Diwank Singh
commited on
Commit
·
c0cdaf0
1
Parent(s):
b47751a
Update config file
Browse filesSigned-off-by: Diwank Singh <diwank.singh@gmail.com>
- hinglish-dump.py +9 -36
hinglish-dump.py
CHANGED
|
@@ -7,7 +7,7 @@
|
|
| 7 |
"""Raw merged dump of Hinglish (hi-EN) datasets."""
|
| 8 |
|
| 9 |
|
| 10 |
-
import
|
| 11 |
import os
|
| 12 |
|
| 13 |
import datasets
|
|
@@ -20,36 +20,8 @@ _HOMEPAGE = "https://huggingface.co/datasets/diwank/hinglish-dump"
|
|
| 20 |
_LICENSE = "MIT"
|
| 21 |
|
| 22 |
_URLS = {
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
])),
|
| 26 |
-
"fire2013": list(map(lambda x: f"{_HOMEPAGE}/resolve/main/data/{x}" , [
|
| 27 |
-
"fire2013/HindiEnglish_FIRE2013_AnnotatedDev.txt",
|
| 28 |
-
"fire2013/HindiEnglish_FIRE2013_Test_GT.txt",
|
| 29 |
-
])),
|
| 30 |
-
"hindi_romanized_dump": list(map(lambda x: f"{_HOMEPAGE}/resolve/main/data/{x}" , [
|
| 31 |
-
"hindi_romanized_dump/hi_rom.txt",
|
| 32 |
-
])),
|
| 33 |
-
"hindi_xlit": list(map(lambda x: f"{_HOMEPAGE}/resolve/main/data/{x}" , [
|
| 34 |
-
"hindi_xlit/HiEn_ann1_test.json",
|
| 35 |
-
"hindi_xlit/HiEn_ann1_train.json",
|
| 36 |
-
"hindi_xlit/HiEn_ann1_valid.json",
|
| 37 |
-
])),
|
| 38 |
-
"hinge": list(map(lambda x: f"{_HOMEPAGE}/resolve/main/data/{x}" , [
|
| 39 |
-
"hinge/eval_human.csv",
|
| 40 |
-
"hinge/train_human.csv",
|
| 41 |
-
"hinge/train_synthetic.csv",
|
| 42 |
-
"hinge/eval_synthetic.csv",
|
| 43 |
-
])),
|
| 44 |
-
"hinglish_norm": list(map(lambda x: f"{_HOMEPAGE}/resolve/main/data/{x}" , [
|
| 45 |
-
"hinglish_norm/hinglishNorm_trainSet.json",
|
| 46 |
-
])),
|
| 47 |
-
"news2018": list(map(lambda x: f"{_HOMEPAGE}/resolve/main/data/{x}" , [
|
| 48 |
-
"news2018/NEWS2018_M-EnHi_tst.xml",
|
| 49 |
-
"news2018/NEWS2018_M-EnHi_trn.xml",
|
| 50 |
-
"news2018/NEWS2018_M-EnHi_dev.xml",
|
| 51 |
-
])),
|
| 52 |
-
}
|
| 53 |
|
| 54 |
config_names = _URLS.keys()
|
| 55 |
version = datasets.Version("1.0.0")
|
|
@@ -81,22 +53,23 @@ class HinglishDumpDataset(datasets.DatasetBuilder):
|
|
| 81 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 82 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 83 |
|
| 84 |
-
|
|
|
|
| 85 |
|
| 86 |
return [
|
| 87 |
datasets.SplitGenerator(
|
| 88 |
name=datasets.Split.TRAIN,
|
| 89 |
-
gen_kwargs={"filepath":
|
| 90 |
),
|
| 91 |
datasets.SplitGenerator(
|
| 92 |
name=datasets.Split.VALIDATION,
|
| 93 |
-
gen_kwargs={"filepath":
|
| 94 |
),
|
| 95 |
datasets.SplitGenerator(
|
| 96 |
name=datasets.Split.TEST,
|
| 97 |
-
gen_kwargs={"filepath":
|
| 98 |
),
|
| 99 |
]
|
| 100 |
|
| 101 |
def _generate_examples(self, filepath, split):
|
| 102 |
-
return
|
|
|
|
| 7 |
"""Raw merged dump of Hinglish (hi-EN) datasets."""
|
| 8 |
|
| 9 |
|
| 10 |
+
import pandas as pd
|
| 11 |
import os
|
| 12 |
|
| 13 |
import datasets
|
|
|
|
| 20 |
_LICENSE = "MIT"
|
| 21 |
|
| 22 |
_URLS = {
|
| 23 |
+
subset: f"{_HOMEPAGE}/resolve/main/data/{subset}/data.h5"
|
| 24 |
+
for subset in "crowd_transliteration hindi_romanized_dump hindi_xlit hinge hinglish_norm news2018".split() }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
config_names = _URLS.keys()
|
| 27 |
version = datasets.Version("1.0.0")
|
|
|
|
| 53 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 54 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 55 |
|
| 56 |
+
urls = _URLS[self.config.name]
|
| 57 |
+
data_dir = self.data_dir = dl_manager.download_and_extract(urls)
|
| 58 |
|
| 59 |
return [
|
| 60 |
datasets.SplitGenerator(
|
| 61 |
name=datasets.Split.TRAIN,
|
| 62 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "data.h5"), "split": "train"},
|
| 63 |
),
|
| 64 |
datasets.SplitGenerator(
|
| 65 |
name=datasets.Split.VALIDATION,
|
| 66 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "data.h5"), "split": "eval"},
|
| 67 |
),
|
| 68 |
datasets.SplitGenerator(
|
| 69 |
name=datasets.Split.TEST,
|
| 70 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "data.h5"), "split": "test"},
|
| 71 |
),
|
| 72 |
]
|
| 73 |
|
| 74 |
def _generate_examples(self, filepath, split):
|
| 75 |
+
return pd.read_hdf(filepath, key=split)
|