File size: 2,510 Bytes
951d846
 
 
 
 
 
 
 
 
 
 
 
b548422
951d846
 
 
 
 
 
 
581f710
951d846
 
 
87b2380
13b8d4a
 
 
951d846
 
 
 
 
 
 
d24f925
 
 
 
 
 
 
 
 
951d846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: cc-by-sa-4.0
task_categories:
- image-classification
tags:
- volumetric
- 3D
- X-ray_tomography
- mozzarella
- cheese
- food_science
size_categories:
- 1K<n<10K
---
# MozzaVID dataset - Base split

A dataset of synchrotron X-ray tomography scans of mozzarella microstructure, aimed for volumetric model benchmarking and food structure analysis.

### [[Paper](https://arxiv.org/abs/2412.04880)] [[Project website](https://papieta.github.io/MozzaVID/)]

This version is prepared in the WebDataset format, optimized for streaming. Check our [GitHub](https://github.com/PaPieta/MozzaVID) for details on how to use it. To download raw data instead, visit: [[LINK](https://archive.compute.dtu.dk/files/public/projects/MozzaVID/)].

## Dataset splits

This is a Base split of the dataset containing 4 728 volumes. We also provide a [Small split](https://huggingface.co/datasets/dtudk/MozzaVID_Small) (591 volumes) and a [Large split](https://huggingface.co/datasets/dtudk/MozzaVID_Large) (37 824 volumes).

!!! The above numbers are not exact at the moment as we have not released the test dataset yet.

<img src="https://cdn-uploads.huggingface.co/production/uploads/67e55a8b793bfd7642b6d84e/Ez67h26Y6-cVUqlpx9mnj.png" alt="dataset_instance_creation.png" width="700"/>

## Citation

If you use the dataset in your work, please consider citing our publication:

```
@misc{pieta2024b,
  title={MozzaVID: Mozzarella Volumetric Image Dataset},
  author={Pawel Tomasz Pieta and Peter Winkel Rasmussen and Anders Bjorholm Dahl and Jeppe Revall Frisvad and Siavash Arjomand Bigdeli and Carsten Gundlach and Anders Nymark Christensen},
  year={2024},
  howpublished={arXiv:2412.04880 [cs.CV]},
  eprint={2412.04880},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2412.04880},
}
```

## Visual overview

We provide two classification targets/granularities:
* 25 cheese types
* 149 cheese samples

<img src="https://cdn-uploads.huggingface.co/production/uploads/67e55a8b793bfd7642b6d84e/vRtxBSCO6ML6hCpUs0fG5.png" alt="cheese_slices.png" width="1000"/>
Fig 1. Overview of slices from each cheese type, forming the 25 coarse-grained classes.

<img src="https://cdn-uploads.huggingface.co/production/uploads/67e55a8b793bfd7642b6d84e/Y5xq74Z43h4MOlyHH3xPn.png" alt="sample_slices.png" width="1000"/>
Fig 2. Example slices from the fine-grained classes. Each row represents a set of six samples from one cheese type (coarse-grained
class), forming six consecutive fine-grained classes.