Datasets:
File size: 4,516 Bytes
6f969b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
dataset_info:
features:
- name: agentname
dtype: string
- name: description
dtype: string
- name: systemprompt
dtype: string
- name: chatgptlink
dtype: string
- name: json-schema
dtype: string
- name: is-agent
dtype: bool
- name: is-single-turn
dtype: string
configs:
- config_name: default
data_files:
- split: train
path: prompts.json
download_size: 2281040
dataset_size: 2281040
task_categories:
- text-generation
language:
- en
tags:
- system-prompts
- ai-agents
- prompt-engineering
- conversational-ai
- llm
- chatgpt
license: mit
size_categories:
- 100<n<1K
---
# System Prompts Dataset - August 2025
**Point-in-time export from Daniel Rosehill's system prompt library as of August 3rd, 2025**
## Overview
This repository contains a comprehensive collection of 944 system prompts designed for various AI applications, agent workflows, and conversational AI systems. While many of these prompts now serve as the foundation for more complex agent-based workflows, they continue to provide essential building blocks for AI system design and implementation.
## Dataset Structure
The dataset is provided as a single JSON file (`prompts.json`) containing:
- **944 unique system prompts** covering diverse use cases
- Structured metadata including generation timestamp and source information
- Detailed prompt descriptions and categorization
- Links to associated ChatGPT implementations where applicable
- Agent workflow indicators and configuration flags
### JSON Schema
Each prompt entry contains:
```json
{
"agentname": "Descriptive name for the prompt/agent",
"description": "Brief description of the prompt's purpose",
"systemprompt": "The actual system prompt text",
"chatgptlink": "URL to ChatGPT implementation (if available)",
"json-schema": "Associated JSON schema (if applicable)",
"is-agent": "Boolean indicating if this is part of an agent workflow",
"is-single-turn": "Boolean indicating conversation type"
}
```
## Use Cases
### Foundation for Agent Workflows
Many prompts in this collection serve as the base layer for sophisticated agent-based systems, providing:
- Initial system context and behavior definition
- Role-specific instructions for specialized agents
- Consistent interaction patterns across agent networks
### Direct Implementation
Prompts can be used directly for:
- Conversational AI systems
- Task-specific AI assistants
- Content generation workflows
- Analysis and processing pipelines
### Research and Development
- Prompt engineering research
- AI behavior analysis
- System prompt effectiveness studies
- Comparative AI system development
## Categories Covered
The collection spans numerous domains including:
- Task management and productivity
- Content creation and editing
- Technical assistance and coding
- Analysis and research support
- Creative and artistic applications
- Business and professional workflows
- Educational and training scenarios
## Usage
### Loading the Dataset
```python
import json
with open('prompts.json', 'r') as f:
data = json.load(f)
prompts = data['prompts']
metadata = data['metadata']
print(f"Total prompts: {metadata['total_prompts']}")
```
### Filtering by Type
```python
# Get agent-based prompts
agent_prompts = [p for p in prompts if p.get('is-agent', False)]
# Get single-turn prompts
single_turn = [p for p in prompts if p.get('is-single-turn') == 'true']
```
## Dataset Metadata
- **Generated**: August 3rd, 2025
- **Total Prompts**: 944
- **Format**: JSON
- **Source**: Daniel Rosehill's system prompt library
- **License**: [Please specify license]
## Evolution and Context
This dataset represents a snapshot of an actively maintained system prompt library. While the AI landscape continues to evolve toward more sophisticated agent-based architectures, these foundational prompts remain valuable for:
1. **Rapid prototyping** of new AI applications
2. **Educational purposes** in prompt engineering
3. **Baseline establishment** for AI system behavior
4. **Component reuse** in larger agent frameworks
## Contact
For questions, feedback, or collaboration opportunities:
- **Website**: [danielrosehill.com](https://danielrosehill.com)
- **Email**: [public@danielrosehill.com](mailto:public@danielrosehill.com)
---
*This dataset reflects the state of system prompt development as of August 3rd, 2025, and serves as both a practical resource and a historical snapshot of AI prompt engineering practices.*
|