Upload SubjectGenius_gradio.py with huggingface_hub
Browse files- SubjectGenius_gradio.py +486 -0
SubjectGenius_gradio.py
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["FORCE_TORCH_LAYERNORM"] = "1"
|
| 3 |
+
import sys
|
| 4 |
+
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import json
|
| 8 |
+
import cv2
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
import tempfile
|
| 12 |
+
import os.path as osp
|
| 13 |
+
|
| 14 |
+
# 假设你的模型代码已经在同一目录或者正确的路径中
|
| 15 |
+
from src.condition import Condition
|
| 16 |
+
from src.SubjectGeniusTransformer2DModel import SubjectGeniusTransformer2DModel
|
| 17 |
+
from src.SubjectGeniusPipeline import SubjectGeniusPipeline
|
| 18 |
+
from accelerate.utils import set_seed
|
| 19 |
+
|
| 20 |
+
# 全局变量
|
| 21 |
+
weight_dtype = torch.bfloat16
|
| 22 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
transformer = None
|
| 24 |
+
pipe = None
|
| 25 |
+
TEMP_DIR = tempfile.mkdtemp()
|
| 26 |
+
|
| 27 |
+
# 默认参数设置,与原始推理脚本一致
|
| 28 |
+
DEFAULT_CONFIG = {
|
| 29 |
+
"pretrained_model_name_or_path": "/data/ydchen/VLP/SubjectGenius/model/FLUX.1-schnell",
|
| 30 |
+
"transformer": "/data/ydchen/VLP/SubjectGenius/model/FLUX.1-schnell/transformer",
|
| 31 |
+
"condition_types": ["fill", "subject"],
|
| 32 |
+
"denoising_lora": "/data/ydchen/VLP/SubjectGenius/model/Subject_genuis/Denoising_LoRA/subject_fill_union",
|
| 33 |
+
"denoising_lora_weight": 1.0,
|
| 34 |
+
"condition_lora_dir": "/data/ydchen/VLP/SubjectGenius/model/Subject_genuis/Condition_LoRA",
|
| 35 |
+
"resolution": 512,
|
| 36 |
+
"num_inference_steps": 8,
|
| 37 |
+
"max_sequence_length": 512
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
def load_model():
|
| 41 |
+
global transformer, pipe
|
| 42 |
+
|
| 43 |
+
print("开始加载transformer模型...")
|
| 44 |
+
# 加载transformer模型
|
| 45 |
+
transformer = SubjectGeniusTransformer2DModel.from_pretrained(
|
| 46 |
+
pretrained_model_name_or_path=DEFAULT_CONFIG["transformer"],
|
| 47 |
+
).to(device=device, dtype=weight_dtype)
|
| 48 |
+
print("transformer模型加载完成")
|
| 49 |
+
|
| 50 |
+
print("开始加载condition LoRA...")
|
| 51 |
+
# 加载condition LoRA
|
| 52 |
+
for condition_type in DEFAULT_CONFIG["condition_types"]:
|
| 53 |
+
print(f"加载{condition_type} LoRA...")
|
| 54 |
+
transformer.load_lora_adapter(
|
| 55 |
+
f"{DEFAULT_CONFIG['condition_lora_dir']}/{condition_type}.safetensors",
|
| 56 |
+
adapter_name=condition_type
|
| 57 |
+
)
|
| 58 |
+
print("所有condition LoRA加载完成")
|
| 59 |
+
|
| 60 |
+
print("开始创建pipeline...")
|
| 61 |
+
# 创建pipeline
|
| 62 |
+
pipe = SubjectGeniusPipeline.from_pretrained(
|
| 63 |
+
DEFAULT_CONFIG["pretrained_model_name_or_path"],
|
| 64 |
+
torch_dtype=weight_dtype,
|
| 65 |
+
transformer=None
|
| 66 |
+
)
|
| 67 |
+
print("pipeline创建完成")
|
| 68 |
+
|
| 69 |
+
print("设置transformer...")
|
| 70 |
+
pipe.transformer = transformer
|
| 71 |
+
|
| 72 |
+
print("设置adapter...")
|
| 73 |
+
# 设置adapter
|
| 74 |
+
pipe.transformer.set_adapters([i for i in DEFAULT_CONFIG["condition_types"]])
|
| 75 |
+
pipe = pipe.to(device)
|
| 76 |
+
print("模型完全加载完成!")
|
| 77 |
+
|
| 78 |
+
return "模型加载完成!"
|
| 79 |
+
|
| 80 |
+
def process_image_for_display(image_array):
|
| 81 |
+
"""将图像处理为适合显示的格式,保持原始尺寸,但确保是RGB格式"""
|
| 82 |
+
if image_array is None:
|
| 83 |
+
return None
|
| 84 |
+
|
| 85 |
+
# 如果是PIL图像,转换为numpy数组
|
| 86 |
+
if isinstance(image_array, Image.Image):
|
| 87 |
+
image_array = np.array(image_array)
|
| 88 |
+
|
| 89 |
+
# 确保是RGB格式
|
| 90 |
+
if len(image_array.shape) == 2: # 灰度图像
|
| 91 |
+
image_array = cv2.cvtColor(image_array, cv2.COLOR_GRAY2RGB)
|
| 92 |
+
elif image_array.shape[2] == 4: # RGBA图像
|
| 93 |
+
image_array = image_array[:, :, :3]
|
| 94 |
+
|
| 95 |
+
return image_array
|
| 96 |
+
|
| 97 |
+
def save_image_for_model(image_array, path):
|
| 98 |
+
"""保存图像用于模型输入"""
|
| 99 |
+
if image_array is None:
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
+
# 确保目录存在
|
| 103 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 104 |
+
|
| 105 |
+
# 如果是PIL图像,直接保存
|
| 106 |
+
if isinstance(image_array, Image.Image):
|
| 107 |
+
image_array.save(path)
|
| 108 |
+
return path
|
| 109 |
+
|
| 110 |
+
# 如果是numpy数组,转换为PIL图像再保存
|
| 111 |
+
Image.fromarray(process_image_for_display(image_array)).save(path)
|
| 112 |
+
return path
|
| 113 |
+
|
| 114 |
+
def preserve_aspect_ratio(image, target_size=(512, 512)):
|
| 115 |
+
"""保持原始比例调整图像大小"""
|
| 116 |
+
if isinstance(image, np.ndarray):
|
| 117 |
+
pil_image = Image.fromarray(image)
|
| 118 |
+
else:
|
| 119 |
+
pil_image = image
|
| 120 |
+
|
| 121 |
+
# 计算宽高比
|
| 122 |
+
width, height = pil_image.size
|
| 123 |
+
aspect_ratio = width / height
|
| 124 |
+
|
| 125 |
+
# 创建新的白色背景图像
|
| 126 |
+
new_image = Image.new("RGB", target_size, (255, 255, 255))
|
| 127 |
+
|
| 128 |
+
# 保持比例缩放
|
| 129 |
+
if aspect_ratio > 1: # 宽图
|
| 130 |
+
new_width = target_size[0]
|
| 131 |
+
new_height = int(new_width / aspect_ratio)
|
| 132 |
+
else: # 高图
|
| 133 |
+
new_height = target_size[1]
|
| 134 |
+
new_width = int(new_height * aspect_ratio)
|
| 135 |
+
|
| 136 |
+
# 调整大小
|
| 137 |
+
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
| 138 |
+
|
| 139 |
+
# 居中粘贴到新图像
|
| 140 |
+
paste_position = ((target_size[0] - new_width) // 2,
|
| 141 |
+
(target_size[1] - new_height) // 2)
|
| 142 |
+
new_image.paste(resized_image, paste_position)
|
| 143 |
+
|
| 144 |
+
return new_image
|
| 145 |
+
|
| 146 |
+
def generate_image(
|
| 147 |
+
prompt,
|
| 148 |
+
subject_image,
|
| 149 |
+
background_image,
|
| 150 |
+
x1, y1, x2, y2,
|
| 151 |
+
version="training-free",
|
| 152 |
+
seed=0,
|
| 153 |
+
num_inference_steps=8
|
| 154 |
+
):
|
| 155 |
+
global pipe
|
| 156 |
+
|
| 157 |
+
# 确保模型已加载
|
| 158 |
+
if pipe is None:
|
| 159 |
+
load_model()
|
| 160 |
+
|
| 161 |
+
# 检查输入
|
| 162 |
+
if subject_image is None or background_image is None:
|
| 163 |
+
return None, None, "请同时上传主体图像和背景图像"
|
| 164 |
+
|
| 165 |
+
try:
|
| 166 |
+
# 将坐标转换为整数
|
| 167 |
+
x1, y1, x2, y2 = int(float(x1)), int(float(y1)), int(float(x2)), int(float(y2))
|
| 168 |
+
if x1 > x2: x1, x2 = x2, x1
|
| 169 |
+
if y1 > y2: y1, y2 = y2, y1
|
| 170 |
+
|
| 171 |
+
# 准备模型所需的固定尺寸图像
|
| 172 |
+
MODEL_SIZE = (512, 512)
|
| 173 |
+
|
| 174 |
+
# 1. 处理主体图像 - 保持原始比例,但调整到模型可接受的尺寸
|
| 175 |
+
subject_pil = Image.fromarray(subject_image) if isinstance(subject_image, np.ndarray) else subject_image
|
| 176 |
+
# 创建白色背景
|
| 177 |
+
subject_processed = Image.new("RGB", MODEL_SIZE, (255, 255, 255))
|
| 178 |
+
# 保持比例调整大小
|
| 179 |
+
subject_pil.thumbnail((MODEL_SIZE[0], MODEL_SIZE[1]), Image.LANCZOS)
|
| 180 |
+
# 居中粘贴
|
| 181 |
+
paste_pos = ((MODEL_SIZE[0] - subject_pil.width) // 2,
|
| 182 |
+
(MODEL_SIZE[1] - subject_pil.height) // 2)
|
| 183 |
+
subject_processed.paste(subject_pil, paste_pos)
|
| 184 |
+
|
| 185 |
+
# 2. 处理背景图像 - 同样保持原始比例
|
| 186 |
+
background_pil = Image.fromarray(background_image) if isinstance(background_image, np.ndarray) else background_image
|
| 187 |
+
|
| 188 |
+
# 保存原始尺寸,用于坐标转换
|
| 189 |
+
orig_width, orig_height = background_pil.size
|
| 190 |
+
|
| 191 |
+
# 调整背景图像大小,保持比例
|
| 192 |
+
background_processed = Image.new("RGB", MODEL_SIZE, (255, 255, 255))
|
| 193 |
+
background_pil.thumbnail((MODEL_SIZE[0], MODEL_SIZE[1]), Image.LANCZOS)
|
| 194 |
+
bg_paste_pos = ((MODEL_SIZE[0] - background_pil.width) // 2,
|
| 195 |
+
(MODEL_SIZE[1] - background_pil.height) // 2)
|
| 196 |
+
background_processed.paste(background_pil, bg_paste_pos)
|
| 197 |
+
|
| 198 |
+
# 3. 计算调整后的bbox坐标
|
| 199 |
+
scale_x = background_pil.width / orig_width
|
| 200 |
+
scale_y = background_pil.height / orig_height
|
| 201 |
+
|
| 202 |
+
adjusted_x1 = int(x1 * scale_x) + bg_paste_pos[0]
|
| 203 |
+
adjusted_y1 = int(y1 * scale_y) + bg_paste_pos[1]
|
| 204 |
+
adjusted_x2 = int(x2 * scale_x) + bg_paste_pos[0]
|
| 205 |
+
adjusted_y2 = int(y2 * scale_y) + bg_paste_pos[1]
|
| 206 |
+
|
| 207 |
+
# 确保坐标在有效范围内
|
| 208 |
+
adjusted_x1 = max(0, min(adjusted_x1, MODEL_SIZE[0]-1))
|
| 209 |
+
adjusted_y1 = max(0, min(adjusted_y1, MODEL_SIZE[1]-1))
|
| 210 |
+
adjusted_x2 = max(0, min(adjusted_x2, MODEL_SIZE[0]-1))
|
| 211 |
+
adjusted_y2 = max(0, min(adjusted_y2, MODEL_SIZE[1]-1))
|
| 212 |
+
|
| 213 |
+
# 最终bbox
|
| 214 |
+
bbox = [adjusted_x1, adjusted_y1, adjusted_x2, adjusted_y2]
|
| 215 |
+
|
| 216 |
+
# 4. 创建用于展示的背景图像副本(用于可视化结果)
|
| 217 |
+
background_display = background_processed.copy()
|
| 218 |
+
|
| 219 |
+
# 5. 在实际输入到模型的背景图像上将选定区域填充为黑色
|
| 220 |
+
background_for_model = background_processed.copy()
|
| 221 |
+
background_for_model_array = np.array(background_for_model)
|
| 222 |
+
# 将选定区域填充为黑色
|
| 223 |
+
background_for_model_array[adjusted_y1:adjusted_y2+1, adjusted_x1:adjusted_x2+1] = (0, 0, 0)
|
| 224 |
+
background_for_model = Image.fromarray(background_for_model_array)
|
| 225 |
+
|
| 226 |
+
# 6. 创建模型条件
|
| 227 |
+
subject_condition = Condition("subject", raw_img=subject_processed, no_process=True)
|
| 228 |
+
# 使用黑色区域的背景图像作为填充条件
|
| 229 |
+
fill_condition = Condition("fill", raw_img=background_for_model, no_process=True)
|
| 230 |
+
|
| 231 |
+
conditions = [subject_condition, fill_condition]
|
| 232 |
+
|
| 233 |
+
# 7. 设置随机种子
|
| 234 |
+
if seed is not None:
|
| 235 |
+
set_seed(seed)
|
| 236 |
+
|
| 237 |
+
# 8. 准备JSON数据
|
| 238 |
+
json_data = {
|
| 239 |
+
"description": prompt,
|
| 240 |
+
"bbox": bbox
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
# 9. 设置模型模式
|
| 244 |
+
if version == "training-based":
|
| 245 |
+
denoising_lora_name = os.path.basename(os.path.normpath(DEFAULT_CONFIG["denoising_lora"]))
|
| 246 |
+
pipe.transformer.load_lora_adapter(
|
| 247 |
+
DEFAULT_CONFIG["denoising_lora"],
|
| 248 |
+
adapter_name=denoising_lora_name,
|
| 249 |
+
use_safetensors=True
|
| 250 |
+
)
|
| 251 |
+
pipe.transformer.set_adapters(
|
| 252 |
+
[i for i in DEFAULT_CONFIG["condition_types"]] + [denoising_lora_name],
|
| 253 |
+
[1.0, 1.0, DEFAULT_CONFIG["denoising_lora_weight"]]
|
| 254 |
+
)
|
| 255 |
+
elif version == "training-free":
|
| 256 |
+
pipe.transformer.set_adapters([i for i in DEFAULT_CONFIG["condition_types"]])
|
| 257 |
+
|
| 258 |
+
# 10. 生成图像
|
| 259 |
+
result_img = pipe(
|
| 260 |
+
prompt=prompt,
|
| 261 |
+
conditions=conditions,
|
| 262 |
+
height=MODEL_SIZE[1],
|
| 263 |
+
width=MODEL_SIZE[0],
|
| 264 |
+
num_inference_steps=num_inference_steps,
|
| 265 |
+
max_sequence_length=DEFAULT_CONFIG["max_sequence_length"],
|
| 266 |
+
model_config={"json_data": json_data},
|
| 267 |
+
).images[0]
|
| 268 |
+
|
| 269 |
+
# 11. 创建可视化结果(拼接图像)
|
| 270 |
+
concat_image = Image.new("RGB", (MODEL_SIZE[0] * 3, MODEL_SIZE[1]), (255, 255, 255))
|
| 271 |
+
|
| 272 |
+
# 添加主体图像
|
| 273 |
+
concat_image.paste(subject_processed, (0, 0))
|
| 274 |
+
|
| 275 |
+
# 添加实际输入模型的背景图像(包含黑色区域)
|
| 276 |
+
concat_image.paste(background_for_model, (MODEL_SIZE[0], 0))
|
| 277 |
+
|
| 278 |
+
# 添加生成结果
|
| 279 |
+
concat_image.paste(result_img, (MODEL_SIZE[0] * 2, 0))
|
| 280 |
+
|
| 281 |
+
return concat_image, result_img, "生成成功!"
|
| 282 |
+
|
| 283 |
+
except Exception as e:
|
| 284 |
+
import traceback
|
| 285 |
+
traceback.print_exc()
|
| 286 |
+
return None, None, f"生成图像时发生错误: {str(e)}"
|
| 287 |
+
|
| 288 |
+
def draw_bbox(background_image, evt: gr.SelectData):
|
| 289 |
+
"""处理用户在图片上的选择,绘制矩形"""
|
| 290 |
+
# 初始化边界框
|
| 291 |
+
if not hasattr(draw_bbox, "start_point"):
|
| 292 |
+
draw_bbox.start_point = None
|
| 293 |
+
draw_bbox.current_image = None
|
| 294 |
+
|
| 295 |
+
# 检查背景图像
|
| 296 |
+
if background_image is None:
|
| 297 |
+
return background_image, "", "", "", ""
|
| 298 |
+
|
| 299 |
+
try:
|
| 300 |
+
# 获取图像尺寸
|
| 301 |
+
h, w = background_image.shape[:2]
|
| 302 |
+
|
| 303 |
+
# 处理目标宽度和高度
|
| 304 |
+
target_width = getattr(evt, 'target_width', None) or getattr(evt.target, 'width', None) or w
|
| 305 |
+
target_height = getattr(evt, 'target_height', None) or getattr(evt.target, 'height', None) or h
|
| 306 |
+
|
| 307 |
+
# 计算缩放比例
|
| 308 |
+
scale_x = w / target_width if target_width else 1.0
|
| 309 |
+
scale_y = h / target_height if target_height else 1.0
|
| 310 |
+
|
| 311 |
+
# 获取点击坐标
|
| 312 |
+
x = min(max(0, int(evt.index[0] * scale_x)), w-1)
|
| 313 |
+
y = min(max(0, int(evt.index[1] * scale_y)), h-1)
|
| 314 |
+
|
| 315 |
+
# 如果是第一次点击,记录起始点
|
| 316 |
+
if draw_bbox.start_point is None:
|
| 317 |
+
draw_bbox.start_point = (x, y)
|
| 318 |
+
draw_bbox.current_image = background_image.copy()
|
| 319 |
+
return background_image, "", "", "", ""
|
| 320 |
+
|
| 321 |
+
# 第二次点击,完成矩形
|
| 322 |
+
end_point = (x, y)
|
| 323 |
+
|
| 324 |
+
# 确保坐标有序
|
| 325 |
+
x1 = min(draw_bbox.start_point[0], end_point[0])
|
| 326 |
+
y1 = min(draw_bbox.start_point[1], end_point[1])
|
| 327 |
+
x2 = max(draw_bbox.start_point[0], end_point[0])
|
| 328 |
+
y2 = max(draw_bbox.start_point[1], end_point[1])
|
| 329 |
+
|
| 330 |
+
# 绘制矩形
|
| 331 |
+
img_with_rect = draw_bbox.current_image.copy()
|
| 332 |
+
cv2.rectangle(img_with_rect, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 333 |
+
|
| 334 |
+
# 重置起始点
|
| 335 |
+
draw_bbox.start_point = None
|
| 336 |
+
|
| 337 |
+
return img_with_rect, str(x1), str(y1), str(x2), str(y2)
|
| 338 |
+
|
| 339 |
+
except Exception as e:
|
| 340 |
+
print(f"绘制边界框时发生错误: {e}")
|
| 341 |
+
draw_bbox.start_point = None
|
| 342 |
+
return background_image, "", "", "", ""
|
| 343 |
+
|
| 344 |
+
def update_bbox_from_input(background_image, x1, y1, x2, y2):
|
| 345 |
+
"""根据输入的坐标值更新矩形框"""
|
| 346 |
+
try:
|
| 347 |
+
if background_image is None:
|
| 348 |
+
return background_image
|
| 349 |
+
|
| 350 |
+
# 尝试将坐标转换为整数
|
| 351 |
+
x1, y1, x2, y2 = int(float(x1) if x1 else 0), int(float(y1) if y1 else 0), \
|
| 352 |
+
int(float(x2) if x2 else 0), int(float(y2) if y2 else 0)
|
| 353 |
+
|
| 354 |
+
# 获取图像尺寸
|
| 355 |
+
h, w = background_image.shape[:2]
|
| 356 |
+
|
| 357 |
+
# 边界检查
|
| 358 |
+
x1 = max(0, min(x1, w-1))
|
| 359 |
+
y1 = max(0, min(y1, h-1))
|
| 360 |
+
x2 = max(0, min(x2, w-1))
|
| 361 |
+
y2 = max(0, min(y2, h-1))
|
| 362 |
+
|
| 363 |
+
# 确保x1 < x2, y1 < y2
|
| 364 |
+
if x1 > x2:
|
| 365 |
+
x1, x2 = x2, x1
|
| 366 |
+
if y1 > y2:
|
| 367 |
+
y1, y2 = y2, y1
|
| 368 |
+
|
| 369 |
+
# 绘制矩形
|
| 370 |
+
img_with_rect = background_image.copy()
|
| 371 |
+
cv2.rectangle(img_with_rect, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 372 |
+
|
| 373 |
+
return img_with_rect
|
| 374 |
+
except:
|
| 375 |
+
return background_image
|
| 376 |
+
|
| 377 |
+
def reset_bbox(background_image):
|
| 378 |
+
"""重置边界框和图像"""
|
| 379 |
+
if hasattr(draw_bbox, "start_point"):
|
| 380 |
+
draw_bbox.start_point = None
|
| 381 |
+
|
| 382 |
+
if background_image is None:
|
| 383 |
+
return None, "", "", "", ""
|
| 384 |
+
else:
|
| 385 |
+
return background_image.copy(), "", "", "", ""
|
| 386 |
+
|
| 387 |
+
# 创建Gradio界面
|
| 388 |
+
def create_interface():
|
| 389 |
+
with gr.Blocks(title="SubjectGenius 图像生成器") as demo:
|
| 390 |
+
gr.Markdown("# SubjectGenius 图像生成器")
|
| 391 |
+
gr.Markdown("上传参考图像和背景图像,并在背景上选择区域来生成新的图像。")
|
| 392 |
+
|
| 393 |
+
status_message = gr.Textbox(label="状态信息", interactive=False)
|
| 394 |
+
|
| 395 |
+
with gr.Row():
|
| 396 |
+
with gr.Column(scale=1):
|
| 397 |
+
gr.Markdown("### 输入参数")
|
| 398 |
+
|
| 399 |
+
prompt = gr.Textbox(label="图像描述文本", placeholder="例如:A decorative fabric topper for windows.")
|
| 400 |
+
|
| 401 |
+
with gr.Row():
|
| 402 |
+
subject_image = gr.Image(label="主体图像 (Subject)", type="numpy")
|
| 403 |
+
background_image = gr.Image(label="背景图像 (Fill)", type="numpy")
|
| 404 |
+
|
| 405 |
+
gr.Markdown("### 在背景图上选择区域(点击两次确定对角线顶点)或手动输入坐标")
|
| 406 |
+
|
| 407 |
+
with gr.Row():
|
| 408 |
+
x1_input = gr.Textbox(label="X1", placeholder="左上角 X 坐标")
|
| 409 |
+
y1_input = gr.Textbox(label="Y1", placeholder="左上角 Y 坐标")
|
| 410 |
+
x2_input = gr.Textbox(label="X2", placeholder="右下角 X 坐标")
|
| 411 |
+
y2_input = gr.Textbox(label="Y2", placeholder="右下角 Y 坐标")
|
| 412 |
+
reset_btn = gr.Button("重置选择")
|
| 413 |
+
|
| 414 |
+
with gr.Accordion("高级选项", open=False):
|
| 415 |
+
version = gr.Radio(
|
| 416 |
+
["training-free", "training-based"],
|
| 417 |
+
label="版本",
|
| 418 |
+
value="training-free"
|
| 419 |
+
)
|
| 420 |
+
seed = gr.Slider(
|
| 421 |
+
0, 1000, value=0, step=1,
|
| 422 |
+
label="随机种子"
|
| 423 |
+
)
|
| 424 |
+
steps = gr.Slider(
|
| 425 |
+
4, 50, value=8, step=1,
|
| 426 |
+
label="推理步数(越大越慢但质量可能更好)"
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
generate_btn = gr.Button("生成图像", variant="primary")
|
| 430 |
+
|
| 431 |
+
with gr.Column(scale=1):
|
| 432 |
+
gr.Markdown("### 预览区域选择")
|
| 433 |
+
preview_image = gr.Image(label="区域预览", type="numpy", elem_id="preview_image")
|
| 434 |
+
|
| 435 |
+
gr.Markdown("### 生成结果")
|
| 436 |
+
with gr.Tabs():
|
| 437 |
+
with gr.TabItem("完整结果"):
|
| 438 |
+
output_image_full = gr.Image(label="完整结果(包含条件图像)")
|
| 439 |
+
with gr.TabItem("仅生成图像"):
|
| 440 |
+
output_image = gr.Image(label="生成图像")
|
| 441 |
+
|
| 442 |
+
# 事件处理
|
| 443 |
+
background_image.select(
|
| 444 |
+
draw_bbox,
|
| 445 |
+
inputs=[background_image],
|
| 446 |
+
outputs=[preview_image, x1_input, y1_input, x2_input, y2_input]
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
# 坐标输入同步更新预览
|
| 450 |
+
coord_inputs = [x1_input, y1_input, x2_input, y2_input]
|
| 451 |
+
for coord in coord_inputs:
|
| 452 |
+
coord.change(
|
| 453 |
+
update_bbox_from_input,
|
| 454 |
+
inputs=[background_image, x1_input, y1_input, x2_input, y2_input],
|
| 455 |
+
outputs=[preview_image]
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
# 重置按钮
|
| 459 |
+
reset_btn.click(
|
| 460 |
+
reset_bbox,
|
| 461 |
+
inputs=[background_image],
|
| 462 |
+
outputs=[preview_image, x1_input, y1_input, x2_input, y2_input]
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
# 生成按钮
|
| 466 |
+
generate_btn.click(
|
| 467 |
+
generate_image,
|
| 468 |
+
inputs=[prompt, subject_image, background_image,
|
| 469 |
+
x1_input, y1_input, x2_input, y2_input,
|
| 470 |
+
version, seed, steps],
|
| 471 |
+
outputs=[output_image_full, output_image, status_message]
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
return demo
|
| 475 |
+
|
| 476 |
+
# 主函数
|
| 477 |
+
if __name__ == "__main__":
|
| 478 |
+
# 创建界面
|
| 479 |
+
demo = create_interface()
|
| 480 |
+
|
| 481 |
+
# 加载模型
|
| 482 |
+
print("正在加载模型...")
|
| 483 |
+
load_model()
|
| 484 |
+
|
| 485 |
+
# 启动Gradio
|
| 486 |
+
demo.launch(share=True)
|