Datasets:
Tasks:
Keypoint Detection
Modalities:
Text
Formats:
webdataset
Languages:
English
Size:
1K - 10K
ArXiv:
License:
File size: 5,610 Bytes
3589e62 ea72adb 3589e62 ea72adb 3589e62 ea72adb 3589e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language: en
task_categories:
- keypoint-detection
tags:
- 3d-tracking
- multi-view
- point-cloud
- computer-vision
- robotics
- synthetic-data
- real-world-data
- pytorch
- pytorch-hub
license: other
---
# Multi-View 3D Point Tracking Datasets
This repository hosts the training and evaluation datasets associated with the paper [**Multi-View 3D Point Tracking**](https://huggingface.co/papers/2508.21060).
**Project Page:** [https://ethz-vlg.github.io/mvtracker/](https://ethz-vlg.github.io/mvtracker/)
**Code/Github Repository:** [https://github.com/ethz-vlg/mvtracker](https://github.com/ethz-vlg/mvtracker)
## Abstract
We introduce the first data-driven multi-view 3D point tracker, designed to track arbitrary points in dynamic scenes using multiple camera views. Unlike existing monocular trackers, which struggle with depth ambiguities and occlusion, or prior multi-camera methods that require over 20 cameras and tedious per-sequence optimization, our feed-forward model directly predicts 3D correspondences using a practical number of cameras (e.g., four), enabling robust and accurate online tracking. Given known camera poses and either sensor-based or estimated multi-view depth, our tracker fuses multi-view features into a unified point cloud and applies k-nearest-neighbors correlation alongside a transformer-based update to reliably estimate long-range 3D correspondences, even under occlusion. We train on 5K synthetic multi-view Kubric sequences and evaluate on two real-world benchmarks: Panoptic Studio and DexYCB, achieving median trajectory errors of 3.1 cm and 2.0 cm, respectively. Our method generalizes well to diverse camera setups of 1-8 views with varying vantage points and video lengths of 24-150 frames. By releasing our tracker alongside training and evaluation datasets, we aim to set a new standard for multi-view 3D tracking research and provide a practical tool for real-world applications.
## Dataset Details
To benchmark multi-view 3D point tracking, we provide preprocessed versions of three datasets:
- **MV-Kubric**: a synthetic training dataset adapted from single-view Kubric into a multi-view setting.
- **Panoptic Studio**: evaluation benchmark with real-world activities such as basketball, juggling, and toy play (10 sequences).
- **DexYCB**: evaluation benchmark with real-world hand–object interactions (10 sequences).
You can download and extract them as (~72 GB after extraction):
```bash
# MV-Kubric (simulated + DUSt3R depths)
wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/kubric-multiview--test.tar.gz -P datasets/
wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/kubric-multiview--test--dust3r-depth.tar.gz -P datasets/
tar -xvzf datasets/kubric-multiview--test.tar.gz -C datasets/
tar -xvzf datasets/kubric-multiview--test--dust3r-depth.tar.gz -C datasets/
rm datasets/kubric-multiview*.tar.gz
# Panoptic Studio (optimization-based depth from Dynamic3DGS)
wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/panoptic-multiview.tar.gz -P datasets/
tar -xvzf datasets/panoptic-multiview.tar.gz -C datasets/
rm datasets/panoptic-multiview.tar.gz
# DexYCB (Kinect + DUSt3R depths)
wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/dex-ycb-multiview.tar.gz -P datasets/
wget https://huggingface.co/datasets/ethz-vlg/mv3dpt-datasets/resolve/main/dex-ycb-multiview--dust3r-depth.tar.gz -P datasets/
tar -xvzf datasets/dex-ycb-multiview.tar.gz -C datasets/
tar -xvzf datasets/dex-ycb-multiview--dust3r-depth.tar.gz -C datasets/
rm datasets/dex-ycb-multiview*.tar.gz
```
For licensing and usage terms, please refer to the original datasets from which these preprocessed versions are derived.
## Sample Usage
This dataset repository contains the data for the MVTracker model. With minimal dependencies in place (as described in the [GitHub repository](https://github.com/ethz-vlg/mvtracker#quick-start)), you can try MVTracker directly via **PyTorch Hub**:
```python
import torch
import numpy as np
from huggingface_hub import hf_hub_download
device = "cuda" if torch.cuda.is_available() else "cpu"
mvtracker = torch.hub.load("ethz-vlg/mvtracker", "mvtracker", pretrained=True, device=device)
# Example input from demo sample (downloaded automatically)
sample = np.load(hf_hub_download("ethz-vlg/mvtracker", "data_sample.npz"))
rgbs = torch.from_numpy(sample["rgbs"]).float()
depths = torch.from_numpy(sample["depths"]).float()
intrs = torch.from_numpy(sample["intrs"]).float()
extrs = torch.from_numpy(sample["extrs"]).float()
query_points = torch.from_numpy(sample["query_points"]).float()
with torch.no_grad():
results = mvtracker(
rgbs=rgbs[None].to(device) / 255.0,
depths=depths[None].to(device),
intrs=intrs[None].to(device),
extrs=extrs[None].to(device),
query_points_3d=query_points[None].to(device),
)
pred_tracks = results["traj_e"].cpu() # [T,N,3]
pred_vis = results["vis_e"].cpu() # [T,N]
print(pred_tracks.shape, pred_vis.shape)
```
## Citation
If you find our repository useful, please consider giving it a star ⭐ and citing our work:
```bibtex
@inproceedings{rajic2025mvtracker,
title = {Multi-View 3D Point Tracking},
author = {Raji{\v{c}}, Frano and Xu, Haofei and Mihajlovic, Marko and Li, Siyuan and Demir, Irem and G{\"u}ndo{\u{g}}du, Emircan and Ke, Lei and Prokudin, Sergey and Pollefeys, Marc and Tang, Siyu},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
year = {2025}
}
``` |