
) |
|
|
model_class = text_encoder_config.architectures[0] |
|
|
if model_class == "CLIPTextModel": |
|
|
from transformers import CLIPTextModel |
|
|
|
|
|
return CLIPTextModel |
|
|
elif model_class == "T5EncoderModel": |
|
|
from transformers import T5EncoderModel |
|
|
|
|
|
return T5EncoderModel |
|
|
else: |
|
|
raise ValueError(f"{model_class} is not supported.") |
|
|
|
|
|
|
|
|
def parse_args(input_args=None): |
|
|
parser = argparse.ArgumentParser(description="training script.") |
|
|
parser.add_argument( "--pretrained_model_name_or_path",type=str,default="ckpt/FLUX.1-schnell") |
|
|
parser.add_argument("--transformer",type=str,default="ckpt/FLUX.1-schnell",) |
|
|
parser.add_argument("--work_dir",type=str,default="output/train_result",) |
|
|
parser.add_argument("--output_denoising_lora",type=str,default="depth_canny_union",) |
|
|
parser.add_argument("--pretrained_condition_lora_dir",type=str,default="ckpt/Condition_LoRA",) |
|
|
parser.add_argument("--training_adapter",type=str,default="ckpt/FLUX.1-schnell-training-adapter",) |
|
|
parser.add_argument("--checkpointing_steps",type=int,default=1,) |
|
|
parser.add_argument("--resume_from_checkpoint",type=str,default=None,) |
|
|
parser.add_argument("--rank",type=int,default=4,help="The dimension of the LoRA rank.") |
|
|
|
|
|
parser.add_argument("--dataset_name",type=str,default=[ |
|
|
"dataset/split_SubjectSpatial200K/train", |
|
|
"dataset/split_SubjectSpatial200K/Collection3/train", |
|
|
], |
|
|
) |
|
|
parser.add_argument("--image_column", type=str, default="image",) |
|
|
parser.add_argument("--bbox_column",type=str,default="bbox",) |
|
|
parser.add_argument("--canny_column",type=str,default="canny",) |
|
|
parser.add_argument("--depth_column",type=str,default="depth",) |
|
|
parser.add_argument("--condition_types",type=str,nargs='+',default=["depth","canny"],) |
|
|
|
|
|
parser.add_argument("--max_sequence_length",type=int,default=512,help="Maximum sequence length to use with with the T5 text encoder") |
|
|
parser.add_argument("--mixed_precision",type=str,default="bf16", choices=["no", "fp16", "bf16"],) |
|
|
parser.add_argument("--cache_dir",type=str,default="cache",) |
|
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") |
|
|
parser.add_argument("--resolution",type=int,default=512,) |
|
|
parser.add_argument("--train_batch_size", type=int, default=1) |
|
|
parser.add_argument("--num_train_epochs", type=int, default=None) |
|
|
parser.add_argument("--max_train_steps", type=int, default=30000,) |
|
|
parser.add_argument("--gradient_accumulation_steps",type=int,default=2) |
|
|
|
|
|
parser.add_argument("--learning_rate",type=float,default=1e-4) |
|
|
parser.add_argument("--scale_lr",action="store_true",default=False,) |
|
|
parser.add_argument("--lr_scheduler",type=str,default="cosine", |
|
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial","constant", "constant_with_warmup"]) |
|
|
parser.add_argument("--lr_warmup_steps", type=int, default=500,) |
|
|
parser.add_argument("--weighting_scheme",type=str,default="none", |
|
|
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"], |
|
|
help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'), |
|
|
) |
|
|
parser.add_argument("--dataloader_num_workers",type=int,default=0) |
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
parser.add_argument("--enable_xformers_memory_efficient_attention", default=True) |
|
|
|
|
|
args = parser.parse_args() |
|
|
args.revision = None |
|
|
args.variant = None |
|
|
args.work_dir = os.path.join(args.work_dir,f"{datetime.now().strftime("%y_%m_%d-%H:%M")}") |
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
|
args.local_rank = env_local_rank |
|
|
return args |
|
|
|
|
|
|
|
|
def main(args): |
|
|
accelerator = Accelerator( |
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
|
mixed_precision=args.mixed_precision, |
|
|
) |
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
|
level=logging.INFO, |
|
|
) |
|
|
logger.info(accelerator.state, main_process_only=False) |
|
|
if accelerator.is_local_main_process: |
|
|
transformers.utils.logging.set_verbosity_warning() |
|
|
diffusers.utils.logging.set_verbosity_info() |
|
|
else: |
|
|
transformers.utils.logging.set_verbosity_error() |
|
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
|
|
|
if args.seed is not None: |
|
|
set_seed(args.seed) |
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
|
os.makedirs(args.work_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
|
if accelerator.mixed_precision == "fp16": |
|
|
weight_dtype = torch.float16 |
|
|
elif accelerator.mixed_precision == "bf16": |
|
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
|
tokenizer_one = CLIPTokenizer.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="tokenizer", |
|
|
revision=args.revision, |
|
|
) |
|
|
tokenizer_two = T5TokenizerFast.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="tokenizer_2", |
|
|
revision=args.revision, |
|
|
) |
|
|
|
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder" |
|
|
) |
|
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" |
|
|
) |
|
|
|
|
|
|
|
|
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( |
|
|
args.pretrained_model_name_or_path, subfolder="scheduler" |
|
|
) |
|
|
noise_scheduler_copy = copy.deepcopy(noise_scheduler) |
|
|
|
|
|
text_encoder_one, text_encoder_two = load_text_encoders(text_encoder_cls_one, text_encoder_cls_two) |
|
|
text_encoder_one = text_encoder_one.to(accelerator.device, dtype=weight_dtype) |
|
|
text_encoder_two = text_encoder_two.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="vae", |
|
|
revision=args.revision, |
|
|
variant=args.variant, |
|
|
).to(accelerator.device, dtype=weight_dtype) |
|
|
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1) |
|
|
|
|
|
|
|
|
transformer = SubjectGeniusTransformer2DModel.from_pretrained( |
|
|
pretrained_model_name_or_path=args.pretrained_model_name_or_path, |
|
|
subfolder="transformer", |
|
|
revision=args.revision, |
|
|
variant=args.variant |
|
|
).to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
lora_names = args.condition_types |
|
|
for condition_type in lora_names: |
|
|
transformer.load_lora_adapter(f"{args.pretrained_condition_lora_dir}/{condition_type}.safetensors", adapter_name=condition_type) |
|
|
|
|
|
transformer.load_lora_adapter(f"{args.training_adapter}/pytorch_lora_weights.safetensors", adapter_name="schnell_assistant") |
|
|
|
|
|
logger.info("All models loaded successfully") |
|
|
|
|
|
transformer.requires_grad_(False) |
|
|
vae.requires_grad_(False) |
|
|
text_encoder_one.requires_grad_(False) |
|
|
text_encoder_two.requires_grad_(False) |
|
|
|
|
|
logger.info("All models keeps requires_grad = False") |
|
|
|
|
|
single_transformer_blocks_lora = [ |
|
|
f"single_transformer_blocks.{i}.proj_out" |
|
|
for i in range(len(transformer.single_transformer_blocks)) |
|
|
] + [ |
|
|
f"single_transformer_blocks.{i}.proj_mlp" |
|
|
for i in range(len(transformer.single_transformer_blocks)) |
|
|
] |
|
|
|
|
|
transformer_lora_config = LoraConfig( |
|
|
r=args.rank, |
|
|
lora_alpha=args.rank, |
|
|
init_lora_weights="gaussian", |
|
|
target_modules=[ |
|
|
"x_embedder", |
|
|
"norm1.linear", |
|
|
"attn.to_q", |
|
|
"attn.to_k", |
|
|
"attn.to_v", |
|
|
"attn.to_out.0", |
|
|
"ff.net.2", |
|
|
"norm.linear", |
|
|
]+single_transformer_blocks_lora, |
|
|
) |
|
|
transformer.add_adapter(transformer_lora_config,adapter_name=args.output_denoising_lora) |
|
|
logger.info(f"Trainable lora: {args.output_denoising_lora} is loaded successfully") |
|
|
|
|
|
accelerator.register_save_state_pre_hook(functools.partial(save_model_hook,wanted_model=transformer,accelerator=accelerator,adapter_names=[args.output_denoising_lora])) |
|
|
accelerator.register_load_state_pre_hook(functools.partial(load_model_hook,wanted_model=transformer,accelerator=accelerator,adapter_names=[args.output_denoising_lora])) |
|
|
logger.info("Hooks for save and load is ok.") |
|
|
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
|
if is_xformers_available(): |
|
|
import xformers |
|
|
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
|
if xformers_version == version.parse("0.0.16"): |
|
|
logger.warning( |
|
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
|
) |
|
|
transformer.enable_xformers_memory_efficient_attention() |
|
|
else: |
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
|
|
|
if args.scale_lr: |
|
|
args.learning_rate = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
|
|
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
|
|
|
|
cast_training_params(transformer, dtype=torch.float32) |
|
|
|
|
|
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) |
|
|
|
|
|
|
|
|
optimizer_cls = torch.optim.AdamW |
|
|
|
|
|
optimizer = optimizer_cls( |
|
|
transformer_lora_parameters, |
|
|
lr=args.learning_rate, |
|
|
betas=(args.adam_beta1, args.adam_beta2), |
|
|
weight_decay=args.adam_weight_decay, |
|
|
eps=args.adam_epsilon, |
|
|
) |
|
|
logger.info("Optimizer initialized successfully.") |
|
|
|
|
|
|
|
|
train_dataset = get_dataset(args) |
|
|
train_dataset = prepare_dataset(train_dataset, vae_scale_factor, accelerator, args) |
|
|
|
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
|
train_dataset, |
|
|
shuffle=True, |
|
|
collate_fn=collate_fn, |
|
|
batch_size=args.train_batch_size, |
|
|
num_workers=args.dataloader_num_workers, |
|
|
) |
|
|
logger.info("Training dataset and Dataloader initialized successfully.") |
|
|
|
|
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
|
|
|
|
def compute_text_embeddings(prompt, text_encoders, tokenizers): |
|
|
with torch.no_grad(): |
|
|
prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt( |
|
|
text_encoders, tokenizers, prompt, args.max_sequence_length |
|
|
) |
|
|
prompt_embeds = prompt_embeds.to(accelerator.device) |
|
|
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) |
|
|
text_ids = text_ids.to(accelerator.device) |
|
|
return prompt_embeds, pooled_prompt_embeds, text_ids |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes |
|
|
if args.max_train_steps is None: |
|
|
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) |
|
|
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) |
|
|
num_training_steps_for_scheduler = ( |
|
|
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes |
|
|
) |
|
|
else: |
|
|
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
|
args.lr_scheduler, |
|
|
optimizer=optimizer, |
|
|
num_warmup_steps=num_warmup_steps_for_scheduler, |
|
|
num_training_steps=num_training_steps_for_scheduler, |
|
|
) |
|
|
logger.info(f"lr_scheduler:{args.lr_scheduler} initialized successfully.") |
|
|
|
|
|
with preserve_requires_grad(transformer): |
|
|
transformer.set_adapters([i for i in lora_names] + [args.output_denoising_lora] + ["schnell_assistant"]) |
|
|
logger.info(f"Set Adapters:{[i for i in lora_names] + [args.output_denoising_lora] + ["schnell_assistant"]}") |
|
|
|
|
|
|
|
|
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
|
transformer, optimizer, train_dataloader, lr_scheduler |
|
|
) |
|
|
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
if args.max_train_steps is None: |
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: |
|
|
logger.warning( |
|
|
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " |
|
|
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " |
|
|
f"This inconsistency may result in the learning rate scheduler not functioning properly." |
|
|
) |
|
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
|
accelerator.init_trackers("SubjectGenius", config=vars(args)) |
|
|
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
|
|
logger.info("***** Running training *****") |
|
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
global_step = 0 |
|
|
first_epoch = 0 |
|
|
|
|
|
|
|
|
if args.resume_from_checkpoint: |
|
|
if args.resume_from_checkpoint != "latest": |
|
|
path = os.path.basename(args.resume_from_checkpoint) |
|
|
else: |
|
|
|
|
|
dirs = os.listdir(args.work_dir) |
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
|
|
if path is None: |
|
|
accelerator.print( |
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
|
) |
|
|
args.resume_from_checkpoint = None |
|
|
initial_global_step = 0 |
|
|
else: |
|
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
|
accelerator.load_state(os.path.join(args.work_dir, path)) |
|
|
global_step = int(path.split("-")[1]) |
|
|
initial_global_step = global_step |
|
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
else: |
|
|
initial_global_step = 0 |
|
|
|
|
|
progress_bar = tqdm( |
|
|
range(0, args.max_train_steps), |
|
|
initial=initial_global_step, |
|
|
desc="Steps", |
|
|
|
|
|
disable=not accelerator.is_local_main_process, |
|
|
) |
|
|
|
|
|
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): |
|
|
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) |
|
|
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) |
|
|
timesteps = timesteps.to(accelerator.device) |
|
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
|
|
sigma = sigmas[step_indices].flatten() |
|
|
while len(sigma.shape) < n_dim: |
|
|
sigma = sigma.unsqueeze(-1) |
|
|
return sigma |
|
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
|
transformer.train() |
|
|
for step, batch in enumerate(train_dataloader): |
|
|
with torch.no_grad(): |
|
|
prompts = batch["descriptions"] |
|
|
prompt_embeds, pooled_prompt_embeds, text_ids = compute_text_embeddings( |
|
|
prompts, text_encoders, tokenizers |
|
|
) |
|
|
|
|
|
latent_image = encode_images(pixels=batch["pixel_values"],vae=vae,weight_dtype=weight_dtype) |
|
|
|
|
|
latent_image_ids = FluxPipeline._prepare_latent_image_ids( |
|
|
latent_image.shape[0], |
|
|
latent_image.shape[2] // 2, |
|
|
latent_image.shape[3] // 2, |
|
|
accelerator.device, |
|
|
weight_dtype, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
condition_latents = list(torch.unbind(batch["condition_latents"], dim=1)) |
|
|
|
|
|
condition_ids = [] |
|
|
|
|
|
condition_types = batch["condition_types"][0] |
|
|
for i,images_per_condition in enumerate(condition_latents): |
|
|
|
|
|
|
|
|
images_per_condition = encode_images(pixels=images_per_condition,vae=vae,weight_dtype=weight_dtype) |
|
|
cond_ids = FluxPipeline._prepare_latent_image_ids( |
|
|
images_per_condition.shape[0], |
|
|
images_per_condition.shape[2] // 2, |
|
|
images_per_condition.shape[3] // 2, |
|
|
accelerator.device, |
|
|
weight_dtype, |
|
|
) |
|
|
if condition_types[i] == "subject": |
|
|
cond_ids[:, 2] += images_per_condition.shape[2] // 2 |
|
|
condition_ids.append(cond_ids) |
|
|
condition_latents[i] = images_per_condition |
|
|
|
|
|
|
|
|
noise = torch.randn_like(latent_image) |
|
|
bsz = latent_image.shape[0] |
|
|
|
|
|
|
|
|
u = compute_density_for_timestep_sampling( |
|
|
weighting_scheme=args.weighting_scheme, |
|
|
batch_size=bsz, |
|
|
) |
|
|
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() |
|
|
timesteps = noise_scheduler_copy.timesteps[indices].to(device=accelerator.device) |
|
|
|
|
|
|
|
|
|
|
|
sigmas = get_sigmas(timesteps, n_dim=latent_image.ndim, dtype=latent_image.dtype) |
|
|
noisy_model_input = (1.0 - sigmas) * latent_image + sigmas * noise |
|
|
|
|
|
|
|
|
packed_noisy_model_input = FluxPipeline._pack_latents( |
|
|
noisy_model_input, |
|
|
batch_size=latent_image.shape[0], |
|
|
num_channels_latents=latent_image.shape[1], |
|
|
height=latent_image.shape[2], |
|
|
width=latent_image.shape[3], |
|
|
) |
|
|
|
|
|
for i, images_per_condition in enumerate(condition_latents): |
|
|
condition_latents[i] = FluxPipeline._pack_latents( |
|
|
images_per_condition, |
|
|
batch_size=latent_image.shape[0], |
|
|
num_channels_latents=latent_image.shape[1], |
|
|
height=latent_image.shape[2], |
|
|
width=latent_image.shape[3], |
|
|
) |
|
|
|
|
|
|
|
|
if accelerator.unwrap_model(transformer).config.guidance_embeds: |
|
|
guidance = torch.tensor([args.guidance_scale], device=accelerator.device) |
|
|
guidance = guidance.expand(latent_image.shape[0]) |
|
|
else: |
|
|
guidance = None |
|
|
with accelerator.accumulate(transformer): |
|
|
|
|
|
model_pred = transformer( |
|
|
model_config={}, |
|
|
|
|
|
condition_latents=condition_latents, |
|
|
condition_ids=condition_ids, |
|
|
condition_type_ids=None, |
|
|
condition_types = condition_types, |
|
|
|
|
|
hidden_states=packed_noisy_model_input, |
|
|
timestep=timesteps / 1000, |
|
|
guidance=guidance, |
|
|
pooled_projections=pooled_prompt_embeds, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
txt_ids=text_ids, |
|
|
img_ids=latent_image_ids, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
model_pred = FluxPipeline._unpack_latents( |
|
|
model_pred, |
|
|
height=noisy_model_input.shape[2] * vae_scale_factor, |
|
|
width=noisy_model_input.shape[3] * vae_scale_factor, |
|
|
vae_scale_factor=vae_scale_factor, |
|
|
) |
|
|
|
|
|
|
|
|
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) |
|
|
|
|
|
target = noise - latent_image |
|
|
|
|
|
loss = torch.mean( |
|
|
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), |
|
|
1, |
|
|
) |
|
|
loss = loss.mean() |
|
|
|
|
|
accelerator.backward(loss) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
params_to_clip = transformer.parameters() |
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
optimizer.step() |
|
|
lr_scheduler.step() |
|
|
optimizer.zero_grad() |
|
|
|
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
progress_bar.update(1) |
|
|
global_step += 1 |
|
|
if accelerator.is_main_process: |
|
|
if global_step % args.checkpointing_steps == 0: |
|
|
save_path = os.path.join(args.work_dir, f"checkpoint-{global_step}") |
|
|
accelerator.save_state(save_path) |
|
|
logger.info(f"Saved state to {save_path}") |
|
|
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
|
progress_bar.set_postfix(**logs) |
|
|
accelerator.log(logs, step=global_step) |
|
|
|
|
|
if global_step >= args.max_train_steps: |
|
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
|
accelerator.end_training() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = parse_args() |
|
|
main(args) |
|
|
|
|
|
|