File size: 5,215 Bytes
200c984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
license: cc0-1.0
task_categories:
- text-generation
- question-answering
language:
- en
tags:
- cybersecurity
- nist
- compliance
- security-controls
- regulations
size_categories:
- 1K<n<10K
---

# NIST Publications - Raw PDFs

**596 NIST cybersecurity publications in original PDF format** - Complete source data for the [nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training) dataset.

## Dataset Description

This dataset contains the **raw, unprocessed PDF files** downloaded from the NIST Computer Security Resource Center (CSRC). These are the exact source documents used to create the NIST cybersecurity training dataset and fine-tune the HackIDLE-NIST-Coder model.

### Contents

- **596 PDF documents** (2.0 GB total)
- **metadata.json** with titles, URLs, and download information
- Covers documents published through October 2025

### Document Series

| Series | Count | Description |
|--------|-------|-------------|
| **FIPS** | ~25 | Federal Information Processing Standards (cryptography) |
| **SP 800** | ~350 | Special Publications - Security guidelines |
| **SP 1800** | ~30 | Special Publications - Practice guides |
| **IR** | ~160 | Interagency/Internal Reports |
| **CSWP** | ~31 | Cybersecurity White Papers |

### Key Documents Included

- **SP 800-53 Rev. 5** - Security and Privacy Controls
- **SP 800-63-4** - Digital Identity Guidelines (July 2025 release)
- **NIST CSF 2.0** - Cybersecurity Framework (CSWP series)
- **SP 800-207** - Zero Trust Architecture
- **SP 800-37 Rev. 2** - Risk Management Framework
- **FIPS 140-3** - Cryptographic Module Validation
- **SP 800-161 Rev. 1** - Supply Chain Risk Management
- **SP 800-171 Rev. 3** - Protecting Controlled Unclassified Information

## Data Pipeline

This raw dataset is part of a complete data processing pipeline:

```
1. Raw PDFs (this dataset)
   ↓
2. Extraction (Docling + MarkItDown)
   ↓
3. Training Data Preparation
   ↓
4. Training Dataset: ethanolivertroy/nist-cybersecurity-training
   ↓
5. Fine-tuned Models: HackIDLE-NIST-Coder v1.1
```

## Usage

### Download All PDFs

```python
from datasets import load_dataset

# Download the dataset
dataset = load_dataset("ethanolivertroy/nist-publications-raw")

# Access metadata
with open("metadata.json", "r") as f:
    metadata = json.load(f)

# List all PDFs
pdf_files = [f for f in os.listdir(".") if f.endswith(".pdf")]
print(f"Downloaded {len(pdf_files)} PDFs")
```

### Download Specific Document

```python
from huggingface_hub import hf_hub_download

# Download a specific PDF
pdf_path = hf_hub_download(
    repo_id="ethanolivertroy/nist-publications-raw",
    filename="Digital Identity Guidelines_ Authentication and Authenticator Management.pdf",
    repo_type="dataset"
)
```

## Reproduction

To reproduce this dataset (download fresh copies from NIST):

```bash
# Clone the source repository
git clone https://github.com/ethanolivertroy/nist-tuned-model

# Run the scraper
cd nist-tuned-model
python src/download_all_nist.py --output data/raw
```

The scraper downloads documents with these filters:
- Series: FIPS, SP, IR, CSWP
- Status: Final (published)
- From: NIST Computer Security Resource Center

## Metadata

The `metadata.json` file contains structured information for each PDF:

```json
{
  "title": "Document title",
  "detail_url": "https://csrc.nist.gov/pubs/...",
  "local_path": "data/raw/filename.pdf",
  "downloaded": true
}
```

## Related Resources

- **Training Dataset**: [ethanolivertroy/nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training) - 530,912 processed examples
- **MLX Model**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit)
- **GGUF Model**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF)
- **Ollama**: [etgohome/hackidle-nist-coder](https://ollama.com/etgohome/hackidle-nist-coder)

## License

**CC0 1.0 Universal (Public Domain)**

All NIST publications are in the public domain and not subject to copyright in the United States. This dataset is released under CC0 for maximum reusability.

## Citation

```bibtex
@misc{nist-publications-raw,
  title={NIST Cybersecurity Publications - Raw PDFs},
  author={Troy, Ethan Oliver},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/ethanolivertroy/nist-publications-raw}}
}
```

## Acknowledgments

- **NIST Computer Security Resource Center** - Original source of all documents
- **NIST Cybersecurity Framework Team** - Framework development
- **NIST Privacy Framework Team** - Privacy guidance

## Dataset Statistics

- **Total Size**: 2.0 GB
- **Document Count**: 596
- **Date Range**: 1977-2025 (primarily 2010-2025)
- **Format**: PDF (various versions)
- **Languages**: English

## Version History

- **v1.1** (October 2025): Added CSWP series (28 documents), SP 800-63-4
- **v1.0** (Initial release): 568 documents (FIPS, SP 800/1800, IR)

---

**Maintainer**: Ethan Oliver Troy
**Contact**: Via GitHub or HuggingFace profile
**Last Updated**: October 2025