File size: 1,711 Bytes
ead9383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import os
from fastapi import FastAPI
import subprocess
import wandb
from huggingface_hub import HfApi
TOKEN = os.environ.get("DATACOMP_TOKEN")
API = HfApi(token=TOKEN)
wandb_api_key = os.environ.get('wandb_api_key')
wandb.login(key=wandb_api_key)
random_num = 10.0
subset = 'frac-1over32'
experiment_name = f"ImageNetTraining{random_num}-{subset}"
experiment_repo = f"datacomp/{experiment_name}"
app = FastAPI()
@app.get("/")
def start_train():
os.system("echo '#### pwd'")
os.system("pwd")
os.system("echo '#### ls'")
os.system("ls")
# Create a place to put the output.
os.system("echo 'Creating results output repository in case it does not exist yet...'")
try:
API.create_repo(repo_id=f"{experiment_repo}", repo_type="dataset",)
os.system(f"echo 'Created results output repository {experiment_repo}'")
except:
os.system("echo 'Already there; skipping.'")
pass
os.system("echo 'Beginning processing.'")
# Handles CUDA OOM errors.
os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
os.system("echo 'Okay, trying training.'")
os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-{random_num}-{subset} --log-wandb --experiment {experiment_name} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
os.system("echo 'Done'.")
os.system("ls")
# Upload output to repository
os.system("echo 'trying to upload...'")
API.upload_folder(folder_path="/app", repo_id=f"{experiment_repo}", repo_type="dataset",)
API.pause_space(experiment_repo)
return {"Completed": "!"} |