--- title: OpenMDAO Optimization Benchmarks tags: - optimization - engineering - openmdao - benchmarking - scipy license: apache-2.0 task_categories: - tabular-regression - tabular-classification size_categories: - n<1K --- # OpenMDAO Optimization Benchmarks This dataset contains comprehensive benchmarking results from OpenMDAO optimization runs on standard test problems from the optimization literature. ## Dataset Description - **Total Samples**: 55 - **Problems**: 5 literature-validated test functions (Rosenbrock, Beale, Booth, Rastrigin, Ackley) - **Optimizers**: 3 algorithms (SLSQP, COBYLA, L-BFGS-B) - **Multiple Runs**: 3-5 runs per optimizer-problem combination - **Created**: 2025-08-24 ## Key Results - **Best Performer**: SLSQP (63% success rate) - **Problem Difficulty**: Rosenbrock (70% success) → Booth (67%) → Beale (36%) → Ackley/Rastrigin (0%) - **Comprehensive Metrics**: Accuracy, efficiency, robustness scores included ## Problems Included 1. **Rosenbrock Function** - Classic banana function (moderate difficulty) - Global optimum: [1.0, 1.0], minimum value: 0.0 - Reference: Rosenbrock, H.H. (1960) 2. **Beale Function** - Multimodal valley function (moderate difficulty) - Global optimum: [3.0, 0.5], minimum value: 0.0 - Reference: Beale, E.M.L. (1958) 3. **Booth Function** - Simple quadratic bowl (easy) - Global optimum: [1.0, 3.0], minimum value: 0.0 - Reference: Standard test function 4. **Rastrigin Function** - Highly multimodal (hard) - Global optimum: [0.0, 0.0], minimum value: 0.0 - Reference: Rastrigin, L.A. (1974) 5. **Ackley Function** - Multimodal with many local minima (hard) - Global optimum: [0.0, 0.0], minimum value: 0.0 - Reference: Ackley, D.H. (1987) ## Optimizers Benchmarked - **SLSQP**: Sequential Least Squares Programming (gradient-based) - Success rate: 63% - Best for: Smooth, well-behaved functions - **COBYLA**: Constrained Optimization BY Linear Approximations (derivative-free) - Success rate: 0% (on these test problems) - Better for: Constraint-heavy problems - **L-BFGS-B**: Limited-memory BFGS with bounds (gradient-based) - Success rate: 41% - Good for: Large-scale optimization ## Dataset Structure Each record contains: ### Basic Information - `run_id`: Unique identifier - `optimizer`: Algorithm used - `problem`: Test function name - `dimension`: Problem dimensionality ### Results - `optimal_value`: Final objective value - `optimal_point`: Final design variables - `error_from_known`: Distance from known global optimum - `success`: Boolean convergence flag ### Performance Metrics - `iterations`: Number of optimization iterations - `function_evaluations`: Objective function calls - `time_elapsed`: Wall clock time (seconds) - `convergence_rate`: Rate of convergence ### Evaluation Scores - `accuracy_score`: 1/(1 + error_from_known) - `efficiency_score`: 1/(1 + iterations/50) - `robustness_score`: Convergence stability - `overall_score`: Weighted combination ### Metadata - `convergence_history`: Last 10 objective values - `problem_reference`: Literature citation - `timestamp`: When run was executed ## Usage Examples ```python import json import pandas as pd # Load the dataset with open('data.json', 'r') as f: data = json.load(f) df = pd.DataFrame(data) # Analyze success rates by optimizer success_by_optimizer = df.groupby('optimizer')['success'].mean() print("Success rates:", success_by_optimizer) # Find best performing runs best_runs = df.nlargest(10, 'overall_score') print("Top 10 runs:") print(best_runs[['optimizer', 'problem', 'overall_score']]) # Problem difficulty analysis difficulty = df.groupby('problem')['success'].mean().sort_values(ascending=False) print("Problem difficulty ranking:", difficulty) ``` ## Research Applications This dataset enables several research directions: 1. **Algorithm Selection**: Predict best optimizer for given problem characteristics 2. **Performance Modeling**: Build models to predict optimization outcomes 3. **Hyperparameter Tuning**: Optimize algorithm parameters 4. **Problem Classification**: Categorize problems by difficulty 5. **Convergence Analysis**: Study optimization trajectories ## Quality Assurance - ✅ Literature-validated test problems - ✅ Multiple runs for statistical significance - ✅ Comprehensive evaluation metrics - ✅ Real convergence data (not synthetic) - ✅ Proper error analysis and success criteria ## Citation If you use this dataset, please cite: ```bibtex @dataset{openmdao_benchmarks_2025, author = {OpenMDAO Development Team}, title = {OpenMDAO Optimization Benchmarks}, year = {2025}, url = {https://huggingface.co/datasets/englund/openmdao-benchmarks}, note = {Comprehensive benchmarking of optimization algorithms on standard test functions} } ``` ## License Apache 2.0 - Free for research and commercial use. ## Contact For questions or contributions, please open an issue on the dataset repository. --- *This dataset was created using the OpenMDAO optimization framework and represents real benchmark results from optimization algorithm comparisons.*