Subject_Genius / train.py
cyd0806's picture
Upload train.py with huggingface_hub
5738a0f verified
import sys,os
current_dir = os.path.dirname(__file__)
sys.path.append(os.path.abspath(os.path.join(current_dir, '..')))
import argparse
import copy
import logging
import math
import os
from contextlib import contextmanager
import functools
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from packaging import version
from peft import LoraConfig
from tqdm.auto import tqdm
from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
from src.hook import save_model_hook,load_model_hook
import diffusers
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
FluxPipeline,
)
from src.SubjectGeniusTransformer2DModel import SubjectGeniusTransformer2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import cast_training_params, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
from src.dataloader import get_dataset,prepare_dataset,collate_fn
if is_wandb_available():
pass
from src.text_encoder import encode_prompt
from datetime import datetime
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
logger = get_logger(__name__, log_level="INFO")
@contextmanager
def preserve_requires_grad(model):
# 备份 requires_grad 状态
requires_grad_backup = {name: param.requires_grad for name, param in model.named_parameters()}
yield
# 恢复 requires_grad 状态
for name, param in model.named_parameters():
param.requires_grad = requires_grad_backup[name]
def load_text_encoders(class_one, class_two):
text_encoder_one = class_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
text_encoder_two = class_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
return text_encoder_one, text_encoder_two
def encode_images(pixels: torch.Tensor, vae: torch.nn.Module, weight_dtype):
pixel_latents = vae.encode(pixels.to(vae.dtype)).latent_dist.sample()
pixel_latents = (pixel_latents - vae.config.shift_factor) * vae.config.scaling_factor
return pixel_latents.to(weight_dtype)
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="training script.")
parser.add_argument( "--pretrained_model_name_or_path",type=str,default="ckpt/FLUX.1-schnell")
parser.add_argument("--transformer",type=str,default="ckpt/FLUX.1-schnell",)
parser.add_argument("--work_dir",type=str,default="output/train_result",)
parser.add_argument("--output_denoising_lora",type=str,default="depth_canny_union",)
parser.add_argument("--pretrained_condition_lora_dir",type=str,default="ckpt/Condition_LoRA",)
parser.add_argument("--training_adapter",type=str,default="ckpt/FLUX.1-schnell-training-adapter",)
parser.add_argument("--checkpointing_steps",type=int,default=1,)
parser.add_argument("--resume_from_checkpoint",type=str,default=None,)
parser.add_argument("--rank",type=int,default=4,help="The dimension of the LoRA rank.")
parser.add_argument("--dataset_name",type=str,default=[
"dataset/split_SubjectSpatial200K/train",
"dataset/split_SubjectSpatial200K/Collection3/train",
],
)
parser.add_argument("--image_column", type=str, default="image",)
parser.add_argument("--bbox_column",type=str,default="bbox",)
parser.add_argument("--canny_column",type=str,default="canny",)
parser.add_argument("--depth_column",type=str,default="depth",)
parser.add_argument("--condition_types",type=str,nargs='+',default=["depth","canny"],)
parser.add_argument("--max_sequence_length",type=int,default=512,help="Maximum sequence length to use with with the T5 text encoder")
parser.add_argument("--mixed_precision",type=str,default="bf16", choices=["no", "fp16", "bf16"],)
parser.add_argument("--cache_dir",type=str,default="cache",)
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument("--resolution",type=int,default=512,)
parser.add_argument("--train_batch_size", type=int, default=1)
parser.add_argument("--num_train_epochs", type=int, default=None)
parser.add_argument("--max_train_steps", type=int, default=30000,)
parser.add_argument("--gradient_accumulation_steps",type=int,default=2)
parser.add_argument("--learning_rate",type=float,default=1e-4)
parser.add_argument("--scale_lr",action="store_true",default=False,)
parser.add_argument("--lr_scheduler",type=str,default="cosine",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial","constant", "constant_with_warmup"])
parser.add_argument("--lr_warmup_steps", type=int, default=500,)
parser.add_argument("--weighting_scheme",type=str,default="none",
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'),
)
parser.add_argument("--dataloader_num_workers",type=int,default=0)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--enable_xformers_memory_efficient_attention", default=True)
args = parser.parse_args()
args.revision = None
args.variant = None
args.work_dir = os.path.join(args.work_dir,f"{datetime.now().strftime("%y_%m_%d-%H:%M")}")
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main(args):
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
os.makedirs(args.work_dir, exist_ok=True)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Load the tokenizers
tokenizer_one = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer_two = T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder"
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
# Load scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
text_encoder_one, text_encoder_two = load_text_encoders(text_encoder_cls_one, text_encoder_cls_two)
text_encoder_one = text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two = text_encoder_two.to(accelerator.device, dtype=weight_dtype)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
).to(accelerator.device, dtype=weight_dtype)
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
transformer = SubjectGeniusTransformer2DModel.from_pretrained(
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant
).to(accelerator.device, dtype=weight_dtype)
# load lora !!!!!
lora_names = args.condition_types
for condition_type in lora_names:
transformer.load_lora_adapter(f"{args.pretrained_condition_lora_dir}/{condition_type}.safetensors", adapter_name=condition_type)
transformer.load_lora_adapter(f"{args.training_adapter}/pytorch_lora_weights.safetensors", adapter_name="schnell_assistant")
logger.info("All models loaded successfully")
# freeze parameters of models to save more memory
transformer.requires_grad_(False)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
logger.info("All models keeps requires_grad = False")
single_transformer_blocks_lora = [
f"single_transformer_blocks.{i}.proj_out"
for i in range(len(transformer.single_transformer_blocks))
] + [
f"single_transformer_blocks.{i}.proj_mlp"
for i in range(len(transformer.single_transformer_blocks))
]
transformer_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=[
"x_embedder",
"norm1.linear",
"attn.to_q",
"attn.to_k",
"attn.to_v",
"attn.to_out.0",
"ff.net.2",
"norm.linear",
]+single_transformer_blocks_lora,
)
transformer.add_adapter(transformer_lora_config,adapter_name=args.output_denoising_lora)
logger.info(f"Trainable lora: {args.output_denoising_lora} is loaded successfully")
# hook
accelerator.register_save_state_pre_hook(functools.partial(save_model_hook,wanted_model=transformer,accelerator=accelerator,adapter_names=[args.output_denoising_lora]))
accelerator.register_load_state_pre_hook(functools.partial(load_model_hook,wanted_model=transformer,accelerator=accelerator,adapter_names=[args.output_denoising_lora]))
logger.info("Hooks for save and load is ok.")
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
transformer.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.scale_lr:
args.learning_rate = args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(transformer, dtype=torch.float32)
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
# Initialize the optimizer
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
transformer_lora_parameters,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
logger.info("Optimizer initialized successfully.")
# Preprocessing the datasets.
train_dataset = get_dataset(args)
train_dataset = prepare_dataset(train_dataset, vae_scale_factor, accelerator, args)
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
logger.info("Training dataset and Dataloader initialized successfully.")
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
def compute_text_embeddings(prompt, text_encoders, tokenizers):
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
text_encoders, tokenizers, prompt, args.max_sequence_length
)
prompt_embeds = prompt_embeds.to(accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
text_ids = text_ids.to(accelerator.device)
return prompt_embeds, pooled_prompt_embeds, text_ids
# Scheduler and math around the number of training steps.
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
if args.max_train_steps is None:
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
num_training_steps_for_scheduler = (
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
)
else:
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=num_warmup_steps_for_scheduler,
num_training_steps=num_training_steps_for_scheduler,
)
logger.info(f"lr_scheduler:{args.lr_scheduler} initialized successfully.")
with preserve_requires_grad(transformer):
transformer.set_adapters([i for i in lora_names] + [args.output_denoising_lora] + ["schnell_assistant"])
logger.info(f"Set Adapters:{[i for i in lora_names] + [args.output_denoising_lora] + ["schnell_assistant"]}")
# Prepare everything with our `accelerator`.
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
logger.warning(
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
f"This inconsistency may result in the learning rate scheduler not functioning properly."
)
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("SubjectGenius", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.work_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.work_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
for step, batch in enumerate(train_dataloader):
with torch.no_grad():
prompts = batch["descriptions"]
prompt_embeds, pooled_prompt_embeds, text_ids = compute_text_embeddings(
prompts, text_encoders, tokenizers
)
# 1.1 Convert images to latent space.
latent_image = encode_images(pixels=batch["pixel_values"],vae=vae,weight_dtype=weight_dtype)
# 1.2 Get positional id.
latent_image_ids = FluxPipeline._prepare_latent_image_ids(
latent_image.shape[0],
latent_image.shape[2] // 2,
latent_image.shape[3] // 2,
accelerator.device,
weight_dtype,
)
# 2.1 Convert Conditions to latent space list.
# 2.2 Get Conditions positional id list.
# 2.3 Get Conditions types string list.
# (bs, cond_num, c, h, w) -> [cond_num, (bs, c, h ,w)]
condition_latents = list(torch.unbind(batch["condition_latents"], dim=1))
# [cond_num, (len ,3) ]
condition_ids = []
# [cond_num]
condition_types = batch["condition_types"][0]
for i,images_per_condition in enumerate(condition_latents):
# i means condition No.i.
# images_per_condition = (bs, c, h ,w)
images_per_condition = encode_images(pixels=images_per_condition,vae=vae,weight_dtype=weight_dtype)
cond_ids = FluxPipeline._prepare_latent_image_ids(
images_per_condition.shape[0],
images_per_condition.shape[2] // 2,
images_per_condition.shape[3] // 2,
accelerator.device,
weight_dtype,
)
if condition_types[i] == "subject":
cond_ids[:, 2] += images_per_condition.shape[2] // 2
condition_ids.append(cond_ids)
condition_latents[i] = images_per_condition
# 3 Sample noise that we'll add to the latents
noise = torch.randn_like(latent_image)
bsz = latent_image.shape[0]
# 4 Sample a random timestep for each image
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=accelerator.device)
# 5 Add noise according to flow matching.
# zt = (1 - texp) * x + texp * z1
sigmas = get_sigmas(timesteps, n_dim=latent_image.ndim, dtype=latent_image.dtype)
noisy_model_input = (1.0 - sigmas) * latent_image + sigmas * noise
# 6.1 pack noisy_model_input
packed_noisy_model_input = FluxPipeline._pack_latents(
noisy_model_input,
batch_size=latent_image.shape[0],
num_channels_latents=latent_image.shape[1],
height=latent_image.shape[2],
width=latent_image.shape[3],
)
# 6.2 pack Conditions latents
for i, images_per_condition in enumerate(condition_latents):
condition_latents[i] = FluxPipeline._pack_latents(
images_per_condition,
batch_size=latent_image.shape[0],
num_channels_latents=latent_image.shape[1],
height=latent_image.shape[2],
width=latent_image.shape[3],
)
# 7 handle guidance
if accelerator.unwrap_model(transformer).config.guidance_embeds:
guidance = torch.tensor([args.guidance_scale], device=accelerator.device)
guidance = guidance.expand(latent_image.shape[0])
else:
guidance = None
with accelerator.accumulate(transformer):
# 8 Predict the noise residual
model_pred = transformer(
model_config={},
# Inputs of the condition (new feature)
condition_latents=condition_latents,
condition_ids=condition_ids,
condition_type_ids=None,
condition_types = condition_types,
# Inputs to the original transformer
hidden_states=packed_noisy_model_input,
timestep=timesteps / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
return_dict=False,
)[0]
model_pred = FluxPipeline._unpack_latents(
model_pred,
height=noisy_model_input.shape[2] * vae_scale_factor,
width=noisy_model_input.shape[3] * vae_scale_factor,
vae_scale_factor=vae_scale_factor,
)
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
# flow matching loss
target = noise - latent_image
loss = torch.mean(
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss = loss.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = transformer.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
save_path = os.path.join(args.work_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)