diff --git "a/data/EuPhO_2025.tsv" "b/data/EuPhO_2025.tsv" new file mode 100644--- /dev/null +++ "b/data/EuPhO_2025.tsv" @@ -0,0 +1,11 @@ +index id context question marking answer answer_type unit points modality field source image_question information +0 EuPhO_2025_1_1 You are asked to study the features of the brightly lit circle and dark rings in the figures below. Make your calculations for an idealized situation: the chair leg is strictly cylindrical of radius $a$, strictly vertical, with a perfectly smooth, cylindrical, and perfectly reflecting surface. You may make any additional model assumptions and approximations you deem reasonable that will simplify your calculations. "Determine how the illuminance surplus $I(r, \theta)$ inside the brightly lit circle on the floor depends on the polar coordinates $r \gg a$ and $\theta$. The illuminance quantifies the amount of incoming light per area. By ""surplus"" we mean the additional illuminance introduced due to the presence of the cylinder. Express the answer in terms of $I_0$ defined as the illuminance difference between points $A$ and $B$ in the figure." "[[""Award 0.5 pt if the answer uses correct angles, $2\\alpha + \\theta > \\pi$. Partial points: award 0.2 pt if the answer only states $2\\alpha + \\theta = \\pi$ without justification. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer states the reflection law in any form. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer includes the equation $x = a \\sin \\alpha$. Otherwise, award 0 pt."", ""Award 1.0 pt if the answer derives $I_0 \\delta x = 2I l \\delta \\alpha$. Partial points: subtract 0.3 pt if the factor of 2 is missing; subtract 0.3 pt if $r$ is used instead of $l$. If the answer does not derive such formula, award 0 pt."", ""Award 0.5 pt if the answer derives $I = -\\frac{I_0 a}{2l} \\cos(\\beta)$. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer justifies the approximation $l \\approx r$. Partial points: award 0.2 pt if the answer states the approximation without justification. Otherwise, award 0 pt."", ""Award 1.5 pt if the answer correctly obtains the results $I \\approx \\frac{I_{0}a}{2r} \\sin (\\theta /2)$. Otherwise, award 0 pt.""]]" "[""\\boxed{$\\frac{I_{0}a}{2r} \\sin (\\theta /2)$}""]" "[""Expression""]" [null] [5.0] text+variable figure Optics EuPhO_2025 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIpApMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36ig15H418da/oviu8sLK5RLeMJsUxK2MopPJHqTSbsVGLk7I9dorwL/hZ/in/n9i/wDAdP8ACj/hZ/irP/H5F/4Dp/hS50X7KR77RXgEnxR8VohxexZ7f6On+FEfxQ8WOeb2L/wHT/CjmRPs3ex79S14E/xP8Ug4F5F/4Dp/hTf+Fo+Kv+f2L/wHT/CjmQ3Skj3+ivAD8UvFf/P7F/4Dp/hTH+KfiwKSL2L/AMB0/wAKOZC9mz6CxRivnz/haniz/n+i/wDAdP8ACl/4Wp4s/wCf6L/wHT/CncXKz6CxRivn7/hafiz/AJ/Yv/AdP8KUfFPxX/z+xf8AgOn+FFw5WfQFFfP/APwtLxZ/z+xf+A6f4Uf8LR8V/wDP7F/4Dp/hRcfIz6ApK8A/4Wj4r/5/Yv8AwHT/AAqWL4m+KZCQbyLp/wA+6f4UnJIapNux7zn3oz714Z/wsrxMOt5F/wB+F/wpD8S/E/a7i/78L/hS9ojT6rPuj3aivCf+FleKP+fyL/vwv+FH/Cy/E2f+P2L/AMB1/wAKXtEL6tM92orwk/EvxP2vIv8Avwv+FJ/wsvxT/wA/kX/fhf8ACn7RB9Xme70V4R/wszxR/wA/sX/gOv8AhR/wszxTj/j8i/8AAdf8KOdB9Xme70leDf8ACzfFGcfbIv8Avwn+FNb4oeJ14+3RZ9rdP8KOdCdCR75ijFeAH4oeLT928iH1t0/wpR8TfFhBBvot3b/R0/wo50L2Uj36ivAB8UfFijD3sW7/AK90/wAKevxO8VFcm9i/8B0/wo50CoyZ75SV4R/wsvxOR/x+x/8AfhP8Ka3xL8V/w30X/gOn+FHOinh5o96orwE/FDxUv3ruIe4t0/wpw+J/ilul9F/4Dp/hRzon2Mj3vtRxXlfhLxxrGqLdJezKzRqXVxGox046fX865rUPiX4rtbsxpdxbMnGYE9fpWnL7vMYtpTcOqPeaK8Os/iR4mnsbmRryIvHjB8heOfpUX/CzPE+B/pkX/fhf8Kzc0tDaFKU1dHu9FeEf8LL8T/8AP3F/34X/AApD8S/E/wDz+Rf9+F/wo9oivq0z3bPvRmvCv+FmeJ8/8fkWP+uC/wCFPX4m+I84a6j+vkL/AIUOokUsLN9Ue5Yox7V4l/wsfxG33LyI+3kL/hT1+JHiEH554/whX/Cp9tEtYGo+q/r5HtWKMV46nxC1x+l3H+MK/wCFSjx5r+f+PqP/AL8r/hR7eJX9n1e6/r5HruKMV5H/AMJ3r/8Az8x/9+l/wp3/AAnWvf8APyn/AH6X/Cj28Q/s6r3X9fI9axRivJv+E517/n5j/wC/K/4Uo8ca9/z8x/8Afpf8KX1iIf2dV7r+vkesZFGRXk48ba7n/j5j/wC/S/4U4eNdc/5+U/79L/hS+sRH/ZtXuvx/yPVsijIryv8A4TTW/wDn5T/v0v8AhSjxnrf/AD8L/wB+l/wo+sRD+zavdfj/AJHqeRRkV5b/AMJlrX/Pwn/fpf8ACnf8JnrWP+PhP+/a/wCFH1iIf2bV7r8f8j0/H40Y/GvLm8aa2BxcL/36X/Cs/U/H/iC1tDJHcxhsgZ8lT/ShYiLdiZ5fVjFybX9fI9kpK8Mm+JHieM24F5H+8VSf9HXv+FbVp4412YfPcof+2K/4VbqpK5hGhKTsj1j8qPyrzqPxZq7DmdP+/Q/wqQeKtV/57p/36FR9ZgafU6nkeg/gKPwFcAPFOq/89k/79ClHijVT/wAtk/79j/Cl9Zh2H9SqeR32RRkVwf8Awk2qf89h/wB8D/CnDxLqn/PVf+/Yp/WYB9Sqd0d3xRxXDf8ACSal3mX/AL4H+FKPEepY/wBcv/fA/wAKPrEBfVJ90dxxRxXE/wDCRal/z2X/AL4H+FOHiHUMf60f98j/AApfWYB9Un3R2f5UflXGDxBqJ/5bL/3wP8KUeINQ7yr/AN8D/Cn9YgT9Vn5HaUVx417UD/y1X/vkf4Uh12/wP3yjn+6P8KX1mAvq0zseKOK5Ea3f/wDPVf8Avkf4Uv8Abd//AM9V/wC+R/hR9ZgH1eZ1tFcmNbvv+ei/98j/AAo/tu+z/rF/75H+FH1mAvYSOsorlv7Zvv8Anov/AHyKlt9VvJLmJGkXazgH5R0zTWIixOjJHSUUmaK3Mbimvn/4lD/ivtR+kX/ota9/NfP/AMSv+R91H6Rf+i1qZbG1H4jlMCik6UZz0rM6CCc5IFSwjA+lQvky1YiGFJND2IhrK41j85ph+lNdmLnbim4Y9TmmNu7HFwO4pjtuGAKcE9qNlFxNEefWnAg07YaTyxTuRysUUtNww6cil3eoIp3FYcBS03I7GlpFDhU1t988dqgqa3z5h57UnsXD4i125ppbJ6UtGcVkdjEIPXNHHpQx4pu7HP6UEik0go+dvur+dHklxyx+gouFmNZlHcZ9BTPnb7q4+tSbNvRacjg9TyKCeXuyMwkj5m/CnLEo/hAqYEEU4AE9KTZp7OKIwg9KRoFYdMfSp9vpRg1PMacmhB5GFwTn6ijyRirGDilCcUcwvZoreVxRs9qs7PSjb2NHMP2dyqYgRUTQDORwavGMdqaU4OeafOTKkjoPAUbPeX8TRhiYMgkdMdf6VzXiCLyr7pj5j/Ous8CTPDq1yIyVL2zKSB0GRWB4xiEOo47lsn6mu2DvSueLXioYhryKukfNa3ydymahGCKl0PHmXKZ+9EarhwOG+Wuea1O7Dv3bD8UhoznnIP0pOvWpNwoFGaXigBckcipROwHPI+lRUUmkaqTWxZE0bexqxHM6YI+b2rOpQ7L0JqXE0jWa3NlLpSfnGKsLIjdCKxUuiPvCp0kVjlWwazcTpjVTRrincVnpcSJ1wRVlLlGHPB96lo1TLAPtTgfYUxWBHBpwPNIdx4p4xUYpwNILjxTu1MBpc0DuIxrI1w4sQB3cVqMeayNcP+jRgcfPVQ+IxxD/AHTKl1jz7MDsij+db1gPkB96wJwftVsD6A/h2resTmNfpW8/hR5FL4mzbiI2iparxHCVKpyK5XuehHYlFPFRA1IDSGScd6cuM1GDTx7UyWSinA+9Rg08UiB4pwNM704UEsfmnDk0ynrQSx4604qCAD2OaaOtPoIFFO7U0U/FBLDtThTcdu1OFMgdU9p/x/Qf9dF/nUA61Ys+b2H/AK6L/OqjuiJHX0UUV6hwAa+fPibIq+P9SBPOIuP+2a19Bmvnr4mqP+Fg6lx2i/8ARS1MtjanuckZvRc/Wky7dwPpTttHRTWd0bWI1GWq0OEqtEMtVl/uilIqmtLkOOaXFPApSBSuUkNxRj2pcHtTgOKB2uMwaQg1Jil25pBykOykI9qn20u2i4+RFYp+FJhh71Z2D0o2e1O5Lp3K27nnj61PbnMopxiB605IFVsgmhyVghTdyVmVep59KbuYkYH4mniMDoPzp+ys7nXyXI/LJPJ4qRVA6CnAU7bUuRagkIVwaXBpQCKeuDU3NEiIpuqrNaSctGfm9PWtHb6UbTTUrClSUtyjHG4QFhtbuKmGMc1OQpGCCPrR5QPQ0OVyVStsMB4o60/YRRtHpU3NbDcelKKeF460hFFx8oDPalK5pBnuafxikNEYSkK9amHFHBNFx8pq+FJDDraYOA8bKfpVDxyqm73Bs/NkH2zVnQyYtbtT0yxH5g0zxvGAd3fPT2wP/r16GH1os+fzCPLiV5owtEP/ABMMdmRv5U9ohg9DVfSW26jFz1BFX2T5j9TWFZ2Z14KKkmmUWhx93INR5ZeGXI9qvkEVG0eeazUjslRXQrAqehzS8U9oQecYqMo69PmFVe5i4tDgaM0xXGcHg+9OzzyKYri55paSikULilHFNpRQNEyXDpxkH2NWFukbrke9Uj6UAVLimaRqyRpo7fwN+tTpdupww49ayFLKcg1Mt0Rw4zUOBvGt3NqO7jY4zU6sD0NYayRSY6qalWWSP7rZHpUuJqpo2c4pd1Z0d/x861ZS4SUcEVLRpdErNWPrTfu4F/281qnmsfWT+8tx7mqgtbmGIf7tlrWoVjvtLZVwHs4n/wDHKu2JxGv0FL4oTZPoRPU6dF/6DTbM4jXPpW01oeTR6mxGfkFSr0qvE2VFShua5mj0o7EwNPBNRBqeG4pAyUU8HFRA04GglkwNPVqiFO6GkSTZpynJqIHinKaCWTdqepqLPFSKcUENkgp46VGDTlNBA8VJUYNOBoIY6nU0HNKDTJHpjdz0qez/AOP6L/rov86rVPZn/TYf+ui/zpx3RMzsaKKK9U88DXz78Sxnx/qR9ov/AEWtfQRr5++Jf/I/al9Iv/Ra1EtjejrI5PbimS8RmpKZP9wfWsjpla1xsI5FSvyQBTYhzmnryxokxU1pYCPak5qTFLspXNOVkO/b16VIpDcjBFDwq64NMSPy87c0aC1TJdvpSbTSqTinjmpNFqMHpS4p+2jbSHYbtoAzxTwM04DI5FBXKR7PanDI608DA4pRg/Wk2XGIowacBxSbacPepNUhMc07bQBThSKSEAp2BSgUuKRaQg4p4Io7Ubc0hi4z1pBFjkHHtS8inBhSGkJ0OMUFaeOaWkVYh2kUD6VNSYyKBOJHgGkxin7SOlIG7GgLCA0uBTsA9KTYRyKALWlN5erWbdhMn/oQ/wDr1Z8bRgxsSDn3rOhl8m4ikxyjhseuK3fGcJNuzdxXoYV3g0eHmiSqwkcJYHbewN/tCthl/eP/ALx/nWHbErJCx6hv610GB5kgPHzVjXNsu1k0Q7aaYgfWrGw/WmkbRknFc12etyLdlcoR7ioygPOKmknC/dG41XMjMck/gKtXM5cox4c9qhMTKeD+BqyHOcEU/Ct0quZmTpxkUd5Bwwx7inBgehzVpowe1QNbgnjIPqKpO5nKk1sNJpQaaVdRyAw9utAYfj6GqIs1uSEikJpOtFIEx2adx60ztRjFAx2ce9SLIy8g/gaiBxTgaVik7FxLhSMOuKlXa/KMM1n5BpQ2BxUuJtGs1uaAlmjP3tw96pX8vn3FuCMYNKtyy8HBqvNKJbmLjH/66Ixsya9ROm0jtPHECxf8I8w6nTkH/jtZ1oflFX/HdwHt/DbKQc6fH/IA1z1rcywgbl3LVz1R5+HudNGflFSA1n29/CygE4PvVxHDAYIP0rmaPTjsTg1IDxUANSBqlgyZDUgbmoAaeDQTYsBqdnNQBqkU0iWSg8U4GowaduoJZOp4qQGoAaeCTQZsmBp4PpUQNPBFBJKDTs8VGDTs0EMkBpwwTUeaeOlMkfxViz/4/bf/AK6L/Oqykd6s2WPtcBLc+auB+NOO6JlsdhRRRXqnnga+f/iUP+K+1H6Rf+i1r6APSvAviOM+PNRPtF/6LWonsdFBe8ciBzUc/VRU4HeoJeZfpWSN6m1h0fC81JCoK81H0WpoxhBSZcBSuDSqSDg07FLipua2ExkUbeOgpQOalCg1NyrEGz2pQpHapinpSYNFx8owZpQPWn44pQtK47DMZ4pcU7b+dOCk0XKSGCnge1KVK05QTSbLihuDS7fWnbCO1KBn2NTc0sMCkemKcBk46GnbTnkUFTQUkGDS0gyO2aXg9D+FIoUdKXFAU96dikOwmKMCnZo4pAJkinBqbRQUiTPpRUYYjtxT1YGkWrChSfpSFfSng56UYpXHyohwaUZ6VKQfSm7fSncOUjYHGetdH4oDPpUb8/NEpJ9a58qcHA7Gun1dDceGLdyoI8oc8+lduDe6PEziPwM8zjyD7hv610KOpaQk9cH9BXPnO989d/NbFuwbOeeBRXWlyMvlaqStcEEhAaqzK8rbg7KfrxVwoDUZT2rlWh7E4uXUqBpF4YDH94U4AN05+gqYrimMoPXg1XNcy5OUj2UhGPapMHrwaAQeP507isNV2+tPDA00rSYI96TsO7Q4xjtUTwBhyKeHYdqcsgPahNoGoy3KhideVYY9DTd+OGBFXdoPpUbR57Van3MZUl9kgDZGR0pQc0NBg5U7TUeWT7y5HqtVozJpx3JaM4pgkB6H8DTwRimCdw4JpTkd6SjNIYvaoDxcKfTFTZ4qDP74U0Zz2NDVdQkuksomxi2h8tef9on+tOt7oBQGX8az7o/Mv0qeJvkFNxVjKjJqWhqK0cn8QFSI8sRzGxwO1ZQapo7h06HI96ycTujVT3NyHVCOJVwa0IruGUDawz6VzaXSMcONtSjawyj/AJGs3FGl09jpwe9PBrnY72eHA3ZFX4dWjZwkiMDj73ap5RNGsDTw3FVo5UcZVgfpUu40rEMsBgRTg2O1Vg1SBuaTRLLKtUitVYMKkVqRmyzmnK1QBqeGoE0WA1ODVECOtKGzTsQyYMCwXPJp4bgdhUQpwaglliRRG+AwbjqKnsj/AKbb/wDXRf51TXGQCcCrNif9Ot/+uq/zqorVES2O1ooor1DzxTXgXxH/AOR91H6Rf+i1r3014H8R8/8ACeaj6fuv/Ra1nPY6cP8AGcrn2qoeZT9auEfISD2qmvr3rKJ0VFshx6Yq4FG0D0FU1y0ij3q3uPelIukLgijdg4NAOetLjNSaigingio8LSAMOlKw07Ewz60vXrUW41IjA8E0hp3FwfXNG33K+9GAThTz6UobacH9aRaFBZfQ0ofnpScEcUbecUFK4/fmjOORTSpFAPakylpuSqwPanEjuKi6c5pwbNJmi1JBJjryKXIxTPrQOPpUlC5Hbg0nU/d59aUgEUmT07UDF3kdRxT8g96YBSY5zmkA88UgNAY9xQevFAxaO1HbnNFBSQlLiilpFJACRT1kzTc0AA80DRKCD0IzQzKPc1EeOtAUdQamxV2KSzEdhXUSeZN4KtyDkICpye2TXL88flzXZ6K3meFCjDIBdcD8Sa7MHrJo8jOV+5UvM8rlXbNIOOvatKy5yD/dqpertu5VIPBxzVyw5f8A4DWlb4TjwL/fItEYppJqQ+9Jt964bn0DRGcHjFNMZqUoKQZHvTTJsQFaTbkVZ6jkUwpmnclwIh0wRQUB6U8qaaVp3E0RlfWm7B2qYE9CMik2Z6H8KaZDiQ4Ze9KH9RT2VhTDnuKZGqF4PTmmsntRj0o3MvXkUBdPcheBT25qJkkU8fMKu5Ujg0hTiqUrEOknsUhL2b5T707Off3qd4geoB+tV2hK/cOD6VommYSpuI7IxxUP/Lb8aDIyjDr+IpoOWJ96ZlJ6Cztkr9BU8bYQVWmxvAqdMbRVPYyp/ETcnmlDH61GOtKDis7G5KD60qsVOQcVGGpw5pWKTsWkuyPvYNTpcRucE7faqFLnFJotVWjVR5IzmNsfjmrkOruh2yrn3rBEjJyhx9DU6XXZxmp5S+dS3Ooh1CCXGHAPvVtXz3B+lckGjc5ViDVqO5uITlTkCpcQ0OnBx3qRWzWFBrCkgSLj1NacN1FN9xwfaosS0XQ9Shqqg1IrGlYhloN+VPBAqsGqQPQQ0WVYk4HNOzg+lV1fHepFO7JpkE2eatWLf6fbf9dV/nVAHFWrA/8AEwtv+uyfzFNbomex3lFLRXpHnAeleD/ENc+OdQ/7Z/8Aota94rwX4jk/8J3qOPSL/wBFrUVNjooO0jlp1CxMc84qkmMVYlmyhVjgHioNjjgLn3HNZxVjac7vQktxmXPpVrDdagt0ZCdwxmrAPSoludFJaBtOM4pNvtin7+MUqNzgioNbIj2Zpwj45OKeaXZkUXHYj2c8EU3Bz2p+3aeAaBljwKQWG7iD3qQOSORRsNIY6d0OzFHqDShiOoyKaRTxnHHJ9KRRIvI4Ofajbnj9KaBnpkU/aw5PNSzRBgdKUCgHHU0ozjg0jRCgUYoDH0pDz0pDF6cilBDexoAwaO1AxMEUobHBoGQORkUoAPSkAHBpORz2pcc0vFBSQm7NLRtB6UmSOKCkKaXtSdRS4/8A10igxSgUcilzzSGgz60oAPTg0o4oxmkWJyDyK6nQJCfDl4qsQUlJ/Agf/XrmeRwea6Dw6N+n6lHg9FOPz/wrrwb/AHh5ecK+Gb7HD6op+3yZOc1Lp5/eoO5U03VOb1j0GTS2WQ8LLyeRW1bZnl4N2qxZpEe1N2elOL84YYpQDjOeK84+osiIgg0YU98GpD15FIUFO4miIr3pOlS4pMDv1p3JsR9aNgxT9uOlIQR0ouS0RmM0wrU9IVzTTI5SAdeelIQD3qUx+lRlMVVyWmRFCOlJz3FSjil+U+1O5nYh2qRQAR0ORUpT8qbj0piI9wP3hineWCOtBz3pPpwaYhjQ54xxVVo4lJDSeWevzDir29l+8uR607CSLzg+xpqTRlUpqS0MmUJ1WQO3oop6SLgA5U+hq6bdAeFxUbxKTgitOdHN9XcdSMfWnZBphtyDlGI9qbuZPvr+Io3CzW5OKWokcN0YH+dO3etFgTuPDU7fUQIpaAuShh9KcDjvUP1pQaLCuTBhmplmdehyKqbsd6dnjqRU2GpNF5blWGGXHvU6Ej5o5OfaswNTw5HKkg/XipaLU31NyHVLiHG/JArUt9XglGGOw1y8d43RwGFS74nPy5BPap5EVoztIpVcZVg1Shq42KWaEko547ZrQg1x1IEq/jSsJxOkBJqRXx2rOt9Rt5sYkwfSrgcEZ7eopcqMmWFb1q3pzZ1G2H/TZP8A0IVnhjjmremv/wATO1/67J/6EKcVZk1Nj0aikzRXonmjq8I+Iig+OdQ47R/+i1r3Y14X8Qf+R21A+0f/AKLWsartE6sMrzOSaFWHI/CohEq/wCrRpMbutYXZ2umtxEVccAClK0oQjp+VKPzpXNFsM7c8e9OA5pduaD8tIaDA7jNPApgOee9O6DrQUh2BSFcdKeFBHBpOhxSNEhoBFP25FBpCDjjNIqyE2A9qUIRQCRwcU8HA5oGkhnIPNOVsdDkU8YzzQyA8g4pXKGkq3Sm4IpxQj3pMFTQAoYj73NKPY0Z7HH4UADsaQxc8/wBaUHPakHHXilwRzxikMPfOaQ8dBSqQaXB6igYgOevFG30NKNp7800s0ZHynB9KB3HDrTjik4Y8daMH0oLWgm09qcOnPB9KM+9G0/WkO44rRikCN2yfY1MkEjg4QnHak2NMiHX2pfpxUvlODgoQR2py20rn7lK5ZGM963/C8hEt4vbytx/A1jfZJl4IGfrWx4ajdNQlU4G6Fl+tbYaVqiZx5hHmw8kcfrChL1lU5AYikswTFE2ekmMfhVrxFB5N/wDU8/WoLBc2+AOVkGK662zPn8I/fiy9zj5sGmbSOVP4Vaa1mBIKEVGYGX+Eg15x9YQ72H3lpy4bofwpxVgeQfyppTnIH5UALtx14pCtJvZT608Mr+xoDQjIIoBB4NSFcCm7R1oC1yMqc8Un1FSFcjIowD1p3JcSMUpANO2DqKaRzTuTYYyelRFCDU+6jr2pmcoplfDCjOeoqcp6VG0eKq5m4jCvHFM2+tSBe+eKQkimiWiOlZQRT8Aj0ppU44pkWG4YdDkUhI/iGPel3EdaMg96Ythu30xTWTPan7P7tJuZfvCgWj3K0lup6fKfUVEVlT/aFX/lbvUZTBqlNmU6S6FQSKT1wfQ07PPWpXiDHkD61EYCnKN+BrRNMwlCSHA04E1CWZfvqR7inB8jgg0GdyUH1p27HIP4VEDTgQRSaKuSA59jS5yfSoqdnNKw7k27IwefenZJxg5xUINODUrDuWFlZe/4GpBcL0dTVXdnrSgn1z7GlYrmZoRgHmOTn0q1FqF1bHqSB61kA8fL196lWZ1HI3D0alYOZM6a216NxiUY9639HuYptTsykmczpx/wIV58ssL9SUb3HFa3h1pU8RaYA3ym6iB5zkbhQlqTJKzPecUUtFdp5lkHavDfiF/yOuofSP8A9FrXuXavDviAQPG2oev7vj/tmtZVvhOnC/xDls+opMZOak25XPQ03BxXNc9OwlKRkYpQO1GNtAxuCvbilGCOKdu9etIV56YNAhhQdjzSgkcEUo64INKQSPagaD/d/Knq4PUcCmbcd/xoGTSZauSlR1B4pOc85xTdzKPUfrT1YEZzkUjRNETZU8/pQuezYqRl3Cos7Tg0yJbj98gI4Bp28McEEUH5kyPzpEGaRomTKABnNA2NxUeB0zikCnOMj61LRVx5ixyKaVbrinjI75FKZMdRQOyIt1OVh2OD79DT9quOKUWsh/gPPqKV0FhBgnBG0+/Sgqw+6anW1cYBOR3HWrEcUSnAVs/7VJtIpIz+p5BqdLeSTgYH1NaYhEhH3WA6hRgimyWWCWiOQByD1FTzjSRRFm6kevtVmO1V1GVYH+dTW04V9rjjHB96thcxDfwGPDVMmykUHsTFyY+PepIUTOCP0q6SVbyXP0PrULRtETgAj0qbsZG8KMuQaRY8I3VfQ1KSjAdcjnFBkbeMKTRqMeyrNFl1B2jkjg00ZS0wEyGPB70wOyXSyMhX1HZqJneW6LxhAeuxTxSsLUfKizooH3gKu6KGjvxgdBnmqTlvJWTaqYPTvV6xMv2mCckMA2Pfoa0pStOJhiVelJeRg+NYkXUCVxtJ3Aj0rM0xC1vcsP8AlmUc/TNbfjePEw4xjp9KydEUPbXoOeIf6g/0r0a+zPnMO7NHQmYtmNgMY5JqBlCocHPPANOQ7xnjlc81Bh9/FeX1Pq1sP2fJuUY9RUjwhY1yoDYzT42V1ZSMquCafISHaRhhCPlHc0AUo443lxIgAPeoXtYtx4PXjBq5APMuAPUcg0wx4diO1FwKJtyHwrED3pTbNuxuU96s4y3OVJPGO9TXCKr7eSQMZp3HczhBJ12kj1AphUZ5GK0EE0OfmwvYdc0jSq/E0YFNSY7mftHToaaQa0ks4pFZmJVe2KheykX7pDZ6DvT5hFApmlwMd6leFlOHDCmEYq7kNEf0pfrTjg9aaVPYigloRlB9qjZD2xUuCO1JnnpzTTJaINvHekwQelWCoNNKiquZtEBAPGKYYRnirBTjpzTdvPvTuQ0iHaRwaTnsc+xqx9RTGjBNNMhqxAQDzyDScr15qQoQKZ39KZAm4etO2g9hTGB9B9aQHHQ0xcwrRgjHWoHtQeQcGrO/1pSARwcimm0RKMZFBhLH1G4UgkyeuD6GrxSoZIVbqKtSvuZSptbEYalBqMwun3Tn2NNEmDhxtqtDPVblgNTt4qFXz6Ee1OyDSsO5LvHSng1XDEU8N60rBcnDH2p4cjr+tQBqdn3pDuTBgRjp7HpWp4bO3xLpYBIzeQ8f8DWsYMK1PDh/4qfScH/l9h/9DWhLUJvQ+iefaigYx0orrPOsKeleGfELH/CbX+fSPn/tmte5mvC/iEwHjfUARniP/wBFrWNb4Tpw3xnNhsjDfgaeRxUIG3leaejn1/CuZo9OLHYNOAyMGnAhhxQVpF2GFMcjn2oHTB/OnjijGT6UrhYYU2jPb1pp49TUoJU47UY5yp/CgdiPqO1IRjp+VOK7j8vBpACOvFMBAc0Lxzindf6GkHGQRznrSGh+eOKHG9aQDIzzTgdvWkabrUYBimhsH0qcBW5HWo5It/Thv50XE1ZC+4pCBSwq7Epg5HYCri2LMgb9KG0NO5VWNiRgE/7tW4bcSMBIdg/WrVvsjIUqoNXRHC8Y8yMKT0YdKzcyzOm0toF81N2z+9Vqyu2kxBcMCmMBvSrsIktD98SxHquc5qveWyMguIVKgnkDnFZ3voFyS4sntlDlNoPIK9DTEeCRdpwsvrVnS77fD9llZXH8O7qKguYonkaNoSD/AAyJxj60vILkxtRtDHI/2lPNQkSwncSHX1qMPeWACsVeJuhFXbf7PeKdh2SAZKseKNirlCdFkAkRD74HSpLaYzL5RIx71ZJNt85V1HcgZX8agaCMkXEDrzyQvSi473JzAZRtLA7emOpqBQV4kzjpn0q1Azy7XRcuvoOtQRk3FzIrLhj1FIE9Q8vLjaRjsT3pZYSDkZDCm4ZGKEMFHTNWoXBO1wD2GTSuU2QRlJbdx0kA5zVeCEbS+cBRlmqeaFoHfCnHcUjkeXtiOFcdOtNAtS0+yW2SFVV5HHb+Gqyb4bmJskiNunWp9KEfmZ3ABshmI5FQEukssYJVQck9c4zTh8SM6mqaI/Gse+3Rz94KAcDr/nNYXhlfNvmtj/y1hcDPqEJH8v1rd8QyG50aOQfd2g8/rWP4Pj83xNYxZPzMw49CuK9Wq7xPm6a5ZW7GtAQIUYjgoDwPamnDcD5e/IpA0aQKBuJCgHnoacu/b83K7Sc9xXltan1EHeKAYJ6jZ329aVy0z/d+VehzSwuI7dhwQ44YdRSLj7OT1UkAHP6Uihwfy4yFUh2OAxqNOpXsBzTpAA/CsAOgFRRbml6nB4xQFyzGI8bgpO0dKrKNzFiefQip528nECKpz1ZTTWBGEjJP96i4XIy+eqg49KaIQ5DMDipmREUgYdv5VEfMUbUzk0CGlWL9TsXsOtAmLy4wRj1p7FY0AbBfvg9KdhVjyQCD+dPQVyKXaTlTk/7XSomSNhynPtTvKZmOzkehpUznaO3XNFx3RF/Z4kQsjjI7GqjwPGeVrReQD5VGD61HtYnjmmm0S0mUM9jRtFX5IYWHzDa1VpLcqMqcj2q1JEuxW2Y5zS4p3IPQ07g0yRmOOvNMKHFSlaMU7ktEHlnFMKsOatcUhXIppmbiitn1FBRG9jU7RZqIx/UfWncmxA0TKeOlRlR3FWsYNBAb7wFUmQ4lPaO35Ucg9MVYaLnKkH2qMqfp7GmS1YaH9adwwphGDyPyo91OfaqsK4pj49RUTxhhgipBJzg1JkEUk2iWkyg1r3QlajJkjOGXI9RWkU9xUbR1op9zGVJdGU1kDdCM+lPBpzWyHnGD7VAY5Y+nzD3qrpmbTiTZp4PFVllwcHg+9Shs9DRYXMS7jmtfw0x/4SjSf+v2H/0MVig/hWt4ZP8AxVWj8/8AL7D/AOhrSS1BvQ+kKKKK6LnEBrwr4hrnxxqH0j/9FrXuvavC/iH/AMjvqGemI/8A0WtZVvhOnDfGcpkqfangg9fzHWgjjpTMHtWB6C0ZOuQQQfpU4kzgNwf0NVFfHsalXB75z2qWjRMsbfSm49RSKSmPSpRhxx1qC0NA3DFIUK9DT9pzSgDHvSLSIuaCCR6ipNopQuKLjSIdmOeopPlNTEf3TTSvPTB9KLjsM2sBkcikOe9PHX39KtQWTXTYHFDdgRTCnqpya07OyEwzI2PQDrV+2s1tATtWQkc7lzinCBXYbJIwfyrKUrlIRYlVQuAvoSOaR4JEO/BPv2NSuhRAJtw9HXn86lQCSHYxDL2IOOKi4MpNB5nzLtBHUUo3RjJDY/MVZA+yvyy7OxxnNPQPKW2Idp7ZobuJCQzxMoBj/Faf5DBv3eUV+ue9V9kQbb80T56nkVP5zxHbIRJH2cdqVhmZPZSQXG9GLYPBB5FbEDveWyglS6demami8m7xFLhWI+SUAc/WqklpJaT5AKE8Dn5W/Ghu4D5dsA2SKTG/bGcVWMMYlBgbaexboa0ortJMRXMZVuxHQ0ktooydjFCeq9R71Nx36EFtNKH8st5cxHRh8r097S3mfY8bW8p6vHyufpTXhV8KzFj/AAv2pUhlOElJXHRx3+tFx2tqVVS60ycPncn94HgirKSp9rWZcDf61La3Lb/stzCrRfz9waju7OOGQeWzRqTkbuQKLjTvuPuYyjZ2lO/IyDVaaAS4kHygYyQc1c8y4SFX2RzIRyA3X86bsi2l4wYiw+4TkUAnbRkSOxmdZDkKuQT/ABCqhjVJywUhGGdoq3bvtlaNxlmGACKS4h25ZMnbjINFx3sR6cz+b8oDMudyn0qRkSG/khAJ8yPnP8ORTIYwL5goO2Qdal2/aTKzKFuYwBnPai+pLe5jX26OymtmyBgkZ7VU8Gtt8X6ZzjMwWr+tKxAY5YsCpPv/APqxWP4bfyfEenSMPu3CE/8AfVepHWOp8/UVptG1KBBd3SSj/V3DqMezGrLJ/oDzHOW4Uj0p/iGAW3iPUIwOTOXH/AgG/rVNrh4oGix8rDp/hXDNWkz3qMr00xZY9ttAwJAwcnHek/1hTBXbwePWlkuN0EMSNnHJB7GlO1YFAAyDmosbjZiQT1DHv61LBi3Uufv47iqrMzOEY5weTViaQvhFPToaBES8ybjgd+KDK6Z+Qhj3p8YBc5G5R1weac6ea2VY49D2oC5HCCRukA3HpipyWiiJ53nrxnApwQxLnaCOgqDlpPvZPp60CbESIAF5OQRxjuajG4vlj0/hNTyELjI2segz3pwjEYzNhnPIHSgVyDA4ZwU9AO9NeVnyhUbfbrUkvzkZz6YFN8ooCzghaYrkcds0hPluP91v8aPMMB2Ku1vVulPc70AB+X9ajDFflChh3DU0K5Sv7/7HsdrW5unf+G3UMR+BI/SsSHxla3F61pDp2ptcD70XkqGGOuRurpTAXOIyQP7rdK4HRmMPxLv89V8z+lb04xad1sctapOMlyy0Z0/9tkKS+h6tx6Qqf0DUthq+narI0VrMyTqfmgnXa6/h3/Ctnz/NAD8DjG3vivPPiAq2GsWF7aP5dw6sSynDDB4J/Mj8KdNKbt1HWlKklO90dqyMnBFHy45q1C5kt42ni2syAsOmDjkUx7dWyUP4GstnY2vdXK2M9KTBB5yKcyuhxj86XJ71VyWN3Y4Iz9KUgGlwMcU3nrQIb5YY+lMaL2xUwY96WmhNIplCKT/eAIq2V3e1RtF6U0zNoq7QTwcfWmNGO/HuKsPGfSmYIHIqrkMr7SPegc+1TYB7YNBTj1+lMzaIhkdqeCCOlG09s0YHfIpgBQEcVGYyByKl6en4UvXpz7UhWKTxKw5AqubdlOUbHtWoVBHoajMRxWkZWM3TTM0yMn31x7itnwu6t4q0fBzm+g/9DWqTRA9au+G4FHizR2HUX0P/AKMWrUk2ZTg0fStFJiiug4RTXhvxAOPG+ofSP/0Wte5GvCviGP8AiuNQI9I//Ra1jW+E6sL8ZzRHfFIOnNKG9accGuc9Hcbwe1KMg8UY/KlXrgH8DSZaHhuOOvoaUE5yOGH60wrz0o9v1pDLUcgbg8H0qXaMe9Uc9Nx/GrEUwBAYZHY5/nUuJcWSY9qMe9PwWGQQR6im7c1JqhuM9MCkwcgEZPpUqxs7BQCSemK6Gx0uOCIzXKnzQB5ads+9TKfKDdjJg0yQxea4+QdQeDWgI3SEeWQAO/etCYmZv3iMVHGU7VCsSfMFkxjpuWsnNsCCGbgq+QT/ABA1K1thvMQZUjqB1p4hlHzLGrgd1P8ASkjkaJju3Kp7YqbiuMilxlXRgB2BpgjDufJ79cjAqyRDcDO08DoKBCyYZQxGPXpRcExIbMnLAkt6Z60jBomwEkjOeRjIp+XhjBZS0bd8cg1KtyQ3JVx2J60rgyMmG5HlO0SSEYV84qAQXmnvgxB4j0bqDV2SNHxvKuD2PaoSqRRsuR7Fc5FNSC5AXjWQs6tDn0XIrQhu4JofId423cAFcfzqO3mSSARXI3t0RuCcU2fSI5TiOYKx/gcbfypBoPNnIsW9F3qeNp7fQ0REhDtLIR0U80y3uL3SsQTRtJEeCD1/A1pJ9lu0EkR2SDoG9fekw5rblO4tBdW3mwSGJl++oPH5VCr3fkLuSKUJx5gfH5irrLJAVlaJ1dTyUPBFTOsKgTFSqScNkZB/HtSFz2M8R+Y6+bAFJPy7X4P/ANenx7JY3gmwOwYnpVqW2NqhkOZYPUHJU1WmaNbYNuDp/E2OVPvQWpX2I4R9m/cyqeT+f0qW5gA3Qtyp5QnrTJJY5Y4yCfl49vrmpSVbFtc5wSPLmHUfX2pXBsoNHII8H5jH/dHIqxERNCpGJAw+bnBFWRDICU481OPl/iFVmhXG4ZB3cFf600wvcrIpSRomXEeCdzHnj0NSoFlkSWQFY5vkBAwxYU+5JWQiWMEYwcfzpZgYdOjj4JdspISDiqQmzJ1FWSB1k/5ZsQ2PU/5Fc1p0hTVLQhQNs6856/Nmur1LBjdyQdygtj+90/pXHwHbc5H8EgOa9ODvBHi1labPRvFtqv8Awkc0hONyI3T2A/pWJPZFLhhuACnjceD9Peuo8YlEvLWUsMPEpI9awZ8STInB8w7sE+1cNX4j1cNJ+yRktDKsucEMBk5Hanq4ONwweuD3rQh2/O82cZA45wR/SobhBNIqqoYyHcSOMf5xU3OrmZUAG/DcE0FQHJzx61O0QBcNyo4HHNCW7AEj5o/UetFxtkQDBQc4WhmYsvG30PapvL3njIA7Gmu3mNtHRfXoKBXDe8uFYgDuwp7oEQCMhz6iohGB91jj09alVmh+YYOf4TTJcgVGgPmOAz4yM9qYd07Fmb5qepMzEvwKey7m8uPCr3Y9TTJuNACD5fmf0pCPLy0hy56JngUvyR/KuS3rSLCzZaY/L7daAuV2BmblQp9RSmIjlgDj0q3tCIPLXj/aqElixCA5pAQGTPAHHvXm2nPNH8SdQa2hSaTMnySPsGOO+D/KvTWgAXe5Ib2rzjRsr8T9Rx/00/pXTQ+GRyYjWUF5nU3E2r8+Vplsjkcbrwkf+gCuYto7ZvEgl8RysuoggxxOoEI5ONpBORn1x9DXfkZ5YZHt1riviTHG2kWcxx5yz7V9dpUkj8wv51VGXM+WwV48seft0Ov81idrnJ7g9RTlGTkHmsjw7JLceHLGW4yJTFznuM8H8Rg1oFipxnNYSjZ2Noy5kmWGZcYcA1XeJTyKXzCf/r0owfY0loWVyhXpShiM5HFWTGcZI49ajZD161VyWRYB70Ae9BGDwDSE49aZI/OKXjHHFMBFPxkZ60CZGyZ7VGYs1Ocil4NO5DRUMVMKkHNXdnvTSo6U7ktFPr1owD3H0qw8IJ460xoyvVadyLEBXB5yKTB9PxFTc/hSfKfY07iZDk9+adkY4qTZ+VRsATTEMYButX/Dsf8AxVGkkHgXsP8A6GKpbTitHw6MeJtK/wCvyH/0NapbmctmfQuaKAOKK7DzBe1eGfEL/kdtQ+kf/ota90rwj4hsV8cahxkYj/8ARa1nV1idWG+M5ogdzgUi/Kc9RShg1GCOmCPSuY9BEgAPQ0YyOeD60z9PanCTjB5FItMepbGOooYAj5efY0oOaM+1IsaDxj+lLt7jp6U7FGCOhoCw6KVojlencVet1FyVWMYc/wANUlTfwB81dDaaK1vbpcyuMnlQp5FZ1GkilJxRs6fop06JbifY8pHCg9KkliknYtscc9ccU2G5kO0zhQOgkHJ/EVYdJAw2GOUNyvJGfpn+VcsmJSfUoeRLE5YSbfqtLuBB3zque4XcK0EDAMHt23Drs6j60SRJjehZD796m4+Yppbzsm6B4HPYA7SaP+JkrAzWYI6YK4z+NWUhkPLtyP7uKC8w4E0v+6woTC7KEs0LOIri3ktXPR0OR+I9KYLlbeXZcITF2liP9K1jPdsuJoI5oR1VgMY+tMa0s58EWz4P8OQBj2NVoF+5XSKJ03QXsTAj7rNg/kaatnKhLeSWjPcYbFO/sVgxawmUgdYLgDI9s0zY9qAbmxlixx5ltJgH+lFguP8AJmjU+UjBTznqKeZiIdj7Rn+IgHFVc2Uj5XUp4WHQSr0/L/Crscd0se/bFdR4wJoWDfmKGh3GG2Ro48cSfXg0TIgG24VlI6HORTY7iFBscrGehMmcZ/AVLLJ5SAIYZA3bO4frUgm7jTKBDicJKoHR2yfwNVN9ujB7aQqf4o2PFQXCyszEFk9h0qosRkBDsufriqNIxR0CamFAU9D2/wA9qsx3ETI3kY2tw8b9G+nvXOxQzM3lfwjoWXJAq9M7WsQQklf7wXFKwnBXLEd00EckEYV4G6huCtUZFkVy0Acwk85G4fjU1qfPk4YADnc3IP8AhWukdvtJgKxy4+baMo319B70CclAp2lnE8YWORDIeSh6fhUjwxSK1vI5hlH3dwxz7Zp9zbzAGRQwVR80Wdwx6oeh+lEdst5GGEu9e24fL+vKmkRz31I4X80lMiO7jPBP8dFxGHBfPlsfvDtmprrRWKB0lKyg8N1H0JqxbiGeHJgzKnEgJLH6+gosL2iWxQHlSQ4YBnUdz1FQxW+bJ4yvzoyso25GM1oRN5E5Xgxv91hjj24qR9zZh3n5iqsCeVBOAcE+tC3G5nO6nZSppssjRmNc88YPPfBrhSu24lB7Hn8K9OjkgZjBKpKEMkgxySP8ivPLyFYr6ZVU7ScDPpz/APWr0aT908ytrNnonilxcR6bIq7t1qjge3+TWU9qAFcpgsmAfQ1o6jltN8PvnG7To+foF/xqk4c3SRuDgHcwB+6OvX3wa5q2kz0MM37JWK8dmyoDuZSvLgf1qrF5oZrkAMjEjHp9K0bmczgJnYxBeTHXHYVH53loJNmR/DGO9ZnTcptNk+SnBbkDqQPWpFYKVKkCNRgYP3vc1JHAhkLLj5uXIH3PYUskEQXerbQexoC5G7xvgJ19u1RmFDx1+nXNM8p2cMoYKDwQKnjcb8MPn9R2ppC1ICpVhgEEU4JkhnbLDqKvyIpQfKAp5L1XeE9YuV/vd6oLkJwSS4AXtStuyeOKkWLPUhvenRL+8AJABIFArkAXaMoQPwpNxbjPI59q7y18I2MsCyGV2JGcoRipJfBVsf8AVysPqM1apyaukcjxkE7Hn+CQXkYIAewyK5zSfHFhrOrnTbaKRGIPlSPjEmOv04yfwr1WbwOw/wBXOpyehWubtPhJaaVqMl7ZQxiZsj/WEhM5+6D0yfb6GqjFWfMiZYq7XKzD1CW9t40ayslvSx+ZGnEe0fUiuJ0/Q/Edp4mn1v8AsyFzNu3Q/aAMbvevYZPCmowgFIi/fFVJdC1AZ3W7r+FEZyirWKnKnUablscVJe68FJ/sKMY7m+XH6LWJdeG9T17UY7jWpIYoI/uW8BJOOvX+tejvpdzH9+Bj74qBrFl/gOO+aSquOwOMZu7lcyURUiVI1CooCqqjAAFLtGOlXpLYqchcfWoXUgYIzn0qb3NkyuV45FRnI5xVgqR34pMAfSmFyASHk5P49Kcrj86UqM4X8j0qMt82OlFgTHtHnlSPpUe3n5v1pQce3uKfuVhgjPvQGhEVBHFJggjmptmehFNwM/NTAYWxwRmlAB74NP256GmlSPQ0XJeg05FAOT2pc8d6Tr7U0QBpCM0uD2GabuPpTEI0PcVEyY7VOG/ClJFAMq7cdD+FIcd1qwVBphjppktEBj3dODV/w+CPE+k55/0yH/0Nap7TmtDw/wAeJdKH/T5F/wChitIsynsz6AHSikoruPLHV4T8Q8/8JzqHHaP/ANFrXuprwr4h8eOdQz0xH/6LWsqux04f4zlwATnoaUZGMj6UYJ5FKp5wa57HdEOT16/rS9ucfhTsUAY6jNSXYTlWHNPDBsZ496Q9iPypowTxSKTsS/y9aco6dBUa5A+X8q0tK06TUboRoBxy2egpSdkWpXNLQ9NGTezAbE5G4ZDGteR47mXbIyxg9No4FQIr2uIlkKheNpPFTiylkIePYuT1ZuDXLJtsZAsS283/AB8AD1UVethg+bFKkinrEz4qs0bxMy3AUdyD3+nrSSJEFVoykbHuP61LHo9jeCPNHuhIBA+6smSPz7VCssu4faLYn0YcA/h2rIiF4pEkR3EdNrAZrTj1HzSEuUdJcfeZcj8fWpaItYXzYZZmVklikHTbjFDJMzBknLgdUeMirDNIx2O9uFI+X93wfp6GmYmiiKjySo6LvKmkFwQzMwUxDnp14/GoXhwxZrcBh1O7rSTTGIDflB/sS7h+RqaK/KxqsSysc85UEfyoHruR+dbSoizRfd/vjP6ipI2VeIflXPQtuH+NTb4Lr90wjjb+8wx+op39nvwMQy+jxt8wosTzLqNZLSVCs9tG475G3iqz6EgHmaVdNG3XaH4q00UsJxEx3Hqsqgg/nWZcvubIi8lh1MUh/lmndoaV2R3Go3MAe11K3jfH/LVFAP1qpHapIpkt5g4/iC4z+X+FaEE/yAXa7l6AuuaqT2UcsuYSnqAoxRzI2SSGhpIQ2VDL25p/kxyIWZAfQUjrNKxDxBgByEbmkSOMFWQyRjuOuKWhV9BUspPvxSFH7BzkGpBLOSY5owxQ8mI5J/CtOKHzkVIpEfPQbsY/+vU7aeYgrKhd16Zba4+vY0GbqJblG1ggvvuusOB91G2sfqD1q3FZTKyiHAYeg2j8j/SnxvHM2LmORD0xLHuGf94DirhtzGqtBIVH91iXT8+op2MZVHcZFII5CskZjkz9Fb8KLqz8yT7RZFUuCPnjI+WQf0NSFlKlbiI8Dhz/ADBpVaMIAkiyRnoCcMD7H1ppmbvfQr28zbGeElo1OGRx8yH0z6U2eNJP9PssFk/1sR5DDuD71DdrLBKZ0+aQjDMeki+jD196bbXEQVXQtECeD3B/utQ2Wo9S0baOW1LwtmFhvCk8IfQen0pIJEmkjkGR0VgRgn0/UUxC6XRiL7YpTynZG+vvVto4IJwjsFU/MAen/wCupYc1tGYGup5N7aXC5CzPz65wSQa47Wo1S9YDI+U4Pvmuz8TyKtlC5cN5d3njuCCa47WGBfczcqSD7812Um7WOeors6+123WjeG5JACv2WaPHspH+FR/ZDslnDFt5LMp7Af8A68fjVbTJgdD8O84VZLqI/jk/yrbnVLh/JjkVAg3ORg/QYrOv8Zthm+SxghWQvLIVwTyG4PXoP8+lQ7ZvPMjqBJnhf7v1rbeDzAskyhynCADkHoOP1/8A1VSuLUx/IrM7dXZTnH1/z3rNM7FIoyyrGgSM5z1bGOfX3FNRDGPPkO5M8q3VfpUxtdrgkF3/ALoPQf0pphJ3Bhubtt6LVILkjTb0Un5U7L3NQsm44HAPQYpsTEnYxyR3HWpSCnQEjuTTC4yNmjYJKuF6DNWgRu+Qkr7dKgyrrg5dfQdRTlZ4RgAIh4560WIbJJEVRuYgH2qNpGwAFXae+KUhI/mzv9vSlZt3KjIx+VOwkzU0TW5dMlEbOXtz1Q9vcV6Fb3CTxK6MGVhkEd68jbpkMeK7XwhqBmt2tn6x8j6VrTqODsjgxNFW5kdLdK8ttLHDIYpWQhHH8Jx1/CvGvhX4A8X+GfGl/f61L5drJE6MRcCT7Q5IIbAJ6dfmwfava1NLgeldnNocFho4HUde3TrXn/hT4jJ4m8fa/wCHvLiWGxJ+ySJndKEbZISc4PzHIx2rpPGOsSaD4T1G+gBN0I/KtlHVpnISMD/gTCvA9U0r/hU3xY8O3aMfsUkEPnOc4OV8qY/XOX+rChRTQH0qYImHzIp/Con060k+9BGf+A1ZXBGQc57mlqHGPVDTa2ZmSaFp8owbdfw4qhc+DdNnGAJEJ7rXR0VPsoFKpNdTzvUPAN0isbKZZR2RuDXK3emXli5jureSMjuRx+de24qOW3hnTbNGsi+jDNS6S6G0MVNbnhRQHoc0mwFgDgZ4z2r1LUvBOm3hLW5a3kPPycj8jXJ6l4K1O0DNGi3EY/559fyrFwkjrhiYy33M9vCGrNbC5ht96EZG1gc/hWPPa3FqxS4gkiYf31IP6itey1rV9Bm2Ryui94ZBkH8D/SultfHWm6gnlaxp4UHguF3r+PcU4pPcmVScXfdHnvTHOc07d2PNeiTeDtB1pTNpN6IyedqNvUfgeRXO6j4J1iwLMkIuox/FCcn8qbiyo4iL0ehzo5PHFPPH3hxSPE0LlJVZGz0bg0m4qeP1rN+Zre+wYB6UFPalBVjnp70HI9x7UJgM5BpjYY81LwfSmFO9WFiLaR0OaN2DzTzx/hSMc9RQIQMppeKZ5Y60mCOnNAhWFXtAUf8ACSaWf+nyL/0MVRLVoeH2B8RaZ/1+Rf8AoYqlujKpsz3uiiivQPLA9K8N+IO0+NdQB44j5/7ZrXuR6V4d8QF/4rXUD/1z/wDRa1lW+E6sL8Zy/ljGQeabtweeBUpXI4pobOQRzXNc9Cw35hnninqwxz1oA3DAxmk2+n5UAP4pCqkdeKQAgcfrTgASMjFIYqJkgck9BXaWVjFp+npNFKZJHGWA/hrK8N6KdTuS8jBIYxkknrW3cwG3umjijJVejK2QR71hUfRDRVmzNIWPlEHoemaBFKoHy5TofmyBV+O2LMrG2nbd12dKbJHJE+DaTEL0x3rG5Tl0FS7g2BHlhcAfdkByPoaadVgQBRZJKv8AeY8j6iofsjMzSPbnHXaG5H4VJFNImGisxGR/EcnNMWhIk1hKpzFNG3bYBto82ERsn26SI/wiVcj86Y92swPnxPkdDGMY+tWlmaWJR9kSRPVlGB+NINh9neSIRHM6SqRjOwf4VpxW4lQpHcRsvXZt6fj/AErKCq5xuhjUdAl0Bz7jFOCqrjczqc8EOGU/59aQn5Glh7ZjHdWkMi9pQmfzqOe3hUq4leNn6eWnyn6+lPjuIJImjkKlV4K7+v05pyrCoZLeQMh6xGXn/wCtSIvYrtbQDbvnVH9HQkH8RTmtp4VyiKU/vo2QKtJtijXZM0GPvI0wOfoap32oFQIxIZl6dQcflQ3ZAm5Mqzyu42C8kIz0qDcI5BuYkkfUn61a2nyQIygPXDgD9abtkcKXgAI/iRg354NTds6FYQvE0eHhjVux7Gq0YWNt5Qj1xyv5VoCKZCCtsWUjkEFvxFQNE0aM/lvGPx/wpIFJXK8AWRi6uSc/KPSrNujiYKyKR1wO9RW6SLh4zEwB5+bBrSs1e4ikfy4gSSCS3PtTdwk7Fi3ht5N0qR7CfujbgfpVhIIZshpSQf4fMwR+dIqTRoUKRg4GzLqQ39ak2szDfZRkAYBIHP5VpFHHJ3I5YZoVzw7AY+dchlqvPPBDEDDKYpcdUGR+Rp95dxRKIkM0bA8hWJ21RhCXd0ymXGPm+bg/nSe5cFpdgJTLFh5A2T8ykHn3p8NiFkRSMIT1B3D/AOtV28i/fx4gwxXO4DJz9afFMJIHk2gjIDEe3Wl1H7S0dBlxiRNqlfYjuB3NYE1xDES8I8yPGJhnhx/9b1FT6xe+SDFGwDyDk8D8K4LVNbRJRbI+4qfmKdK2p03IFyxWrOpuPEUSwfZY0LxYwGJ+Y/WsuXXLqVVBYgjuefzrmkvEfGGwRzgnmriXCv1z9a0dK2500ZQZPqN/MbdWdiQrqx546/8A16Lwi52sDwwJ/Q1UvubCYZzwD+RBp2lyLJBtY/MvrWkI2Vzlxfx2OhtNzeDEdSQbO9Y/gyqP61FFqMyIULE5xkg4NOs7nyvB+oRjq97GvP8Aulv/AGSqaKJOhKsOdp/pUVUr3NsCk4tGvbam0KfI2T6tzgVegufMTcn3um4dTnrXPKME8n3Hep4Z2Q/KTz271hyo6ZQRvSwKxIQfXack/U1Ukt3VirttB6c06zvc4TaQR2XgGrb5brtTPYDNC0MtjN8jyj7HuaawAZd0hYA9AatvCuCATnsG6GquQrYICN3B7Va1Bkb5DAop5+9ninryoEjcfTkUjtzznPr2NJKW8jj8R60ybi8wHn5lPWplK43BhtxUKJ5nFHNu2CAQecUCHuFboMg9q6LwihN27DOMc1jR27O4MYBz0ArudC037HbBmGHcc0R1kc2JmlCxtLSmhRwKGHze+PzruR5jZxniE/2z458P6GPmhs92r3Qz/c+SEfQuWb/gFc18e/D/APavgePU4UzNpkwkzj/lk+Fb9dh/A1f0Tw5Z+MtQ1bxPeXF+i3dy0Fl9kvJIAbaL5AfkYZDMHYZ/vVq3fw00W+s5raa81p0mUqwfVJ3BHupcg/jVJ2Yhfhb4gPiP4eaZdvJvuYY/s0+Tn50459yu0/jXa4rwH4FahNoPirX/AAffsEkRmlUHgeZGdr4+owfote+g0S3AWkNFFIApRTc0opAKenSko60tMCje6VZajGUubeNwe+OR+NcnqXw7glBayuNh7JKMiu6wMUColBMuNSUdmeM3egaxokhfy5UCniSPJH6Ve07x1q1iBHcFbhBxiXhvzr1YqDwQCDWNqXhfS9SGXtxHJ/fj+U1m6bWqZoqqlpJGJF4i8Na/H5OowLDIw/5arj8mFQXXgCxu4zLpd7tB6K3zr+fX+dUdT+Ht3FuawmWZOvlsMH/CueV9Z8PXGUM9s49c7T/QilzPaSLS6wkSal4U1fTSS9qXQdHjO4ViHcrFWBVh68V3WmfESeMiPU7dXXpvjG0/l0NbbDwt4lXB8nzT0/5Ztn/P1pKMX8Joq84/EjyvcD16dqXBHQ5Fd3qXw3dQZNOut/fy5f6GuRv9D1PTGxd2kiL/AH8ZH50nFrc2jWjLZlPAI5FMdD2pVb15H1o3Lng4+tSabkJ49jSEnvUzEY5BHvTSvFUJkOR+NaHh8EeJNK/6/Iv/AEMVQZavaACPEmlc5/0yL/0MVUd0ZT2Z79RSUV6B5Qprw3x+T/wm+oANjiP/ANFrXuVeGfEL/keb/wBcR/8Aotaxq6xOrDO0znO/LUp2kdaarc4IGKCP7tcrPRWojIR/iKcrADnkUgJHHankg8YwaB2EIzypyPSljRpGwvPsaCoyOSCK2NC0w6lfJGSFA53ZxSk7IC/aJJZ2IX5vmHzKKtQ3DRKrwIS3cMpIIq7eWc0JKll2qMbw3UVUgvjbg4J2g4LDj865b3GtUT/21dINotnDH0Bp6+ILyIhWt2Gfvbj1qjJqsk0uA6Jnjc3Q1LHIJHCyyOVA52ZOafKKxcj1VvMLQWspduobnH0p0V9cg5nQg/3iOaoi5JYKnmtH9MEVI1r55Ba5BQnox+YfWpGki899DHG22MGRv4mFVEvIFUi489z28rgD8Kd/ZZEe57yFE9myT+FSSWVgVUvfq2P7iEmgbY4XNmIgz6ZKVPR945/SpkvLV4jiyITHQyDH6iki020Zf3SSzqP+mmP0xUqWGFCx6cFX08zJNSydCFbmJU3RyXMR/uqVZavWmrQSsBdWpmbHEnlgGqcmmyrnzLBI+wYyYx+FTDS5kiDBEYjoySUXFLlaNN5rBo/Mk0+Vc8hvLPP1rMa4sVZ2CPHxwQnP+frU7y3tlGEWLEbdmuefwFQwTGcMqwYx975uTSk9ApxsUmlthIcu7J6kd6fHLZyOFkRiOxUHNakVuyKWijhfB53nn8vWo/NILNLG6N0XZ0FZ8xpcpxtbrKBsZFJ67T/Q1YlZY7dvKeYcfNuzg02RIyQ+XJPqOtTBTIoWMS+4YE0MHYjimtXCbpY9/GNqmpLCWzkVmjvIt5fBCDd+GQKyvE9pdz6fbWNnFta/nW1kkQH5Izlnb2+VSM+pFcTeW13bfGDTtH8NGLTi1kI7loo1AVTvJYjoWAIKk98ZrppUlPqYVqlkeupPD9qEG+JpevlBnL8/hx+VTy7IlLZZT0OV4z65/wDrV5340+Ht9f22nW3hw6falZzJdXk3+vJGNrmXBY85zz3Udq7u7lWKNRJLI4Vdp+f9egq5JRhc54tuViiVkluGkgnTcDyu8c/nVqG0Fw5jZ4pCFyVyGx+VFndQBy4kOGIzuHX+VWSkD3AnLKFJweDmuddzacmlYfLC4vER1Bwo2kZ9D3/xNQxYhttrE5C5IYqTyee9XJfJE0TCY4+6M5qKTdHCEaUj+E56VcrmUXeyPNfFlqLu4bzgWGSy4BGPzrhpNOkV/lyVr0TXlYXjjO5c98Y/SsFoUkIA4IrqoVuVHXPDwqK9zlRbTA9D+Iq9bi+jPCqyd91bJg8s89PzpszqEOSAO/atXWcuhFPDqDvcryrut5F6EoRisiKd7eYMn5Ut14i022IU3Kyv0CRfOT69OlZ5vZr2YnTLCcp3a6Kx7R9Mkn8quEbowxVSN1Z6nbWU32jwnqzHkpcW7/TO8f1oil52SjDdiKzLC6t7C3ljnmEolCsYY84LKcjJ9OtPWVnX5jyfTtWVWJ04KWjNxcNgMSD2Yd6k8shsEYP6GsSOd14LEj61aWd1XqWT681zuLPQeqNlEYMOo9ic10+laDc3qB3JWL3H8q4NbuRcNHK3HOM9KvxeL9bt8BL5yq9AVBx+lOMVfU5K6m17h6DJ4SymFuOR0ytZ134VvdnCpKPY4Nc7H491sKM3SfXywf6U7/hO9dzxPF9fKH+FaOFM5FHEIty6BqMPW0kkQc46kVTmtLgKAkMgJ6gqRTh471zvcRn/ALZD/CkHjzWR1li/GIY/z0qeSJpzVlvYfBpl3JwttJnPXbxWtb+Fb64ZWcCPHdueKxD8QtcjJJ+zOvtH/wDXqWP4m6uoBa2smHfarD+tONOPcznKt2O90rQYNOHd3PqOlbCqBXmafFG7z8+n25+kjD+lTr8U2BxJpS4PcT//AFq2ioROSVOpLVo9Hx6HBrjfF9t441CK4svDb6Pa280ew3V1JIJlz12hVIH19+neqI+J8Y5OlNj2m/8ArVKnxOszy2nSj/toD/StFJEeyn2H/D7SfFfh3TINE1v+ypbK1iKwT2cjmQndkKwZVGMbuR6Cup1KTUEsJW0uG3lvOPLS4kZIzyM5YAkcZ7Vy4+Jmmk82c/4MKePiTpRPNtcY/A/1oclcXs5djg5Phr4+f4hHxnDceHYL0yCQwRyzeXjZsI5jJ5Gc+5Net6PJrb2r/wBt29jBcB8KLOZpEK4HOWVSDnPH61iJ8RtGI5iuAP8AdH+NSL8Q9DPXzx/wDP8AWhyTFyS7HVk80GuXHj/Qc8yzD6x1IvjzQG/5eHH1Q0XQcsux0lFYC+NNBIz9t/8AHD/hTv8AhMdAP/MQUfVW/wAKWgcrN4GisRfF2gk4/tKIfgf8KkHifRG/5iduPq2KLi5WbFFZg8Q6MRxqVpz/ANNRThrulHpqVp/3+Wi6CzNA0Y9qprq2nP8Adv7U/SVT/WpFvrVx8t1Cfo4/xp3QaljofWobi2guozHPEkqHqrjIpwnhP3ZkP/AhTt6H+Nc+xodmGpyupeAdMvVLW+baT/ZGV/KuP1HwZrGnZeKM3EanrEcn8q9aDL2ZfzpSR0JFQ6cWaRqyj5nj1h4p1fSWEX2hyinHlT5IHtz0rqrP4h6fcRbNSt2iJGCQN6muk1HRNM1JCLq3jJx98fKw+hrzDxLo1npV0Fs75LhGJBjPLJ+PSolzLdmkeSo9VYreIrrTrvVXl02DyYSB0GAT64rHPPTn2pc/LjpV7R9Pj1TU4LTz0i8w4y1ZvudSaitzPDY6twKUMD0Ne323h/TIbJLU2cLoq4+ZASffNYep/DzTLtWa0eS1kPTHzL+VXyO1zFYlPc8sOe4q7oAH/CR6Yf8Ap8i/9DFaWqeDdY0sM/k/aIh/HDzj8Kz9Cz/wkemAjDfa4sg8EfOO1JJ3NJTjJOx7xRSUV6B5gvavCviGT/wnWoY9I/8A0Wte6mvCviGm7xvqHOCPL/8ARa1nU2OjD/GcwGXdzkGpVPPOPqKhK8DIzSrxyMmuc7kybgn5Tn2pDxUYLZBUjNSgq4weDU2LuCMwYA8g113hqy32z3Dv5Q6Bj0NcnHw+CMiu60zUDDpK25gDxYHGOTWNV6BdlryWDbMRsp/WpLiys1i3E/OBytOtr2CNN0cEjk8+We1Z95fm6ZlEXlc9AvIrnsxq5C8No7KrbE+v3f8A9dSRXENqdqTKVHt0qjJDIx/fgbT0YCh9OUxgs7tH/s9qq3mXY2f7SRcmMq5+gqumqRmUlbdA/uuQaoQ2Qtz5tsryt7/1qxi+kRj5axjuAtHKLQlM6GZd8ChzzgJwatQ6jerJ8lkF7YEYGao2wumm2maZ9vUpGcj6VsW1tclMyea69i8m0/jSaFoQB3nfeLfyZ+/vTJo7lm3i6hhfvuf/AArQGnWRbMyhgBk4nzUBXQocuIFIz/ez+dTYV/IqGWRSBLMty2euM4q8DNJgqhQEcHIGabHqGmLNmO1Dj+70/WrC6tA2RFbqCBwpA+WiwrvsZN41+ZArqjKBwOCRTYpLmJAwBBXjhQP/ANdOuL6U3DkfLnn5eKqtdzSnKys3ruPSkbRWmpq28s8+N+FJ7kgA1eWzuxGBHMdoHQuDisH55I8sqSDue9WLSa4gZctui/u9SKlolprY1VtrgxZ85MDszU+O23OCb/AHo1Nij+0/PlArHqWx+dTLDHGxLKnplT0pGbl3K32aEOQbiRjnHFee/DpI9b+IvifXjGZoYWFtbkZ5GcDp/sxj869GvIy9tcR24AmkiZY5CflDY4PA4rA+HXhibwjoBsriaGS6mnaaVovmUHAAAJHPA/WumlNRhLUxqJyaO1hRkPEUCY4+Ucj+dJdRPKxCsPUgrUZugGKxlncDsC1PljeUBsNuxkhpcEfl2/Gs/iVkL4Xch+wu0YaGZVIPzKeM1ZsphloZJDuHY44+lYV9408MaNmPUNatFlB5jgbzpB/wFdx/Ssubxldalh9D8Iaxeg/dnu8WcRHqCeT+VaKjLcmVS+jO7mQPAQG5ByCfUfpULSLND5m87cYfIyB/SuRSy+IOrjdJqOj6JD6WcJuZQPQtJ8ufoKSX4ZabdAya1quqa1LwxS7um2Z/2UXAx7c1o6atdsyi+xk+LvEXhu1JQavaGXOBFC/nNn02pkj8a4ptcvbg50/Qrtx/eucQrj1GeSK9bi8O6TpNvs07SrayUd0jAZvqawdU0wGR2VApHVelTGcI6JHdRlNq3NY4AWviG9P72/tbJTztt4jI2Pq3FR/8I1aHnUXvL45z+/nOAfoOK6aSH3P0PNVXZgMEEZ49q1VRmkoq2rv6/wCRmJZafHFst4IoVx0RQPzqjPpZY7lYe2K2HiVzyp+tMa3f+FiRWsZtHHOCk7JGXa6Y5fj8q1VsyOC2D6VNGpiAIH1q0jBsZwR3qJzbOnDwUVoUlsJWIAYcnGa7zTfh3NPbRyy6isbMMlFi3Y/HIrlVUpll6fyrq9J8TalbQKn7uZB0BHP51lz6l1vaOPuMu/8ACsowcjUmB/64/wD16c3w1RgP+Jgcjv5X/wBer8PjMKv7+zcL3aM7sfUVp2vifTrrG2bGfUYrWM6bPPcsQjmD8Mzni/U/WPH9aT/hWso6X6f9+zXcJqNq/wB2aP8A76qysqsOGHPStLU2Q69Zbs88Pw0uB/y/xf8AfBrl7rwVdw/Eew0sXqH7TpsshxnaNrr29ea9s3c1wtgf7T+NGqXStmLSdJis29PMlcyn/wAdA/OrUYW0Jdeo+pnyfDS8Jyl5B+RqF/hjfsMrdQBvXn/CvUh70tL2aBYip3PJj8NNYzjzrc++4/4VG3w21rBG63P/AG0/+tXrtIfbihwiH1ip3PIR8O9cHGID/wBtRTW+HeuqOI4z7eaK9gwaKXs4j+sTPGz8PdfU5WBT7eYv+NJ/wgXiAf8ALpn6SL/jXspHNGKPZxD6xM8XbwL4gH/Lk34Op/rULeC9fXrYS/oa9uyO9BxRyIXt5Hhp8I66o5024I9lzTf+EX1scDTrsf8AbJq90xznFFLkH7eR4V/wjmtLwdOuz/2xb/CmHQdXHB0+6X/ti3+Fe7/WjFL2YfWH2PBW0XVRwbK5H/bNv8Kj/szUo85tZx/wA/4V79xScdhR7Ift32PATYXoH+om/wC+DTDZXveGUH3U19BYB7UYHpR7MXt/I+fVtbwH/VyA/wC7TxHc/wASSD3xXvpRT1UGk8qM/wDLNfyqfZsftvI8H8u4JHEn1xRtuh/fr3jyIv8Anmn5UnkQnrCn/fIo9mxe2XY8KH2pTkGQfiaUz3qfdlmX/gTV7mbaA9YIz/wEUn2S2P8Ay7xf98CmqbD2y7HhgvL8grJPOQf9tsUxlYqdwz617q1hZnrawn6oKT+zrL/n0g/79ih0mNVkuh4FIcAkduxFaHhzSr7UNWt/JicASBmfaQFA969pOmWDH/jzt+P+mYqdIYoU2xoqL6KMCk4PYHWb6Do8hQCc4GKCR6UE4GKYarmsrGO4pfFZVzo2mXN9BdPbKtxFKsiugwSQcjOOtX2fb16Vi3uqpHqFpbqcvJOike24Vi5+8i4x7HT4ooxRXpHPYdXhHxFyPHN+R/0z/wDRa17t2rwz4hD/AIrfUPpH/wCi1rOrsdOH+M5pGDDmkaPuvX0pnf3qSNgxx/FXMzvWozbg46GlDYPzfnU5AIwfzppTaeelF0NqxYsVFxdRRnozYzXay2Zt2hCPnGMkVx2mIn2xfmx3ruYpoQAs0mzI4J71zVik7IVo5YYfMa5hx2ZRytVfs9uzhm1BZGP90HNLdfZIoyEl3E8gE1RjdpnIiCRnH3gKzGtS8I7QAfa7tyM4wi0ss2nW4/dRzMPUvwRVdLAyf6wzOT3HSpV0wwvlUU56CVqWgMVdZskTbDE8chHIIyGpX1m5kiVI4HQjpxU0tlHNFhmRZB1CjpURS3tgPtVwzjttPIp3CyKv2++yY5SYt3R81bjgvCu5roDPQ54NNhuNOQsxR5s/dJOfzpJH8+MCOM7QfuYP6GhsNC3bWkTthifN7gvgGrC2O0/8eirJ2ZgMGskRTMuRwq9cnBWpkinOPMm3J2dRkipFbzL39nRFx57wRL12l84/KpPJsYlZVuQ5HQRr1+hqsltHGcyXAMR/ifr+FSzG2gi3CR5Rj5cDbj60Ni1MuaWF5T5cchx0LsAfxApUGB8kWXB/hXP86IpUdyUVYyTkOw6/T1pzNKXZluTI4OCEzj8elJp30NU7IryGdjuOyIg9+M1IqS7jmXLY/hHBqlfeI9K0wlL+/so2HUM4Zv8AvkDP6Vnt4tM6BdL0bUtQX/lnMYvs8R/4E9X7OT6EuokdJC8gwyEqRz8z4/TvWxa3q3JCSswY9ABgfga8/wDtPizUcxA6bpUfUbFNxKv4khaeng19Q3HWNU1G/VvvRNN5cR/4AuBT9kl8TJcnLZHXat4o8O6NIft2rWaMvRA++Qf8AGSKyh46nu3P9ieG9V1FW5jmmQW0Te4Zj/Sr+iaHoejqPsdhaxuBgmGIeZ/311P410iLGeYkUD+8ecGi9NbIyanszlDF491R1d7rStChYcNbxG4lHsd2E/nTj4Bsrx4217WtV1kP95J7oxw59kTAH0rqQQVImbLKeF7D8KVpN8JV2G09NzdPpR7Z9FYzcEcn4w0CPQvCNxL4P0tLbUopIXhaxtx5mRIvU4JYYznPB71ueDddu/Efg+y1S5gt4ZZlO4I5ZGIJB6j5TkHI55rVtHZxsyQw+6znp7/zrj7Vx4N8ZS2Mo/4keuymS3c8Lb3Z5ZPYPwR78CtYz9pCzMnHllc7sE7d6u0gHVTShjjdbgBRyVUYxUeBE4LNg4+76VIzhhlD8/UBP61kPcWX7PLHiUbSeuT/AJ5rPudMN0VLxkAdB/EauxoGky6guBxtHC1a2HaUQtjuR/IVooKQudx2OL1Dw4sjFoR05JB4rn59EuEwdn065NeqCJZCE2LjvxT2skZhwNi87TWsaLK+tM8Xm06aL5ijKeeo61XWEbvQ+gr2C90SGdWIUYAIPyjr2rDufDVu13tGxQWxtz7A/wCNEoSiVCvF7nAhAMbh7ZpfspDbkzj2rr9R8LfZZI2TDRuCD2Oaih0cRSCPzEyRkZ5/KspSsdcJxaujAtoGkYbxznrWxBYOjBoQN3cdsVsDToZGi2j9+vyEfdB+o9aFlRGeKQbSpwyEYI9/rWbdwdS+xWKpIu0gow6tnof51Re1ktyZCQyZ4ZRnP1rVuI4pxlyeOrxn5vxqm6tGQJFDoejr0/4FSBSuVhdlSY2yfcDpVqK9uY/9TKXQ/wB0gn9MGqs9om39x16kHr+FVw7Q/Lg8HG0jP500huMWtUal54tuND02e9uJQYIULEOSD9BnufSq3w91Q6fpE13qkbf2jqty99dEfws/3VA7AKAMdjmuMnmHirXFtQVOk6fKHuGU8XEw+6noVXvXWAgnAKsBzkZBrdycI2Of2MZvY9LtdTtbofuplJ9CcGrgOa8rWd48H5iP7wPIrZsfEFzCAFuFlA/hk60RrtbmM8K1rE73NGawbTxJDJgXCmJj36iteO5imAMbhgfQitlUTOaUJR3J80GmbhnrRuq1JED91JnI4pu7NHI5zxQ2A7qM96TOabnB4pd1FwHDpS03NG7mi4CmkyaXIpM5pgGc0mD2opc8Uhi0UlLmmIDRSUUDFpcU3NLk0CAUpoopoAFIxHSgnFM+de24H060MB3XnNNJ96AytwDg+nekOaydxiE0wnilY4FV5ZAqkmsZuxcVcq6jeLa27O2MCuCgvTfeKLKQ8f6VHgf8DFW/EmqPNKYI2yoPOKx9HIOvWHUH7TF2/wBsVnDWVzpjG0Xc9mopB0or1jzxa8P+IChvG1/64j/9FrXuHavD/H7Y8b6gPaP/ANFrWVb4Tqw3xnKsMGmnNT4D8HhqaV2nDcZ6Guc7RI5O2amU7hz2qqylW6VPE2TzQ0UmdF4etEnuhuxj37V1l1poEYxsZD3NcnobhLgEnHrXYBopE4lJHoa5KurFJ6mXcJa2iDbEs59D2+lVV1OKA5REUHoMcir1xBbuwQsVY/dA6mqTadE2XJwvTnr+NJWLVhDqRlOfNc55CDip0nmuMJHbHIPDHk1TKwWTBt64Bx61J/aEUpPk3LBjwccUrDLs2nSyqGnukgb0BqE2unLxI0s8p79qoy3Hlrhg0rerN0p8U63AKeVIzfwle340WsBPAGilIhRUwfrWgl4CpVp9zjnYFx+tR2Wm3BchwsWe/wB7P+Fc34xTV9G0+91O21eOOCBAy2r2ofJ4GN+eck+lOMeZpImclFanUCWKVmCWxMh9SaVor+SbZiOJT2zj9BXCeEtQ8WeINKj1KTV7ezjaQhAlirkqDgk/MMDOR0PSvQf7QVEXzLvLEdY/4vUiicHB2ZEZXV0ir9gW1YvNM2wHJJ6Y7mrscOnTwrLA0kwYBhl+GHYg+n/1vWuK1O5k8Ua7JpNmkosLNVfUXL48xm+7FnsD3x1HFdNb6dJdxiNUkygwABsRccdPTjim42QJ36nlmox+L38ezpbXFxBaPKdkgG6BIvUqflLAHp1zWnpngu4ja5j1XVLy9hmkEgjWV41diMEuoPXAXv2FdtqNhDaECeaNnwNoiXGMepotLmJQv7sbMfLJjJ/OtJ15cuiHGjC93qZ+meHLCwKrZaVbW7Lx5qxB5P8Avo8/rWuIooZSbl2lB7YzVk3M0jcEFGHY9vpVSW42vtV/l6bR1rByk92XFLorE87JKo2RqmTwtRh5X2w3JJT0z0qFmaCRXHyg9uuf8Ko634itdB0t768VuOEjPLO56AHt0PP1pJN6Ituyu2bCzC3IaEkKeOR/kitCKVwpdCFjxls8D/8AV79q4dNO1y60WXUrnUbqDUpImmit7bAigOMhSP4z65z6DpWr4Q13/hItAttRuHxOwMckajjevHH14P41TpWVzPmUtDsLS8gvESa3KvvUMHByGX2PenyRpGwfaJFHIyOlcG1wPC2vQLEGh0HVJtgQn/j1uD/d9EY9ugI4xzXe29wqgead4I5Yd/8A69TKFjLclUtMN7ttAPG0VU1zTLPxFpFxpuoJ+7lA+YdVYfdZfQj/AD1q6+AA8TZT0pmwT8fdbsDzRFuLuiWk9zm/DHiC7jvP+EV8ROq6tEpNtdH7t9EOjKT/ABgdV9q7BIJIW2jp3NYeveHbPxDYraXgkSWN98FzEdssEg6Mjevt7c1l6Z4xvvDU8Wj+MtojZtltrSLiGc9hJ/cb17H279SjGpr1MJNxO1VlI8vp6k96tIVKkRnG3kj0pmIpwojIbzF3K6kEEYyDSpAVICkMo6nPWtIRaM3K5YT5U3sME0452Ht79agM7xhmK5Rexp6SoygklC3410RkkZvUJxiMBSq/Mo6deaoXO/7QWDA4kHbPVSKmmnbzFU7WUyLjHHr/AIVBdjEs5XGfLV+fUH/69Z1GnsyoJroN1OKSSzYIi7kO9cr6VhwxyXUACbAy/MjKOf8AP/1q6OIttwxGMDJFc7Nvsb9o1Y8Elcdwa4qiOyi76BNazS7ZWcuyc7kGCv1z1poi86Vi/wA0mM7mGQ3+FSSzFSJFJYEdM9aY/lyL5sZ5Yfn9aybNkM2xIh25Vs8rjn6Gms2R+6Aj3cHIyp/CnBA+VOYpsZTj5WFU7zUrSws5Li9mjto4hlmkfaB9Pf25qvIrzAxCAlnXauP4eQf8DXGatqU/iS+fRdEfai5F7fg8RL3Rexcj8v5Omu9T8ZuY7FpdO0Q8NdOpWa5HpGv8IPqa37DS7fSbKO1sYFhgQYVR0+ufU9zW1lDfcSvPbYz7PTINGso7OCFRBGu1QByfr7+vvViNskkMSepU1edgBsfke4/rVa5tyrAopGecH+hqG76s2WmgJIrnGdrVI0gY/vU47MBgis+Rih/eI2B/EOCKmjuGAySXT160mgNFJCADvLL6r1/KrENxcQHzIiSo5yvb6gVlbwCHjarMcwYZDFH9RUkNJ7nQWviieNlWVQ6+vQ1u22v2Vydok2N6OMVwm8k/vFyc9T3prsVIOSM9O9UpyRjKhF7HpySq4yrA/Q04PXnFvqdxbnKy4x12mtCLxNcr12ye9X7Z9Tnlhmjt9wNLuNcenivkB4yD+lWh4niA+ZGwfSqVcj2Mjpg1LuFc7H4ltW4LEH0IqdfENixw0wU9s8A1SrpkulLsbm4Hp1oJFZKa1Z5A+0IM+9WVvYXPEin8ar2qJcJFzNLmq4mU85pwkB5BpqaJsyfIpM/lUauCeDS78cVfMhWJM0A1HuHWl3fhRzBYfkUU3JozxTuA8Glpg5NBbnFNysFrjiMnNGRimg0E1N+oAwU9R+I60zDA8fOPQ8EUuaYT+NJyHYRnGO+PcVga5qC21swzkngVq3dysMTM/QD1rznWL6S9umGMKp4rnm7s3pQM24VpZDJvILHkGpdISRdf07PT7VF/6GKgYP2bP9Km0ZnGv6cC24faov8A0MU4bo3lsz2nIooor1DzBe1eG/EE48bagD0/d4Pp+7Wvcu1eGfEIlfHGoEDIxHn/AL9rWNb4Tpw/xnNBj0qQEMME89Khz/Eoyvp6U8YPIOR6d652d6YEc7SOR0PrTo0KnI5U96dwRtb8DTkyrexpdAR03htYmm/eYIrrttqWDIFAxXDaNbyy3QSJsbuvNdbFpt3HMMEMp+8c1zVNwkVL69hSXbgKM/eHb3rObV4t+xl3Sf3j0atG+0Z5JTkgL2561Tjsbe1l+ZPMPoexqdBrQqvC947MLZsnsBxUtvoUsgOVEA7huv4VflluWARCI1A4IqL7S7DY0rMR6dRT5uwXDyLLTFAnU3Lfw5OKHv8AevlQxx26H17fjTxZzFFaQfu2P3jyTUE2ljeRPOsaN3JpeoysLtreYeZcPKO6x1yfxX1v/imraxjt2gFzPlg38SoM/wAytdcI0tiHtYmcA8tJ0rzvxdcS+JfiRpGlXEm+KHYsioPugne+P+AgVtRiue/bUyrtqB6X4b8PLpnh3TrKU4mSFd8aDox5b9Sa1r+0/sbSLvVJY44orWFpiJDlnCjPH+e9RDU7mOIQx2/kr/eblq5vx59oX4f6rcveNJiNV2k/3nUf1NZx9+dwldR3JfhwkEXhJb+5lT+0NQmkupi3qzcY/AD866eTU4vKk866WGJFJZx8uB7noB9eKxvC+kwP4U0c+YoP2KE++SgJo16wjn09bFD5pnnjSY9xDuBce+QCPxok1KbHFJRRUOvaPqc32OK4dpJE8yPzYXj8xP7w3D5hweVzWUniTSrR3WS4d4I22s6RO0Y7cuBtH51meLYj4h+Kej6RHvgS3ty8xjJBCnc2OOmVCj/gVXPFPhK31C3trWOV7e3gbIiReMYxjH0rVwgrX6hCcmml0OoiupGhUWyBkblQCCMeufTFW40QwrseGJzyf7xrIsn8i3SGMkKiKignLEAY5NW2U3DKZCIF7eprnska3asTO4EuMmbPGwV55NIPFPxQg06Zm/s7SA0jpnI3rjP/AI9tX8K9BmmXT7KScx5WNC7NnnABNeXfDrSLjVI9R1b7fd20rz7C8BTLH7xzuU/3u1b0VyqU+uxlVbbUFsem6jeppOi393CQRDBJJlhnkKTj6/41zHwiiZvBku7jN7JtJPG3an9QayviFZz6N4eLNrmo3JuHWERzNHtYEEnOFB6A/mK6nwRpk2leGdPtnBVvL8yRG9WO4j6jOPwocVGi/MF79VeRb8Z6b/afhHUoMbnWIyoQOQyfMPzIx+NXvCOsjV/Cen6i7ZlkhAk/2nX5WP5g1ckuYJ4HixjcrKynuCMVxXwmBl8GbnkCiG6kRcnjsf61kl+6fkxy/iI9IhaUOH/hP8Jq/GyXBGz5SOvrWVDdKw5YDuD6VcyBtwTk9CKzFJGluBwhBU9MnvUV1aW13bS2l5BFPbSLtkidQwf2IPWkWULtjmYDd/GasKrockkqOgPUe9awWtzBrucYnhTXvCrmXwlfiS0zubR79i8OM5xG/LIfTtnNaVl8TLK2nWx8S2Vz4fvmOFS8GYXP+xMPlYflXWQkRgNu4NNuLK1v4ZIbq3imgk4MUihlI9weK7YSfU55LUnt7m1vrZZbaaK4hkG4PG4dWHqCKR41JJMZGB2rjrj4XaJFPJc6NNqGiTs2S+mXLRg/VOVx+FRjR/iFpqsbHxRYakgOFi1Kx2HHu8RGfxq2kyVodNJbEzwDLFfM79uDUM0Ei6gNrk74CMHvxXNvrfxCs3iNz4a0i+w2QbTUDFk4/wBtar3PjDxUl3byT+BJ45AeAmqQuCMHvWThY0jJ3Owt2ldEZiFJ9T7f/WqjrVm7RR3KY3pjcN3Fc3F4v8VKWSHwJJjcRmTV4Uxzn0PbNPm1Px/qMTRxaPoVirjGbu9ebH/fCjmspQTWrNYykpXsalr5c4aLbtb7y89vSqN/qNpoOJdRuYoLZv4ncIT7jPX8M/Suak0bxJcTlNT8UvbqpyE02ARYPtIctVuy8JeHbOQXT2j312wz9ovpDM5Pvu6fhWfLCO50JzeyIJfFt5rCtb+GtJe+hJwl9eK0VuvuM/M30AFWLfwULmYah4mv5dTv1+aMSALbwf7sfT8T6U7xD4mg8K6JLdyRg7flgi6eYx7fh1+grL0rw8dTsDe+Jl+26hcrlklyVtAeiRjopHqOc55ql8N1ovzE4+9bc6q4/wBGIjmwHwCkmcg0wOG4b5WPp0Nc14A1abWfDtzp93KJbnTrp4FllOWkQcrk+vb8K6IskbFCpVv7rdvpWUo8rszeE+aNxXjSQFScegqHbJCMYEkf8SHnFO3ZUgdRx7j60c5AztJ6Z6GkBBJbh13xtkenpVLyPLJJyrH8q1DwxyNj+o6GmPtmyG4YetUO5n7McEY9CKlEjD5ThgPzqZv3IO5dy+1IsKuC0bBv9kdaQrgsjLnO4r6GlRyxPltkd0NQsHzySG9KMp1PyvSGTFHb7mAfTNRMZIzwmDSCXdwwH1FThuAG+YHv6UAyJZRKMOMe9KwdCMAketPaEgHZ83sBUall4ViD/dNIgVZWBIIzQXEvyyJkGn8H733vQ9DSgLxxjPf0oEQGBlJ8lg47oeo+hqMXpiYIXkRvc8VdEYDcEEjvRNFHMhWWPIP8QHSqT7oViJdRuUb5LiQfU5qxHrt9GwAnP1qg9q0A4O9OxHWgBJCVzj2p6EtLsbA8Q6ip3LIrVYXxfdKMSRLn1rnwhj4yakVVkBOcEdaCXBdjpk8ZBMGWAgeo5q6niy1fDYNcOUdBkYKnqKTBHzJ27d6fzIdOJ6JF4m0+UY80KfQ1bj1e0k4Ey/nXl/yyEnAV/ShpXRQSeR0wapSkifYpnqw1C3c7UlXPpmpFnQ8hhXlMVw6g7nfcepzipkvruP7s749M1LnIPq67nqYmB70u7I4rzNdbvlGPOb8anXxHqKch1P1pqoyfYM9DMgHU8VXmukiXJPFcQfFN2ww6gH1FVZ9Xup15OQfQ0nJsao23NXXtYWRTAmcHjIrlXDAk7sipmfceTyagbhsjI9R2pI1SsR7h071a0f8A5Dun7tv/AB9RY/77FVTnParej4/t3T8j/l6i/wDQxWkHqglsz2WiiivUPMDtXiHxAXd411Af9c//AEWte39q8Q8fn/itdQH/AFz/APRa1jW+E6cP8Zyp+RuuP60q4PThqeRuGDTfLP8Aga5zuSHq2efzFTrhwCozzyPSq4Iztb5T2PrUsWVcFeGHUetJlI29IYR3sbZIwc1201zCGSVZRx95c1wNo4+0KSepz9K7kabazWkcqXCrJjketc1REzsRXN/DdEqmcdsCs4wXUjbY4mJ7EVdu3t7RVaNSzDqemaqvq010gSDEagYO3rUAvIZLbralWvrkAnpGvU0f2vZxKUht8nsx6moDps1wuXDFe7NUiaTBay4uX345Ur3p6DuV4tTv5ZGjiVmDHGFHSpG0ybBmu5Quf4G5YfQVfGrQQ5ihCRDGMgDOaikc3A3orOf4pJOg+hoAjCxSZjkL7AvBHANeYeCWOq/EDVtXhj8yKLf5LYJxuJCZ/wCAhq7PUdKXWLh1bVNUUMuBDayKif8AoJP61nad4Et9GaU2eqanZ78eZHFcLlwM9Rt56mt4OKi+7M5qUmux1K3EkUhNyxeT/nn1NY/jWCXUfB+qqh8oRwGQxf3gpDH9BXRQbZ0SOJDGiqAZ5fvGlutMgkhljnfzEdSpwclwQRjH41lFpSRc9YsreDJY7zwhou390TZxoz/3tq4P6iugaK2gXYQGPYjqfpXAeBbv+y9LvvD965SbS7hkXI+ZonO5G+hyfzrpLe4lnDwWULs7AqzueV9StFSFpfMlax0OI8EXI1Px54o18SZQE20J6llLcY/4DGPzrubi0kvSZFRlVRyxqp4a8I2Pg7TfK8x5Lh5TIRIRnPTt14Fb15d/a7cRqNgPTauKqtJOWgU7pHG6lq2n6DbpNe3AgDPtV9pYk+wANX4bpb2COczI8LKGR+u4HoR6VT8Q+E7LW4Y4tTeRFiYsroQpz3zntj+VM8KwwW/hexRg3lMrNFnk7CxK/wDjpFS1Hk03Nk25Xexd1BPtem3dqhZmkgdFcnHJGP6/rXPfDARp4QTADObiTcuMnPH64xXSlW5TBYdgKyIPDzRPeDTb+4sra7cyTRQqvLHqULAlen6cYqou8HFkyTU00ZN7bJ408eQ2yc6VpPM0mciSUn7vv0UH2Deorvpkcts+4Qeq9DVTS7ax0Oyjs7G1WIKOM9WJ6lj3P1q6sjAliBtb+LtWdSXNZdEEYtXb3Kl1LFp1lNcyHDxRs2X9QCa5T4XRMnhSBWJCzTSS4I7Z2/8Astafjy6I8NSW6oXu7xhaWqDPzM/BP/fO7rWloukxaTpVrYxN/qIghLcbj3P4mtF/C16k3vUubapujYIiqg6L3NXrY+UFMhILg7Q3asmKdo5EZhwCBz/StOC5W9kTKE7MgEjp9axitbjnsXSvmpukUhUPJ/vVaiZraPdH++hAyUP3l+hqmJT9wMGAOD6VoqojU5BDNzx0/EVvC5zT0J4pY7hfMtyGH93H8x1FSpnPGQfQ1Ve28spPFIEuP7yjAb6+tSW96jlYbhRFN6Z4PuDXREwZc3MkYDD61G067VOTux1FTSMApHJ7E4rPmC7iQPuenFVJ2FFDnmUzQZPBJPSqGqpG/kbQvXPy8E1LI6m5VVORGOfrVDVMqsQyM+1c85G8I6k8qIt0w2pg4Y4PI7GrIiTPy7MA55asy5TNxt3DlBnJqZYysi9GBHJzWDZtyaFLWrIQyCeNY9p5K5ycVnW7wb2jdhsbkHHIPvW1fWSyWZK53D1Nc+IMgkkh1OKXXU2g7x3POtbl/wCEn+KlhpMe6Sy0z95IvXLABmP0ztX869Iub5U06a5YBFiRmk7YwCf6GvJ/AWjaf4q1TXdV1WAyxNP+7w7JguWY/dI7AVq/EDw54e0HwxLd2dsUnlIhiJnkOGPXgtg/KGrqnGLnGHYwi5KEprqR/CQSyWOq3bg7Zrkf99AZP/oQr1KYJcxxudpfgBR1rkfA+jnSfB9jDJGUmmHnuDkctyM/QbR+FdHGCrlt21h2PQ1z12nN2NaatBDp4mglH7s5H3vUf41GXB5XBHcY4FX1V7mCSQElgOcnp9KogbsuMb888dai5adwKtjlS6eo7VFJGSOOVqRZD5p2nA7qTU7RoE8zdhvQdKaYMo7sHbIMqRx7VGFEb7hkD+8KnfEuegOaaQ0QPBK9wfSr0YriF/MbB+92bFNkdXGxlBI74ppBxuhbj0qSMrKMM21vcUrFJkIRF4PFIEAz83XpU7Jj5XH0PrUYiZMlecdqkLjRvU5jYq47GpAxkO2UbH9T0NQF8tyDmplYbdrZdR1z1FBIOkkf3lyOxpYnC9QT9amiYgfK25T/AAsOakESvyvXuCeaBEJUNyoxUTM6fSrRjRepKmoWXJ2gjPv0NA7EBlK84xntQUik5f5HP8Q/wqRouM9CD0IqMr6rmncVhSCPlkwU7OP601rdl+ZCGX1Bo2lOVJ+h70eWz5aFtj917GmhO5GuWJXnPcHtTHjljbI6DoacZ2VsTrsbs3alZ2PPI9D2qyBPNDj94oz3YcYp8CA4dxlf4ahRvNlIdR5Q5J9a0Ejhk5V8e1SykiHYpO1QTikaEjlRUjKEbCk/Wngvj5l+hFSMrGI+lRspA45q8rEDBUGmHbuwBz6UXAp8EYPFNCkZKk1ZdUPDDFQtGy8hsiqTJaI9y5+YEe9KQ2OMYp21SPnBpQhUfLz7UxELAH2qfSRjX9P/AOvqL/0MVE21iM8Grekj/ieWP/XzH/6GKqG6Jlsz1+igdKK9U8wO1eH/ABA/5HXUM/8ATP8A9FrXuBrxHx/hvG1+vQ4j/H92tY1vhOnD/GcwvGc04HjjpSEHpSAYIx+VczO64n6j0NSxnJAbj+63+NG3JyMYHUU9F78HnkUMLlyPPmD5cSjt2f6V22iC3urMebLtYdv8fSuFT5uN2FB4PdTXVeH8SO0cnExHbo9YVED1N68gguI2iAOV6sB1rDES24IRQu3ue9bjQTufLDEDpjH3vx9azprVkYpNnbnj1NZXFFiRXguIyry7eMbe9Vvscsmc7hFniRu1RM0NjLu2l26rnt9akl1OW8G3gDptHQ00UQS2VraDcjGdz19BRF58p2yPmMf8slq9a2cjjcAFT+Ld/Sop/KE22wGW7uf4adwuCGNG2jEBPfuan/cqu7yS7Dne1QeQpy8xPne/QVXku7h8xKAyj8qVgLbZZPMcjZ2YcAfhVNpVDfun3PnIf/CrNrYz3v7tflX+LPQVoLptlpRMylp5gPlXPy07ITdjlNW8O3q3kOvQoslxEu2WEuF+1Q9SuezDqCfp06dH/ae6CNtLt5IY2QHbIu08juOoPtT1kmvSzS4XJ+6O1SRWUkK7sZX+6KbndWJtqUQLm5/4+MZyCD6VowyzPdbmChVGA/Y02YoIyHIQnjGahuX8iJVR2dAOQO9SMi8Q6YupW/2Rbt03n9+V/jj5yoP8JPTPpnvg1nrbfZm2ooULgBAMYHt7VowXYK7RCcDkZPzL7ilmQMgxHt2j5XA/nSbLjoVYoiGIChj3Hr/9enL5cTFV5c84Pb/GnRRNKCQ+1x+TVMrJlS0f7xT+VS2y7kQgUAl+BjgdqlUGKPGSUznbjNEkbSM27oe1MjidSECl89A3anHfUJO6MaysJtV1pdc1GFkhhBSwtGOHUHrI3+0QePQY75rpdvBZo18s/dYf1ojhTDO6gP6dTnvS/aGT5WUYHAz1rVsyRZAMiqSsfTA4q1GnlKUUL5jHis9NyAyfez/DnpWtbMMGVo96gcAdRSitSJvQdbwhZCvAIHzccZq5EzNJuIBGMZFR7CIS0gYBzjI6/jTYIXJZA52r1I6Gt1oc7ZbFyrqgAOM/MPSknFvc4jYK245GODUFtGTJKAfmPQn0p8kSKVBAzjqKu91ch6CSTzafGodjNbHowOSv19vepS8c22WIl0bGGU5FQ3tuzWyKCASeD3qkiTW10JIHVHblomH3velIqKuWVAM0r56nuOKrX6o90mMDkcev0qWzvUumeLbslDcoe9R6qoEsQxg8cH+lZSNYfEQXVv8A6V2yRwM80/yGcK65Bxjg0l4GWSJsZDd+4p8I3wcnkHgg1gzboSTWshtnCM3HUE1heViRlkx15PpXQrHISQc4Yc89ax9QgKzc8e9Te2o4dmed/C6wWxtdc0yUFZrfUCpB9MAD+RqtqFuvjXxhFaJufRNKYmSRfuzTHGVB74wB9A3qK6u/8P6dc3jXU8MqySrsmaGZ4vNX0bYRu/Gti3063tLKKGyt47e3Ufu40G0D8K6HVV3JbsSg9IvZEcNwm3yWHTjkdKJI1HBbK06aAY8wtlwfmUenrSeaImZAoKNyjsK5majVdoyoR8KeDj+tWpbYKiTICc/e9KgljwiyoRnuKQTOeGYgHt2NMH5DZFR1yFAbuc8GoF3L94n39queWoicqVDd0qs2CNp6+h7U0A8CMDJK89D60yR9zAEYP86rshBO07j3HrUkUiKP3o+T26rTEyTy42B6q36GqkiEsAhIYdqvEDaCSHiPQ96hmH9zPsRVLUljImLfLO2PbFSExqflckehrPaeQSESZbHYDmpMB0DRksOcqeop8moX0LnlQvncuO/y9qgkgKNuDZXsaxdP125l1Fraa1KQg437TuFdCuc5D5U0ShyhGXMQRKd/3utTZIOMYPrUn2cScpjPpSEPHwwz7EVG4waQbQrjj1phRuqkMvqOopsuD0+X69KiDOvTj68g0AOO8Hk5HanROOkm7PqO1KJAR86lT+dKI968Y+ooAe0IbBj+b6dRUTJs7fjQpeNx1HuKUzDB84EjP3gP50CGYWRCJF3pVSSzZci2lymfuP2+laAUKNy/Mh6EUz+LcqjNO4rBHAgiEcZzjqD1pjQEEsmRUjNnGRg/3u9PjdgTvG5cZ3DqKQyspKnLA0/e2Mq2R6VOAsg+XDD9aaYV6qcH0oAakwBy45PpSkRyd8e4qNoxn5+D2IpCjqcg596AJHh4HzZFQeUwztGR6VKrHPWkLHqP0oJZWYZOOaQgr1OKsFg3Uc+tRshbgDNXcRWbDVb0dSNbsM/8/Mf/AKEKrOoU96t6Tka5YD/p5j/9CFXDdEy2Z67RSUV6p5gprxXx+iyeML5ejjyypH/XNa9rrxPx+v8AxWd8w4OI/wD0BawrfCdOH+M5hTubY4w4/Wlx6jFT7BcR4Iw46Go1ySY5Mhx0965rnaMwQcj8aniAds9D/OoypRs469qcoIYEZx+ooYyXBYErw68HP9a1NFvTbXYUn5ScAnqprPx5nQ84/P61LCo3+jep6fQ1Etg6HorzyRorvKrKw/h/pWTeMZpSVPynrnrUughJ7YpISQODu6qfatObT4U+Wc7QOjrz+dcyWpmnZnOxWDXDgDJHqafPHDpy44d+xHatGa4llP2W2QIR/H/eqkIYYgfOJmlPVKaLuVwbu8ZWzsjA5HTiphPDBEVtlDvj5yaiuQWZC8oSM/dxx+H1qtBE9zNsgUjH8XrV2C49mMwJjYl+wNXrG38pv367Wx93HWnwCGByqbWuF6ehps960oKr80zcZHaiwri3t24yFbykXqo71BaztdSFnBEIHUdaZbwvLMEuOHPr3q9c24hRSg2t3UdKLAWo7iHaPs0RkbpzSMl04JldIYyemeapRaj5MqjaFYe2AavB1my02PMYcCkBBLaRTSE5LBRw3qaiIFvAFHXuD0q20n2ZChXIP6VVW3eaXL5IPI96AuV1txMxkUjd1p6sQGDbge5NX5VtraIGVghH8I61VNy0+4QW5I65NKw7kM6ldjDAA9KsBoJYi+RvHGKqrDc3bkIgC9CBStbfZV3Lk46g0mikyfzWPO3IWnKCy7hyx7nv9PSlhuI5wDKpVgOAB0qyuxIzgHn+IUJWKb0KyRM7EbiD69x9aiaOaa4ZEXcg480dquyxkopVRjuRVpGEFrzjOOo/rVXM2yJreK1Vdjb2xyx6VLCjO2SzRkfwjvVWMGSeN921Ty3p+FbEcccv3MqFHJb+nrWsEYyZIYRPGNwdB0GWwPxNF9cPDauLYbVGFOe5pZpUaNLVSzg4OcZ/OnT2zCERZVokXcx963a00Mb6lewViQjSFT1Zj1xU0mwzeWXPzDIb1AqnDbGe6EkU7AYxnb/niphbu821sL1AbHUVMU1oxvUu3Mhjsx+7YgH5fUVmwyedOTJlSBkZq9cNthMbnAXqe496ybPmZ3U78ch/8aJscNhJLUF2ctsAPDg8j6027naOYQ3g3EY2yL9O9RzS7pGkL9Dkj1qnfOHlLBjyBjJzmspK2p0Rjqad1G6iFt2+M9GU5xUkUJ3sqyYGM/X6VltmxtY5kcvGxw0Q5x9K0bd4pl3QSE5HKt2rGRdtC+igIPnywb0qLUoGdMqgx1BojlY7sPz9Of8A69OkeRoMF8/7QqLozV0zFKtsIfB+tPSJZbZlMh3L90VDOkm8gnqevY1XXdHKMsR7UWOjfUmMywn5gGHcEVKrRvEBndGTwh7fSmSIj/K2BnvmqphZCU3ZHb60WAk2iFiFO4Z5U9aR9z8scge2KEYEnzGO9emRT1G6M54FMBkZ+YZ+YHoadeQ+WQcqdw+8B0pqlIjkcjHIqeDzLmTarKoPd+h9qBMqJGuCM5amMgc4C7WFWL23NvKVHB9O34VF5uVwygkd+9O4iDdJbvxyD1HWnhw/zR/itOG2Q4/nTXgMQLgc+oNO4AY4ZwQw2N61Xe2eJgwbp3XrUjctk5B9akSUrjcB9apMViIx7wWYZY9x3+tPgLxAKFUp6d6nCq7ZjwG689DRFFufkBD2z3pOV9xbFiMIwJAwcdOlNcq64Y9OmakIxgdx61WuHRxt+bNSgRUkJ3dM4oXbJna2COqmgr15zg5phG4gjrVFkgVlO0c+x70/Kn1U+hpqSfLtbt39KeAGIZTuHvUiuPJym04+hppU46Z/GkbCjDDKk/iKVCwPyneB1HegRGV28rwPb/ChZNp+cbQe/UGpGKSfL09jxSJG2GHQ470CGM2PpS5ITcvJz0pMFSOAB6dqR1H8J2sex6UAOjCO5O4ox71OHZSFlUEf31qoHKfK3X0NKZ88An6UCuXvLV+hBHvVaWB1OVP4UREFf3bkMOzd6eJ8H5uD6UDKrAj76ke9IAeoHTuKvsUlTHc1CYinAH5UCbIN27GQKUgqc08hWOCMH1pSGUcjNIkhkXeKfpKka1ZZH/LxH/6EKY+COOKl0tv+JzZAjn7RH/6EK0huhT+E9Yooor2DzBa8X8ec+Mb7/tn/AOi1r2ivGfHWD4xvlbgHy8H32LWFf4Tpw/xnL5ZG3A81Kw83AYYPY01l7GlgbOVccdM1yncIp+bypMBgOD608LtHv39v/rUrxiQbTwR9006MkMqyABj0PZvai4DFYq/I2nuP61bjO8DjJ6/WoJF2vwPlzwfT2p8ZZDnOPWpYHQaLeiCQBjx/C3r7GujW4MhYMrPE3BB6iuHjZ9/mIASB07MP8a7LSS17Zq0R2lR1b+RrGSIkivPC9vhZJQIWPySA9PrUD7SNkSlpDyHHetJrMSxujRsYyfmB/hpj7dPURIFdGHyOO1JIXMUYdLZ9094SsJ5ZD1+op0zx23/HuMwtxvFTFJJyDcOQB29aFhVtyRLhT1B7/SmFzNjV5+FHI/i9av21rvOUGHHel+zC3Zcn5T/nFWPPWDGWC46UDvoRPCru7MwVwOarxzSzSiNnPHANS7HvJyRgHHNOljWGEowIcd6YEN1aKDkkl881ReRzLtjyWXtmp/Plf92/3R0aiO3kMgIX6sOuKYFiznEsqi6q9e3EVmoKsC+OFrPuttpFwweRhjNQabbu0huLvO0c7TRYBYLeWeU3F5nYOcHvWolyjRhYwBFnGcdKWRhdFNpHln7u3tVG5jeNvKQ7MnluxoEarKkcO2I7MdSO9VjC8xBlVSi8qKrxROwDCUjH8J6VejvVKqHAUjjnoaTQyB7RmDCIkgDoeoqG2ZlBSRsrnHNaJVp8lM49qhuI9rosaBD3PXNFh8xZjeFYyB8w/uk8mopm+0SqYsBF7Hr+NU2QwO2/DKenbFaFo1tKpA4kI6mmlqSycxo21dvYYU9DSmEHdHE7ED7yg42n2z/KrqwKyoUk+ZePamyWrRW7M8eASc9zn1rZK5k5IfaNHb27BuXB+8ev41LYK0iSbgFyTkknDU+JY3gTf8wOOcc596tMpjU7FUp1z2reMdDCTKN3BmRWhGxlHRepqOOTygXYbXQZ2nvVwqgQyE7pCc8HpWdMZLrepxtJ5IqWNO5FBJ5skl2xLqc7om/h+lV7eQfvAqAbs5I4xVwwpZxpCQxBySw7+1V7NElimxgSEHHvWdR32NI2SM5rZFL7n+QcgZ61Q1BB5hdMBTyPara/8tY2HzcjGf5VX1MGARptxhe/esZPXU66e5Aryy2nyA4Xv6U62kfzEYMVYHhh/WoopQkHyZy3BHaoY5SCQcqSfXGalmrR0UN+ZZPLmTZIDhWA4q/umVsYA3e3Df8A16wkmPyGT7xGDhs1cttSkhUK4Zohx71DRjJCXcbNIdnBHVT/AJ5rOeNiGIJPsRW7cBZYVkh+dTzjutUQwDdeTwSe9TcqM7GegJjCgHI605W3fKxGBVpjsbIj4z61BLDufcFIz0IplXAooGV/Kmg7SMnI9DSiJxkg5I7GnsrSKCQB6+1FxkUyL95Tn1HpTMmI5jIPtUrxbcEfd9ajKhzlSNw60LULFu3aO9PlzNt+p6U2805IgPJk80etV3Csvfd7daW2u3hkAf7vTJFBDVtSscISMHdThJlgrY2mtG+SGRUkjOWPoOn1qiYgjcAZ9D0P0oHcc8aOg2kZP5VXI2EA5AHtTw+wnaMc/cNTIwlGAoyOozTEyHGDn+GrySHy/uq4A6HqKjWAfeQ8eh7UFBn5TgjsemaLiYrHKbkbI9DWbK29zz/9arbzDJXOyT36VWk+YlWwrHoQOtNAiNSy4ycr/eqxtQ8jrjtUIjdBhh+NP4PAGPpTC4xhg9Dmg/JyCQanIwgzwB0qItk/MNwoARZd33sCp1UAZ6e4qHyg3KEH2qJpHifByV9KQyw0fmHJG4eo6ijfIg5+ZR0NNjYN91yPb0oMskbc4YeuKQDgd65HQetMLY6gEGnBo3BKvtPp2ppBUDcPl9RQIE3EEABwD0PUf/WqGUKT8vyt0wamOAMrmk3I4AZOezCglkZVtvIPHpTklwQH5X1qUoAvJOP7y9vrUWwqd2Ny+o6UBcf5iq3DfLU6TALjrVFirHOcehpyLuOCcH1FAi0cE1Gd6glelCFkPzDK9Mr2qfarcqcigCm43jPf0qXSs/2zZe1xH/6EKWZABTtLH/E4sj2+0R/+hCrhuhT+E9Vooor2DzBe1eOeOB/xV96CPlPl8/8AAFr2PtXjvjfP/CXXwP3T5ef++FrCv8J04f4zmn6YYcjvTMcgirIRk56j+YqKVdjllHynt6VyHdcsKoli4GWFMVAco/Kn8waLd9jgg8HrU00XO9RwfSkwIhJh/Lcgt0B/vD/GhlboBlT0pxhWQZYZI9KlQeWVEhBRvuv/AHvb2NBNyOFypB/h7/7NdJpVy9u+8cofvIO9c80Y3llPPTnjP1FT2100bheQg6+q0mriep3ct09zAGtcZI4J6MPQ+9ZsWyAFWyUc4w3WNv8ACptLn8yH92OcZdex9xWm1iksJkA3SHhgf4vr6Gs7Gd0jLMZUqJvunoewqxGhi44J/hNJFPGC1u/+qB2hnGCh9DTrjEQ8lCc9jSHcJ/JMO+VsP6VmG3Fw+Js+qe9WkRpXwQC47HvS30kKWwVDhvX0NBRD9qWEbCB5g+6em7/69QXDPdgHPP8AnrVIRSXLkSkKy9hWraRcGPjcBz700MjtrYuSSfu/rU91ci1hwiAueDinXMn2KEqCpkPQnoKgs4ZLqXz5+AOoNMBLCzMzC4nPHXBqW5YS5SMjaOMU67fjCcL0yKSC3CIHlYDPT3oEJaxvHEUI2t7elSOweIqQNo+8W61L/rRjPJOMimOgiTy5WByfpxVJE3GN+7QonzK4wGxkUQ2fl2+6UBlUcehpYFzL5Jkwv8OeDWiVa4C20aAKvO71q0ribKVl5ibpmYIuPlU96mgxNcNLN8mBxnvV82SyDYh6etVZd0BMU8YdCcAjqtU4olSIriCSY4VdwHP1qH7DuBdH2lBlkPWtKwjdtqKSYRg7u4HcVZu7fzIj5SncO+P50ez0ug5+hkLf3FqnYr2960xqlpfRxpIWGGBYbsYP4VCLYy7IZEG7HBA4NV5NNiWXC4STqynoacXJBLlZuDMcgcg+V2K9/rUaSSuzBctExyF9PpVO5N7aoqIhIJwCDxUI1GSOAI8bKQe3aqbMuW+xoXN6LQkbASR6ZI+oqLTxDIzsSctzt7Usl9bFA4Tc4TOTwf8A69RQ38QiZl2qT1PTP+FO6Q1FjL+d3mdUOQowBjpVXTgVhnccHHU9KZeXR8tnVuSetRQTiCFuC+4Zxnis3UXQ0UHazKsAC3GS2QevHTmmaooG7a27HHPJFPS6QTMDhdx6VTv7kvPyu3PGO9c7u3dnRDQgsGBIHUenrUy4Ejhl+XPT0qOHa8gSIbWz1NSSx+XPyWz3FNmjZaQ74CfLLMnf2qVLiMoFePjsaggLG4ZQSFPpUywozlg2CegPSpaM73LcE/mKWiXa6D8Gqu95FJIBIphkPYjhqdD+5bYzHPf0qC8iBG1hlev0qLCJ5iQnCE442/4UtpKG3oo/A1nW148QMciloux64q0B84mgPmKOo7inYb2LDRLKSFJyO3cVBJC6gM2cdDiplKhfOQ4I6rUi3O4bXAPoR3qWgTKQ3EFG4B6E9KYIt7EdGHcVfliEhyuAT1Bqs0TRn5Mbh2prQvmK/fa3QGpTtAHTB6EdPxodVYAk7WphUqMkD8ehoDmESF93ySBfY9D9KtME2FWHzCoFYBDjr/d/wqdFDnBbgevUUEsg+zbgcfMv6iofJ2H5Dk1fSRYt2Du9CP601UEpLMNjHpjoaBXIQfLAOce4FPPQsSD7j+tSCMr9/j37VSuyo/1bHd6UAV5h5jfLgn07GhQyAbkJXGCp6j6Ui4OD0b0PQ1PvLkA5GP0pjGkYXdES6d1PUUgjVxlOvpU/l4BduPSRf5EVA4x8xGAejKeDVCbIhLtJVhtweh6Gl4znpn3ob5sq/KnuKcsexOACooC4xtgGR+YpqsG4l+ZfUdaGUMcgEe1N2BOQ3NMdyRoYyuY2J+nWo1nw2yUZHrSD5TlSVb9KeXDJiRcH1xSsFwaEEbo2BFRrO0UioynB9elNCSR/PGciplkSfAYYf0pNCbJMxvgDIb0NKkW9uePU1EUKnHYev9KcJ9vT/wCvSJCVJIm4G5fVetCSDblflx3xx+IoEjHnNK6o/IOx/bvQBE21m5G0nuOhoYADHIx+tJ8yEhxgn8jSklV6Z9jQMarENnJA9KmAU/MGKN29DTVRJBkNhvQ0yTemQwytUkIebjtKuPftVzS1H9q2TKcj7QnT/eFZBcEYzkehq7o5K6xZBGwDcR5H/AhVRXvIUtmes0UlFeueYOrxzxsc+Mr5faPj/gC17HXjPjj5fGl6f+uf/oC1hX+E6cP8ZjqQflbgHkf4U4jI5GR3FMYbuOh7e9Kjk/KRz0rjO1EO3y5CueD0PrV63lRhsOeB0NVpId64Bwy0RN8646jqDQyb6lh4ih3A8Glj2SKYJOUbp7GrAAuIQw4I61X27WJzgd/apQMR7doHCynch6Pnv6GjyGEhZTz/AD+tXoJFkjMUoBOOV9aqsrWUoDnMDnEch7ezU0+gi/pN+9rOvXavUHqtd7b3UVzCHjxyPnU9D9K85cAsr8q3rjr9a2NKvmt2Csx8vPJ/ump2IlG5u6hAZz5iKSRwR6j3qhG5wIN2SeFdv5Gt4bryMNCAOPm5+9WbNGtqr7SGftnv9fehoSb2GSx/Yov3pIf+Fh6+9YzeZdTsAMtnPHT61KbmW5PlzE7M8Fuo9jV2GJLcqrYDEfu2Hf2pWLT7kTWzLCuw4kHrTPNCqrZIlH6VcCszebnK9HQ9qZ9jWeYTqwx6/wBKAuRW0Et7JunA8scn0NPuJTC5CZMB4NNmvVVvLjBAHHHan2wacHgY7g96dhIWBVwPm+U8jPNQ3WYWEe4kk8L6VbcC3Ru6n9KYls82J3IYJ3PWmkNsRITFGrHJbrSXPm3YRDFvAPHqKu+cgG5RlfenK0Ece9mwTyCO1UiSDzbaORbUnNwBkg9a0Y4Ps8C7356hulZ8cKtM1y0amX+CTHWrVvKJI2+0NtI6Ka0TIbuSpKQx2ZPqaSNFnvAGORnoalhjUKAvX1p1lGBctK+OD1HerWpF7Fx4AqLBDgbhg4FPaLyYVILZbrQh8yUlRjJqeTazBG/GtomUmMWCKd1bBG0djVeSFVd2ZkkOOPWmazMIrQlCyt6rWXo8t4/yzCPYT8smO2ehqXbYaT3LxuyI/JkCljymOp+nvVe6URMJHICN0JOa2hZWgyxQEnJPt9KwDa3F1ebUw8SscDHb3rOpTZcJIz54WeRishAA4OKpCCSMEsx29CfWt3VI2tnWMISQBkDoeKznuFW3bdyCelc8otM6IyKUkjSRAKMgcbaetwscBDnGfT+tPvGjjUeXjaRnjt7VHbbbmNkYL09OtSaX0uUo5g8rIuTng8/yqxdwbAGb5lx1HWoPJjEjAjG3pg96kmjLW4cllYdc09LDWg+wUGYFBnBqW6jxdMeQDzisuGSWGbKNtbPfvWhLK0xVmO1h3PQmpGyaK3mE4dBlWHIHanBHEjYO4ZyQabDfvCwzwV/WnfaDcT7wvlk+lJ7GZPlZFADZb6dKS8jPkqwzkcE4zS+UWVyGGaSCVijLJk9qgdzOaPbICp4FEbSRcofmPUHirNxFnOBgjoKpNk/MSc09xmjbzR3DBWysgqR0XO0Ha3Y9jWSE+bezHcOQQelacF4rW6rddTx5n+PvSsO5KrMuN68dz6USTKvGMjswH86eCEHytujPRj0qJ4wwzHye49aQlYGi8xMkZ9xUbxNHweV9KlhuBG20YGeNrUST4cgDPqPSgexVdAB8hJHfHUUwO4b5vu9mq+IVlj8yI4J61B5DHoOlAXJYIDMBgAE9+xq8lp5QIxkY6Ht9Kz4WaGTIA/3T/SrH2nzSFJxQS7khgMikIwJ9D/nrWPd27wkk9M+tb0KLncCSRVe/s3mTeM/UD+dBKlZ6nOAb/mZjgU9ZzHy3K+tXF0+QZ7iqc8BjLcA56jNNGqdySOfdkg4P86VFIGFIXPUHof8ACq8eFHAz7GrCTRqu18Lnt2NMGh7x7FDKAfVT2quSckx9e6mplyrApyvdT/SlEUUg5JVv1FCZJErqy4k+QjoRUbqwGThk/vL1pJUdD8+cdmXv9adGzLjuDTEMUdlww96azFeGHHvVkxo2SpwfaomjZeWUlfX0pgMXPVG/A0Eo/UFGpThcYwfQ0m7cQG6etAyRGdCd67l7GnNskXAP5DmmNvQZByvrTUQSEjO09cikAeWU5AyPakLN2GR3qZfMQYJyvqKbj1xj1FIBN25cfe77e/4VHk7h1x6HtT3woyOR2xSBty7sbvX1oAeAAMkZoY7h3I7j0pjbiu4DiozKwX39aEBEY0ZiQ3+NWdJDDW7AH/n5j6f7wqs2yU8/I394Vb0nK61YCT/n4jwR3+YVpHdEy2Z61RR+NFeseYOFeNeOxu8W3w74jP8A44teyivHvG658XX3uI//AEBawr/CdND4znUJCDP0qUcFWU5HQ1AjESFD2qxxs+71rkZ1kjIQxCnOP5VG0RU7x1qVSpG9eCOCKe65X60hMSKcxlePqKuSRq0e7HynvWfsZTyOPWrUEoU+Wxyp70mFxMMrAD72PlNWlaO5hMcikhuCPQ+tMkiCDnp/CRUa7sk4wV6j1qbhYidpLFxHK++En5ZP7vsatByhyCQT93uPx9RUm2O5iaMjLY796poGsgI5+YCcBs5MZ/wp7i6nR6VrUqbEb7o4YDqPpWpcmOdRJGwYn071yvlsmJI3z3G3v9K2tIvAzBXUbj1XsfpQ0Jqw7ygx5UB/fp+NTRRfwzkeV29VNbAsIpo9x6HoT1/Gqk9sQyq5yq9G/wA9qVmiObUYIGDrkg/3WPR//r1FduEQiGPKfxqDyKSS8Mf7hkLRe3Ue4pili4IwfRuzexpWKIhaCULIjcnof6VKhNudmAD3NSMuz95CnTl4j/OnSRieBSnzA9GqkFxoBuX2nj+tNupGg2onPc0877aMZAyByaigxPLyDgnrVpBcZHG07+dlhF/Eopy27yzmOPLL6+1WbweRkwEkAfMopRMIrYeX949SO31p2Vyea5NFLGMQrhlU4bFT3cUdyN8ShXUVkxSum7YoDk54HDVJJNOUU5yPUVWiExFvZbacKVLxnhv9n3rcsFAQMW3Rv3xWPbxs6hnTKkc963LfyrO3DuSQei+laQ3ImaKRpEhYEfWs24vyJtsaF26cCn/PeqwjYqp6VLZWywgmTlgevrWz12MthkFsxgaS4Iw3OD2pLOGNI2wVZCc4qe5drhCkYIFVZbZ4jGFyGHQY6mlazFdsvuu5PMjfGOxFV4p1ZZPKYB16jFOjuHCmGZCjEdxVZ7WXBK7VK9z3onJ20BeZVuZ2mYqw+ZeCcdqzL9LVoMY2e/vWvFtEbCQAyEYx61l3ls2CWAZB3XqKwnrubU/IrPYF7MOHAz34wabY2ckLF9oPGB71Y8yNbEdCvTPan2XmRIzEblHIFYuKNeZ2MS7iLzuHTac4460p3fYfLO75T1Iq9LMktwXKDJ4NaVpBFJY3KSJgY4PpUWexrKaWpyYQCXezDcOq+tW7gLJCChBxwRST26R3Cq2fZhWlBpsUsMiM2Dt3KR1pDbMZW2rh1JB4J7irADeUsiZKjjNJFanzmjLbuetW7GzkeWSDeBxxnp9KBDIboFdgyfWnRTiGQk5ZD14pq2jK7Lkq6n86nW3do8scEH0qWg0Hu6Phl5z61WljVjxx7Vdt7JpVJDYI59qrXEcgyTww9e9GwrlN4mU4Az7VEmGk2sDs9KtRTfvMPg/0qWe3ieMOh+b260DIoi9qmV/eRd16kVdjeOZQ0Bz3K9CKqWn+s8tgcHjIqZ4vIkGGwxPDUmDY+SJnflSPepUhVnKycEfdbNSRzRzR7ZSFbsw6NSSI25UPDdio4alYXMwjRIZCnHNJuCuysNo7Go2DBgW+96+tSRq06HuR27ikA2VRs+bpjg1B5Lom/blfUdanKyI4UrlO+e1STyiNPl5HQUxplGK6cPlT0q/9vZ48bwPYjrWUYd7sVO1j+RqIb422yHp70huKNpXMsZBwOO1ZrWryBjtzj+IU6Ofbgn16itFJ0ZQF4P0pk7M5ySNueMEdKaByFkG0noT0rebTvPlJVhk9qpXVoYiUcfjVJlcxlh5ImJXle49KkEnm/MGOfWldJIxkAMvvUIT59ycdyPT60OwFuIq52ykpnoexokhSM4DYP6VGswICSDH+12NPUNHzgMh/KpEQfdbAJBq0k+3AfkUMI5I8o2D6EVXI/hNO4E09usnzRHn0qttxkNlTUyKyjg5p5YONrLVDKyuR8p6U4Id2VNDW7KCyHK+lRgsPunt0osmBK5Y8A80AbR8w/HNRq/Y8VNlSmCR7iiwDdwBB7elBG1tyHn0pyW4k5Q/hTTEQxOTkdQaVwG+fz6HvUUrLICBwakm2FM9T7dRVLPPXIppCAkqcEZq9o7f8Tqx54NxH/wChCqIarukY/tqx/wCvmP8A9CFXHdCn8J69RRRXqnmCivHvG/8AyN977+WP/HFr2A15D41A/wCEsvSR12f+gLWFf4TpofGc3sCuD3zjmrSAMvJ59arNkkDGcHOasIc4I6jtXIzqFjU+cykfKeD71YVW5THI6GomBDrKpwO4qdnClCOVNSBXJ3KwIOV647ikjU+v/wBeppkVHV84zxkVEoYMcjlf5UbiL0Mvmx+W4wOx9KXZkYU/OvT3qJMLhl+636VKN64dMHFS0A5eGVhwM88dDV+S1F1AWCqGA+ZT3pqRKYxIg6/eBpCxWRQp47HP6UhMpQb9MkKyIXts8+qf/WrS/dxkSQnMbcjH8xUN3LG7IqsvmH5WPYfWoZIpdJ2yL+8tW+8D1SqQHXaZqHmbVlYbvXs1aF2YpoiiDkdQO3/1q5GJg8Ykt3DI/P1q7a3r7sSPtI43dx9aohx1uTvCUbYclW/SnJC0bY+XBHphW/wNX4InuuNoII59KS6t/JGxwcN0Pqf6UCuV7eM/6xWyE4yetWIoQCZU+Vj95O1Qwh429B/Cex9jU00pBGwEAfeB6g0IGyC7ZJIyuOQOV71FbwtbwNIDlSOPWpHjF1cKx+Vl5VuxolkYssDLsbpkdDTArWlwGnd36DoTTM77jepyOu31q7cwQJAY+VfPNVoFjgywGSeme1NDJFiV2MsJ2kdYzSyXMYAKhTn78ZFV5WeVCfuN/eA61Z0+2BDSTY3gfKfWrRJoWDRNH5sQGe6VDFbSX180pLKinJQd6pQx3R1DehCJn7vr9K6W0lhePMRww+97VcdTKRE0rQZRQNvTIHNTrMq23LDJ45qk08Mk52SYZD8wH86znkuJr1lALxE8qKvmsKzaOhiAIxyGqhJcMLvDYO3P5VG90Ld0w25ew7r7VUXUA1+Sy8d/pTcxKJq+dFdxcsRt5yB0pjXiEmJmxk8lun4VHbRYmZoWDIf1qnf2xkGwZAJ5wckUm3YFHUvywYhZQvze/WucuLi4trpkkyVI5b1q6b2a32xszMFHDd6r3eyZ42OSWGBzWUtTWCsMZF8gmBgYz95D/T3q5akRWrOuTgfdrImxbnYHwPftWvYlLiFlB+cjBrNot7GGZUluHPA3fwmtfRrkuksJ53cc1h3NuY7iQAHcD1q3o3mx3YI4PcE9ajrc0auhtzHmc8rgMRitXTk/0hc9CuKx9TT/AEpzkq+eBU9lfSJJHu5K9ai1h9B72jx3rAH+Lp3ojEkeoJu+Xd3qzfzh7gMcAnoaiuWPkq7DIHRhRcS2J7uN4pwcAZ7npQplAYEBgeqj+dTSStJYJuXcuPvVCjMI1Kn/ABoJ3H2mFkAU8Z5Wm30AZz82QexpspIk3DIPtxU0k4lt1DnDjoTTtoJOxzksbo5IBH1p8cpxjJzVi9j7vkCqqAhlDcY6MP61NjVFu3I37hnnrmtM+Tc2wHG5egrnpZJEYjcMdiKmsbvbIEkJX3NKwM0I4V8lgo+qmmQXD2gKMS8Z9Tkr9KUSeXOW3Egmn3Fod4kXG2gktNAZUWWMhkPOfSrkdv8AuQ0ZG4dx3qpaTxphVyMdQe1StexpOFicLKesZ6H6UrCZDNORIWZdrdOehqOaOO4h3KcHuKuX4VolfHX2/nWZbuA7Adx68fWkNalLfsJA4I4INNP71Vb7w/UVaubck7u/rVSOQW77XHynocUjS40o4b1X1qZZih+VgPTPenSNznGB6ioGTeCU69cGgRcju2Dhs4YVamljvEDMcOO46VjEsAMgkDt3FWIpMEHnB70ITRptpqfZvMjO/jJHpWNLb/MfLOD3Bq6bp4lIQ8HggGmLF5pyVbA5yOopgtDMkVgDuUj2ohleE+o9DV65Azg4PoapuuPlI69PenZMY/ekxOCEf9KQRsG+cHH96oTFkd8ds06OWWHh8MlFrASlwh5PB6HtTX4IJ6Hv2p6bJslTzjkN0pApQY6r/dNMBuXXlCMU1lWYYIw3qKTJ3EDGPSjawO4cUr2AhaOSLh1OB0NIGO7npV1ZwBscZGKb9nRs7TzTTuBGpKDKkj3pxkbq4JHrTGVo2wRTTLt4bvTArXA3NlSQfWqxZc4cbW7H1qzKhBJBzUJCsMMOapAIpO7B4rQ0cg61Y8/8vMf/AKEKymEi8jBWruitnXdP/wCvmL/0IVUVqhT+E9mopaK9Q8wD/SvJvGQH/CWXme+z/wBAWvWe9eT+MzjxRebhgHZg/wDAFrCv8J0UPiObZVjl4PXjFTonHPAqJUBPOT6VaXIAzyK5GdIyRCqZFPUebAR3xxSvuY7QMZqRYyowOCBmpGMAWSAqT0/OoyCMMDnacZ/pUkBMgYFQD3xToogs7o33W6UIBYomZirEBeuKuRj5OAOOM1CyGJQ4Odp5NT744mFyeI2HP1osImB8lgQcD+LPQiqbz75SkXKHq3pUcs7zSMCGS3HIyPvCpRGoUPH93v6GiwxSqWyYwG3ev8VWoZyV2tl4m4IPpVdVVwwxuXoVPUfSkUeU4K5KD16j60hEklu2mt59sDJaty6Z5T3FWfNDItxGd69dwHUVLbzpt6Bo+/tUEkLaf+/tv3tox+aMdV9xVLzEzp9O1OKCHawK4Gcd/wAKuNMl4AwIKnnI6GuShZJrfz45wUB6jqtaOnaiI2MUgGD0A4B+lUjJo25YvLRvLG44+52P0qpghfNUnB4+b+Rq9butwikEnH3W9PrTbiGQkgYVj1z91x7U7XJuU0RZAxUHZ3X+79KmjjjjGXO5D0Y9qIrV0bC5A9D1Ht9KsyqsC/IoYH7y/wCFHKwcjOngcsZHO5D0waijs1aQGVm29c9jWmSsEW9V3Rnqp6rWdc+YJFkiy0J5K0WGncfLARxGuQvY9xUDxNc4jgk2sDwexpYmmkGQx2E9Rzj6j0rUitkVllDBJAOVHQ/SqSuJuwltH5lr5EjGOROA4Gf8iorq2ltrfbAxWcds5DVfaVHk4TBplxLuxG+Pm+6exrVbEMxYJljiNxcLsdjggdh3Na0TRuN8Z2MRkf578U2O2iWGQXJ4c43HuPSp47aOGMLEcxqPl5osDkjPkSAszyuAWBIx3NZFy7W1yDsL9hg8/WtnULVpItxXoM5Hasq0dZ3aGUEOo+Ukgg1lJalR1LcF21iBv4TFXorxZzuABHqDWTdXTW8gWSNWjA5U/wA6bbz28lyDA21OpXGKakwsaVwiS5I+Vhz0rJu3AxuOD03VoCUOWCsVPoTxWTfpJ5b4GV9KmTLghk0QOxy27HtV+0jfjGVAXII71zhMqSLMpm2qOVzxXR6Bc/aJCTjGMlTUplyXQybiYm7YOCpzzmremMTdxsrDINM1iOM3TmLGc9Peqmn3Hl3C7xsKngipatqWtjZ10LJK3y7Xx1Hesu2mARS4BI71tanteFXkPzsOCO9Y8UUTxsVbDCpbuEdjVupLaezRyMEd6qQnMZQNkEdGpt5ZSHTfMVjtTqKx7DWrZr1bZ32uSBk96FBtXQrpbnWaXNE8LwEcjsaUwIrlFIGe1Z1mF+3lSSozwQeKsXMskN4BKmV7MKkT3LJIcAPkEdDT1tVcMG6DtSRJ5seCp24yDSq7xPtbJHTPemtBNmfdqLZmQrvQd/WswlWO+M8dxW3dQFyMruHc1h3li8MvmREqByPQ0mUmOkjiZcjgkZC1VddmDn6j0q1ARPj5cOOool2RNycE+o4oKuWbSQtavuUMAPxogumnj2JzUVtIscgcfKT1HY1aMQWZZbYYY/eXsakGPhjaNt2MkVM1mLlllHUenUVZ277fJGHA6Uy1mVH2/wAXpSJbHy3aRobe5IDYwrn+KsskRyYwCucj/wCtUWtzuGBKcKc+4qnHcmSPch3ex6inYqKNZ3wpbIIPUVSZA5+UZX09KntbiCXCt6YOadcRrG25Dj2qBlcoY4y2dy/ypoZfTI7+1L5yOCvRjTWTHPT096BjmUMMgEg9xUWwxsSW+U9qmgYrkZxx0pHAI45oAg3YOAcitO0u40XDfr2rLMYzxkYoLkfeP40CLF5+8m3xgEMccd6ja3mSP94vA/SkiPO8EkZ6VqSXKS2uxl+bFNAYhOM917+oqFwfvDDKKvrCSu4qQBxkVVlj2tlR+PancdyLaxG+PqOopyTFvv4A9akK/KGX5W/nUBALZJCsfXoae6AnZAcNj6UoZAcMeaajtEcEcddp/pTzGs4zH+I7iklqAqxCTk8H1qUReWM5BHtVWPfCxVeR70rXBXhhijqBZcKydjWbKME45HvT5HLfdPNRNJx8/HvVEkZ56flUTHJP8qmJ5zxn2oZAw96Y7lUxlxlG59Km0UMviHTwVI/0qL/0MUgQg8Dp3q9pBDa3p+4ci5j5/wCBCri9UTLZnruaKKK9Q84dXkXjXLeKr1D0+THt8i167XlHi9A3iu9PX7n/AKAtYV/hOih8RiQJwM9R+tWAm07h0J5FJGoyoJ5HQ+tOmfb1/T1rkZ0jEjD3J+bAU8VadVCtu/A1RtVZ5PMAPPXPerNwWyqq3Xr7VLGRQIVcnBwTVhyfOXIwP50yNSPu8p60k85mIhhIaT+92FMQXDpBLuJJDDHlg9TTobcyg+axBzwn92kgiRcrL80n94+tPaTE6BwVYfdcd/Y0AP35fypRheg74/8ArULH9nbaeYm7dvqKmYrOowFDgYIqHzNg8twcDue1ArlhkAQOpyOzD+tIqkMc9+zVAlwhGU5QmrBHCNu3A0CHOvlj5F5HUY6/SpLGchNuA4Ocp2qNGU5+ZlNSqigKEfb6EjimDK8to+nzG8s1LW55lhA6fQVdiljuohJEVZCM/Q+3vTPMdJOWZQvUnuPQiqnkvas13aIzID+8hz+ooFub+n30luwBY7B19q6NLmOYYGD6j0ri4J47uJXjf5uuOz+1Xra6aPndgDv3X61cTOUTrPK2xZPJ7H/GqK28hn8wnBXqKS01EuBuA3Y+YDuPUVoyNFJACCCD90itVZoz1RmzSIchcbj1U9xWa8oMgWJSFU4Kjt9amvI3WRioG4nA5x+NW9Otg6Bm+/j72ME+xFZ2uyk9By2gSFJYfvYzxxn296llSOa3WTaVI7L1U1K7BJNqkAj+GppYwYwycMe2K1SIvqZazMGMcigkc/Kf5VYOyZfLONwHb+dVZokkJO7YAcnb1X6U2CYCdYHypzwR/F7ikmNl6VQIBHLyhxg+lZifa9NucEGaM8qRzkVrPKRiNwGI59jUa3Atx853Ix+XjpVCG215FdSMYyOmCD6VkXtrEk7OilS5xlRxmrhsvnM9u2yQ8jb0NRNcsgMc6ASE8kfzFZy8ykzKdi7SRzgPGR8pOMp9KqQ27QO7qzEA5ww5FWp7ckZhbeCeDVcySxjy3HHes7mhNLOZQAmFcj0prvIICknzY6U+3VTGrM3TnNTwN9q3RlBuxw2OtD1Q72KsaqbXBHy9zU+m2ohuzJF0bgg1FHGbeZlkHBq5ZMdxIHA5qdg3MnVUMF4/bJ796rwzDcikDJPPtVzWZEnmy4/GsZWWNtqk5B70jWOx1WohhawsPmBHWsOPKNIpA+orYW8MukqVXIU7SGGPxrJ85ftGQACeoqWhRNezuS1qyMuY8ciuRTw+8niB7x3QW4fcqq2TXYaZJC8Tr0IqrLErOQoAYnINXTqciaIlFS3ENwhniCLtZf71bF2vn26ueTis+SJGi8zaN6dq0YJEurPGQrAc1mU3chhuGgQDbkenpUhuN0m8FWXv7VXUKd0ZOfQjrUiwqBlSD64pCJml81OAA3UY71SuNxXjHHLA81pQRIUyox6gmi7t4+GUhWHpQCZzcsYkG6IlHHpVQysx2zj5h3x1rZnhjLlxgEHPHeoGRJ12SABz096CrlJM46ce/atywTzIhnHHQ1lf6qLYwyg43dxVy3n8lAQeMdKQNlySf5tjHa+eD61TuYiMyAncPSofNM77uozzVnDCMqeQRkVIIp/bFmBimXJ7EdayZ1aGU7Dg1ZcbLnJBBB6Vfl01LuEzQth8dKdyzFVyzfeKuOmK07e5baEuV4PRqzZYPLcgHDjqDU8c5eExMBxTdhmjLa4Ifgr2Ipx2eXsJ6fpWbHdzRjZ27VcjlW5UBQM46VLQhSu0ccqehpvP3T09aeFMPT5h3FPBABZBuHde4qRkK8E9KjmhAYsq/hUjqG+ZT+NNDHqW+uaAIE+U/KefSrEU5xhuxpGUNgjGO+O1IYj94HI9aBGtbTRKm1sEN2rPu4V8w+WcDPAPQ1H5rRjBGQaswfNICcMnf1FAGdIu0hWO0+h6U3y8E7lBHoa1b22XaGXDKe3eqPksgIILDsD1FNMLkCxjp95fTutKwMGHQlgehHX8asJZPKMo/I/CopY2U7WOxh+Rqr30C477RDOdjAB/UVUuVKk5+ZfWopGCybWXYe3oaUXJ+62KdgIVbBp3BPTP1p5VX5U4NRtleCKYiJ42BynIHUGnJIH47+lBBHel2q+B0PrQA8p8tWdJXOt2ODx9oj/9CFUcvGfmGQe9XtIH/E6sSD/y8R/+hCqjuhT2PW6KKK9Q80dXlni5Q3ii7OcEbMe/yCvU68s8YH/iqLsf7n/oArGv8J00PiMRWP8AnrTgAw5OfxoVC56gHHHvTXBCEqPmHUd64zpJbPaGKg8A8CluuJUkb5VUfNnoapR3UcchJBHGeO5qKW5mvHHmDZEP4PWiwXLLTPMTHBlY+5Pf6VNB5S4VRgj9TUW7ygARx2NO3dyOT0NAFwruIJ4IpXHmjHG71qsJ8YRyfQEVOpLcdCKQEYLJJwMN/OpyROpDcMOoqMqGO1jz2NNAZW+bg+tAEf8AqzsZdqk8GpY5mgO18FT05p7IJhhjUE0DIMkAgetMC1kBAykkHpz0qzHIAuGOc/kazIJDHwOnapEmZmBTGOpU9qYWNMYkBDk7TwCOq/jTl3Wq8HehGOKrxXGMKQRnvVtJEYY3D3B70ENWMmeKW0mN1bKXgPMkcfVff/8AVWtbXIuIg6BSw646OP8AGmCMxNvjJx/dI5H/ANaqUkTWpa6tzhCf3sYPT3HvRcS1NiO52KwDEKBkeop0eqTQOeCyn7ydz7iqCSLdQiSFtzDp6/jUkRibg5Ck9e6GnclxOp0+WO7ODhh/C3UfQ1qMieWSmd44Izz+NcVDetZOwBwejAdCPUVrWWpmafJcbj0bswrSDWzM3Fmh9neZwWySp69MVfmYxQbjgkDqTjNSQyJOFbOT2I6U29TdGQwyO/HStrWRByd47vMZoGO4dVzwantHVpYh05+bPVD7VJcWohnwylNx4Pap/JhVlkAKzAcDsa59bmnQmuJMsIW3B/4SBUMd2Ud4pwAR34w3/wBepmYzx8jDjqPSs5oi1yDKCMn5Hxx9DTU2txWNFwLUBogdh6jriqd4scyffO8nIxVuSYQKq8mPPzeq/wD1qZcIrKrx4IPTHarbugSsc/umguxhSQewq28Ikw33kbvVl7UXCjrvXoaqxeZbyHd90HJ4rJoogltZIWIQFkPT2p1ozW8+4qTx69K0FuI5DleT6UQshd9yc0DuUJpRLO0gG7jmk0+VFviFyAwxg805okExwflNSQWgSUsG56ip6l9CjrEcQdih+o9KxvLEj5Xr61q6krGVs84rKzhjt+96UrGkdjo/Ld9FxnBA/OuVuDIs4zkZPBrftLh30142ByBxWJOHdvnHQ/lQKJsaWruSob5iOCO9OfzIpjHKMHPNVtPf7MysrHFXr+4S5UZxwOcVLQwZneIsjc+3epdPfzVaIHEh6ismC7a2kwRmPPFaEdwn2lHjAGam1mDWg8JNbTkFD1q1DIS3y8DPOasXMqGEFvvVDDKh6HAPUEdKbIJmkIIAJ+apwryxAN+FQLIFzvHT0q3CwcHy+SKSJZnyWZYFcEVU+zur8MAexIrdduqsNprMuFkBbup6H1oZSZTlgaaTP3fY9KgeJrcfMDj071pwBmT5zx/KqF8rk4OQaRRa08RlTgBge1JeMbdvl4B7VFYwvG4YMFP6GrF+huIDuG2QHt/EPagWzMm7YSIXHJHYdaj0+8KSBQ5B9+lOVNx2uSn86rtD5TCQEEiixoixfRidyxXax79jVNUMbfMCMdDWol7HNBtdQGFUZZMZDj5T0NAD5IQ8QYHB9c1Er9lIDjv04pibhwMuh7DqKbJC6EEcigDQgu9x2SgKccMe9PyyMCDgZqkgEkeG6+npUsU5j+U5eP8APFQ0MuKVZiM7X9+hpjIB95enpTcJIDsOc+lCll4bOB3PakAhORlcUiuyHBH/ANep0RZBz17Ed6RomAww49aAIm+blSM919KlRSoyjc96haNkII5FSRvuUD9aQFmOQM43HnpirM0SvCCF5A6iqcbqhzKPYMKebnygRncnoKCSDzvIPP5iq13OJucgipn2TgtHk46rWbImGyvBHaqiMQ8DDDcvv2qGVQMbOQe1OLkHkE+oHamMpBDKcj261oNkaSFeADgdu9Tq3mD1qFtr8c7vajbtOGyB6igkcwYH2qPDHoKmWQEY/nSOhXDKfwoATzSEwRkVZ0Zv+J5YAdDcR/8AoQqqx45q1o//ACG9P/6+Y/8A0IVUd0J7M9e5ooor1Dzx1eX+LED+KbsHphP/AEAV6hXmXitP+Kmu2B5+Tg9D8grGv8JtR+Iw1Xjb/GOhHeq91dCMbcZl7bahvL/zCYbX73Qv2qtBKsbBZQd5P3q5UjpuS2qDeXlOT/KpZMM5VQAexqKaMowdD16+9SBVmXgkMP0NAbiwSlD5cqkjpz/OpjleAN0fY+lQ4b7r5I6Ejr+FOR3tnw3zRt3FAE4XIHP0qVXwcZ+YdajUgqdp+Wk5BA/WpsO5bUB++D2qQLuG1xzVRGMbEE8Hp7Gpd+cBjz2NADnUx9eMdG7U5cy5EnDd/alDkqVbBFRbXQZySmeCe1ICOWFoW5OU9acUyoZCAfU1OrNJ8suCD0IppjMbYYZH86dxMjV95CltrjoT0q3GwwCy7T3qs0aSHIIKmlE20bJPu5wG9KCbmgsnyFWYkenepViSRiwXBYcen41muSu1ix68MtX4JgOH5HqaGDKktrNA/wBotk2t/FHnhvpT1uFmBkhIPZ07ir8soYZLAAjisKeCVZftEXEi/e29H9qVwjqaIG8hSxBH3W9fapopDE2Twn8SjqvuKoW032pPkP1A6qas7wXHmH96B8h7PTTZUkrG7Y300bDEn0HqP8a1j4ggRo1n+Tdkbj0U+hrjVvVgJOCYmPIHVDS3dylz+5IVnYd+jCtPaOxh7PqddPPHMwhzuXuD1X3FOOnPLGF3kqfuN3FcnZPLlT5jZj4U9/oa6qx1pFjInGOPmA6fhSjZvUTVi6kXlxBJTiReFb+9VZ0Uq0bKd/XbVsXdvPtw26M/df0qZ7dJTzxIvIYVs4pkXMZEZZlDvlTwr46j0NNncW0qrkCMn7voavPAyMyEZyen+FV5YRKpEg4P3WPU/WotYpMhkGPmjPT071EZ4poiuMMRggioZGe0Gw5Zc9fSlkRTCCDyeh9alsdiO3jS3uCXPynoR2NWpolkRgp2v6etUd5KlGA3Ypkd2YXCzD5P4T3pMaRUkWSN2Dk8VYikmEWV4A9etSXuycBv4eoIpJEnVYGtihXP7wOOSPapvqaPRFC8kMqc8nufSsRyTJ15HeumvLSJN8sbHLdVNYEkOG56UXLgbOhTr5UiS45Heq94sayPwAM5BFWNJiXyGPB461Svoyu/aakOoRMp/iz6Yp8yAfMPxFUYVLISh5HUVYQPwSCQalsbJI41Zgc5HpU72rQlZIslc5K55FJJCojDxN8wGcVHbXpkLISQw7GgRvSwi5sA6MdwrOtt6SYYbgOoNWoZwLYheGPUetVhlySuQR69qQjSSNW5Gdp6jvViNBC4ZGyO+KzUnkTBI57/AEqdJXLb06HqKCWjakjjnQE/nVCZFiG1uQe9Ecrt0z9KYxdmIPI/UU2KI5VQJ0/GqUkYLHPIHr2qzIhRcocqagWNj7joDUFoSMpGM9V9+1Vbu6aGXA+cHvVoIythhn1FZV5C6MX3ZXOQO4pgVp5GMm4jGahZW28cg1pr5FzbEEgOBkVlvN5ByBlQeRTRSYkalXw449auPahk3hty+npVF7jzV/dn60+0u2ik8s/dPY0rFCkeQ+5WzU3nLNGccOB0xVe6ilQ7gMoahico+Qfwp2AkDNnjj2qSIOj5xgHr71N5UUyZBIeq+6SPIbJA9aTGSqRHKWQlWzwOxq8s8U64Pyyd1NZrsXXKjI7+oqaFQ6gMcg9COopNAXSroMoOe60+KUkYIz7Gi3lCDyrkeyuv9atNCgTcuCOxHeoYiH5cgjNRyIigunU9RUc0hRz61E77hwefSkkMBOPukZ9qik3DleRTGIIwxwaVWIA5qgIhIyPkEr9Ke8nm8ng/zoOGPSo2VlOSOKAGOm4+hqPlGqfeAOaayFxkDI9utNMCEqrE5BUnuKjfcBtbJHrUhHl9SfpSkhh6ZqxFbaU5DZqaCYZxIARSMhGCg/CmyRk/d4PfFAiWZMAsgLD0FTaMVfWrAjjFzHkf8CFU0mlReenY1o6SgfWbCRMZ+0Rk/wDfQqo7oT2Z6yOlFFFeqecKa8c8eTTf8JZdRjKxDywSvU/IteyV5R40iDeJrsn/AGP/AEBawr/Cb0fiOfiijZMKRj2qOa34weR2qSALDIRnjrzV5I1k4HOa5XI6DKWRrfG/LR9/apfKLL5kbH8O9WrmzKDplD1qkC1rIT1iPUUXuK5YSQMncEdfapQjuvC7kx0pBCrgSRnqOKkhlZGwevoKB3KxQoMrkeoNSh1ONzDcf4h3p7DzCG3Aj26iofLBwMAelAyYZK8inIQPvZPbNRxBgOntjNTBTg4HNJgTL93GetOD7RtYZB4xVRSRkZxU8eWXHPvxSGOKNGcryh6H0q3DKgBWVQR61Eq+WMk9elBGWBGAD1FAnqPmj8l/NRQYz1AqBjGyscZjPUDqKnW4ULhhkdCKq3EDKwlhLFTzxTRLREC9sM5Dwt03dqnjkyhEbE4/hPUVXZiAcYIP3lP9Peo41MZ3Bic9+/0NAGiHLKCDnHUHtTWc5LLyPSollDgK2EYdD2P1pzZGSCAfapaKViGWCRJBdWbAP1ZPWrsVxDfxEt8rr95R1B9fpVeJwT0II71VnSRWa4t2VXB5/wBoUIZpJHlzkgnsezCmrHFHMA3MY5UnqpqpDfLNERghh95R2+lSRyEyEsQfY/xD/GmJo0Hcghoj8w4J/vVCt/uYIW2SA8ZPGfQ1GSAw+YZJ+X39jUUkfmRGQKu/Pz8daLisjWt9Qa2fJB8o8Oufue9bcOstBiN23REfI+f51yCShvlH38cFv4vY1Nbz7G2uD5R/hPanzNbCcEzvrXVILkeW7bZB3PUe9WmEc2VIwe/v71xMbKm3c59pB2+tXIdRlX5XJx1BzVqpfRmUoW2Nq6sMrtPK9jj+dVTaSQwnKbgOcL/Slh1kg7JRkkfe7GrNtfxMxJbAHY0WTZNnYyLi3ZgCvDdiKqSgECOUYYV1cjQOoKqrAnselZ19pqXGDGcHt70mrFxkYnMKjHIHXPpVsPmHK/dPOKWazmhj5QMvf2qOKCWNN4QlepqGi7obO4eH0NY0kZ3k44rckiV494zt7g9RWZdOIQTwYz+YpDix+nyGJsH7p7VXvpdsrAcg022PmS7gW29iOalu7Ukbg+4+negtGckhjw+OM9B1rehRTbbsAnHGKwlUpJnBwOCB2rUhyYtsbN04oYMrOxZyoyCO1SW6B/mJ2uOc+tR3MLxsMn8aISxIUng9KXQRdW4EsoToT1xV9UWBdx+8O571lwx+XcfN0q9eMzxKQeBSsI0I2hucggAj9KZ8sE+OD6D+9VG3DOOpDeoq2I/Mx5h5bofQ0mS0y1HNG3zIee4q2mxlzgA9Aax1tnSUbjg54PZq04Im2d891prUllG6nMJK4BI9KZFISd68Hupqe4jUvnseoNRLyoXOG7HHBqWWi0rLKOQAR+lZOpQMBvx15z2NakLAggrtcdR61XvGJjIUD3U/0oBPU5llO/KEhhyVqM20sgYoM+qmrN1H5Z8wbh7elEF4pYKcZ7GmjQzlhaN96cHupqddsuCMCQVaukO7eq9e/Y1S8hyQSNjZ496dxXNS1uo5f3MwwaoX8GyQ7FOT0o8qRWG9cEc5rZt3hdAs2OnWpC5gQSSK+1jtK9a14fLkXEowrfxVdlsrORQV27h3rLuHNu5XACntQxp3LT2axjKn8u4qPzI41IChTVJbx1Qc7l6cnpUMrNKMg0rAWHvCGwB1/I1FHdzRndbk4PWFz1+lVFZl+SVcehpN43ENnI5DVVgNNblLnJUnI6qeopGOMVmM77w4wG/vD+tW47oSkRthZO3YN9KlxHcmbB4Iz7005QcZIpxGB1we4pEYN8vf3qRi7tw4PNKfu4ammEk5Xg0m/wDhYc0ARuhHK9PSkVnH3DyOoqQMynnkU1lRzkZDUwFWSOU7XGGpjR4ByDx0xTCrA9Bn1qRHZD8xp3GRGRkwSOKVlMjZ6HHBqZ4ww3A/hULIyfMTTTE0GwgANg+9WtJVo9bsAB8puI//AEIVTLMV4q3pBf8AtiwPb7THn/voVUd0Q9met0UUV6x5wteWeMImfxNd4P8Ac/8AQBXqdeX+LJv+KmvIyOfkwf8AgArCv8JvR+I5eSMidR09avQnChdwDdjTGTOSPxp4UMoAxkVyXR0NCpdbtyOPnXqPWmyQJKpIPXoDVe7XKqwba69PeqiXUm9UB+bPSml1RBKDJZSZGSh6iriFZ1Do+11/Wr1ukMse11Xc3UHsaztQgNtJmIk+uKYrkmVVgHXBHpUjBTGAVBPYjvVZpRKqk5DAdfShGfjPQdRSLJSdigFeP1FDqc5BII+6QetOQrISFzz29KdtdRtYKcnCt60hXIVwzMDw47GrETEDIyDioHGOcYPUGnxsJB1w46+9Mst+d5gCuefcU/pjpVPcHb0NTpJggN17HtUsB0q4+ZMZ7rUazuoLKvy91P8ASnudzcEBu/vUffHRu1K4xZYI7iMvGcH0PUGoNisBu3Bx3H9ak81kbIHzd/ensVuAMYWQds9aLisV5VLjGQjjsfusKb5zKMMvy/qPpU5UjIZeR1BqF4wYwOdp6EdVp3QCiXcOvHrT1OAc8of0qocxYI//AF1KjbvnTGe65pDQtxaBis0LBJR0x0ao4J/N/hxIPvp3HuKskgJnaSueR/d+lQXNqxPnwnbJ3p3Q7Dp22RFhkr19xSWN6CNyv17E9aZHN56tHIpVxw6n+lQCyW3H7kkj1NCt1J1Nby45BvRxjOWUdRUhcMw5Xd0DHofrWVDuUnaSD6VKX3JuAO/+Jf6iiw7M14plUCNywjbgjHKn/CpzMYsxyncn8LAdKyIbwPlSeV6N3PsasJd/wONy9+fu0tgLrXIVlWUkK3RhyKkW6aEHOHiPfPIqor7RtA8yM9M9qaBGvCEsnQgnpSuJpGkt7IpDRt8p9+tStqsihWLdDlazTE0Y3wHMfcelNkBZBg5NHMhOKZ0A1xHiG4bQw5qxbalbgcsMelcaJMZGDx1BqYF2T5O9UpEumjvxHa3EO+PYe5ArA1XToHDNCSDnlDWQl9LbICjMvHI9KrzatPM2S3zD9abemgRjZkMjSaWFuIgWG8Blx933rp1szqtgl1b4STGSM8Vzi3nm/Kw5PY9K2dP1ZrSPyti+Wo6rxSTi9xzUt0R3NhPHGJWjIOcEgdajt1cSjK/Ka1LjVrWSAjeQT2NUYr2JGwSCKTt0BX7D72FzGW2bh61mqjBsgHP0rqrG7trnKAg8cg0TrbxEsqr9PWlp3Dmexz0rsEU7ePWtWwCXVuQQCwFKstnJhduG/untU8EttbgmPn1HejTuJspmIxSNhSPapRMJcMq4PcVpyNb3MTEEZI5rPj8qKXDKGU/xUnbuK5PCC+ARlev0q8QUhAGcjiktfKBxxtPpViZ0UcdR+tUku5DvczJ4i65HWqrQSFBwdw68VsCaE+mfSmvJEckHDDnFLTuUpMyoQxbBz9T2qO5hdlx+TVcuZ4nX5WAk64rPlvhg549qhpFlJoS+Ufr6+tULiwMZ3g8e1WJr35/mHAPBqCTUNxIHNCaKQ6G6RE8ucfKe9Wjc2/lhGAYdm9KyXcSZx1x0qu6uq4HIPUU9B2Zr3F1Bs2krj1zWRJctGxUHcufWoGjYHKYPqpoCbskEfQ0aBZluO8kVflb5T2zUbyPIS28uO4PaqcoZB8p59BSRTtnBG1vfpTsMuoRt+U07PpUCv8xPSp1YEZHUetILMZKd4wetREEc9alf5lzTQ4AwRnNF0AkZ3H3HagqHPzAH29PpS7AwyOCDS8N7MKLoCSG4KHZJkp2Y9attGpTKHg96zCcNyM1YgkMTblbI9PWk0h3LaOyYB5p0ihhk/nSJLHN0+Vv7tDAr0x9Ki6QyLlT0OKYRgbgDUgbdnH4ijGwZBJHcHtRdDsyFXwfmBxTiARlTmnfKeeoqNlK8qetF0Go/cV57U/IYZqNCPut0PQ0hUq3B59aLoNQeNgNy8irGjtnWbEHr9oj/APQhVcS9m4/rVzS4s61ZN0/0iP8A9CFXGSujOWzPVaKWivXPPsBrl9W8Hx6tqMt6bto2fHATOMAD19q6juPpSdvxpOKluUpOOqONXwEi/wDMRf8A79D/ABpv/Cv492f7Qf8A79D/ABrtRQan2UOxXtZHFyfD2GRCrag/Pfyh/jVWP4ZwRyo/9pucH/nkP8a77tSU1TiLnZxx8ApyRqLgnv5Q/wAaQfD9CcvqUjf9sh/jXZ0d6XsohzM4p/h5E3/MRcf9sh/jSr8Po1GP7Rf/AL9D/Gu0opeyiL2jOMHw/jByNRcH/rkP8ak/4QaLBBvmIPUeWP8AGuv70UeyiPnZxZ8ARl8nUX2/3fKH+NI3w+hJBGoOpH/TMf412goNP2UQ9rJHHt4Djbrfvn18of40n/CBR4wdQf8A79D/ABrsqKXsYh7WRx3/AAgcfH+nvx0/dj/Gnf8ACDRnGb5/+/Y/xrr6Sj2MOwe1kcefAcZbJv3/AO/Q/wAaD4DiI/4/WyOh8of412Paij2MOwe1kckfA8bAZvmyO/lD/Gov+EBj3EjUX5/6ZD/GuypBT9lDsHtZHG/8IDE2c3zkH/pkP8ai/wCFdRBwy6jIMf8ATIf4129BpexiP2sjj/8AhBI8g/b3yOv7oc/rTj4GjI4vnH/bMf411/ein7KHYPayOJm+HUMrBxqMiyD+IRD/ABp6+AIxg/2ixOMH90Of1rsu9OFL2UOwe0l3OJf4ewsQRqDgjp+6H+NA+H0W4MdQkJHI/dj/ABrtT1o70eyiHtJdziD8O4fN3rqDqT1AiH+NSHwDGcf6e2fXyhz+tdnSU/ZQ7C9rI46PwEsTkrqUm0/w+UP8acPAqrJvXUH/AO/Q/wAa7AUUvYw7B7WRzEXg9Imyt63uNnX9aV/B8bS+YLtg2Mfc/wDr101Hej2MOwvaSOTfwVHIc/bGBPXEY/xpE8ErHwL9/wDv2P8AGut70U/ZQ7Fe1kcnL4KSVcG9YH2jH+NVf+Fexbtw1F8/9ch/jXaiil7KIvayORXwHEB/x/Pn18v/AOvUo8FIBj7cx+sf/wBeuq7UUvYw7D9pLuck3gaNic3zf9+h/jSDwKgGP7Qf/v0P8a64dKBT9lDsHtJdzmYPCCW/S9fPsmP60S+EjK24ajIP+AZ/rXTGij2MOxPtJHKf8IaNwb7fJuHfy/8A69PXwft+7fuP+2f/ANeunopexh2H7WRzS+FWQ8ai/wD3wB/WpD4Zzj/TWyO+wf410Ioo9jDsHtJGNFoTRdLtj9U/+vSvort/y+MP+AD/ABrZ70U/Yw7D52YP/CPHfv8AtrZ/3B/jTm0BmGDdv/3wP8a3O9FHsYdg52c4/hff0vWBHQ+WP8aYfCasoD3rE+uwf4101FHsYdifayOTfwVHIP8Aj+b/AL9j/Goj4Ejx/wAf7/8Afsf412Peij2MOw/ayOQTwMijm/c/9sh/jSt4Hjb/AJfnH/bMf4111L3pexh2H7Wfc4xvAUTEH7c+R/0zH+NNf4fxOf8Aj/cH2iH+Ndp3pKfsYdg9rI4z/hX8RXBv3+vlD/Goj8OYWwTqUn/fof413FFHsYi9rI4pfh5EBg6jIcdP3Q4/Wn/8K/i/6CMn/fof412faij2MOwe1n3ON/4QGLGPt7/9+x/jTf8AhAI8/wDIQf8A79D/ABrs6KPYw7D9rI47/hAY/wDn/f8A79j/ABpG8ARN1vn/AO/Y/wAa7Kij2MOwvayOL/4V/H/0EH/79D/GlHw/iHS/f/v2P8a7QUho9jDsP2sjjP8AhAI85/tCQH18sf41YHgtdoBvWPv5Q/xrqjS0vYw7Aqsjkj4HiPP21wfXy/8A69O/4QmLHN6+f+uY/wAa6ztS0vYU+we1n3OR/wCEGhzkXr/9+x/jSHwPGet8/wD37H+NdfRR9Xp9g9rPucifA8RGDev/AN+//r03/hBo8Y/tB/8Av2P8a6+ij6vT7C9rPucefAsZH/H85/7Zj/Gp7LwgtndxTfbHfy3V8GPGcHOM5rqO9I3UUexgtUhqrKWjF59P1opaK2IP/9k= None. +1 EuPhO_2025_1_2 You are asked to study the features of the brightly lit circle and dark rings in the figures below. Make your calculations for an idealized situation: the chair leg is strictly cylindrical of radius $a$, strictly vertical, with a perfectly smooth, cylindrical, and perfectly reflecting surface. You may make any additional model assumptions and approximations you deem reasonable that will simplify your calculations. In the following figure, some fingers are blocking some of the light from reaching the chair leg. Let $R(\theta)$ denote the radial distance of the middle dark ring as a function of the angle $\theta$ and let $R_{\min}$ be the minimal value of $R(\theta)$. Determine $R(\theta) - R_{\min}$. "[[""Award 1.0 pt if the answer includes a correct Cosine Law expression. Otherwise, award 0 pt."", ""Award 1.0 pt if the answer correctly obtains $l = l_0 + a \\cos(\\alpha) = l_0 + a |\\cos(\\beta)|$ where $l_0$ is the horizontal distance when $\\alpha = \\pi/2$. Partial points: award 0.5 pt if the answer only provides a qualitative explanation of why $R(\\theta)$ varies with $\\theta$. Otherwise, award 0 pt."", ""Award 1.0 pt if the answer justifies $l_0 \\approx R_{\\min}$ to leading order. Partial points: award 0.5 pt if the answer only states $l_0 \\approx R_{\\min}$ without justification. Otherwise, award 0 pt."", ""Award 2.0 pt if the answer correcly derives $R - R_{\\min} \\approx 2a \\sin(\\theta/2)$. Partial points: award 1.0 pt if the answer gives $R - R_{\\min} = a \\sin(\\theta/2)$; award 0.5 pt if the answer only states $R_{\\max} - R_{\\min} = 2a$; award 0.0 pt if the answer only states $R_{\\max} - R_{\\min} = a$. Otherwise, award 0 pt.""]]" "[""\\boxed{$R(\\theta) - R_{\\min} \\approx 2a \\sin(\\theta/2)$}""]" "[""Expression""]" [null] [5.0] text+variable figure Optics EuPhO_2025 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHYApQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+k4oPWuY1XxUdN1CW0Fn5mzHzeZtzkA9MH1qZzUFdlQhKbtE6iiuL/4Tl/8AoHj/AL/f/Y0//hN3/wCfEf8Af7/7Gs/rFPua/VavY7GiuO/4Td/+fD/yN/8AY0f8Ju//AD4f+Rv/ALGj6xT7h9Vq9jsc0Zrjx42b/nwH/f7/AOxpf+E1b/nwH/f7/wCxpfWKfcPq1XsddRXHnxu2P+PEf9/v/sacvjR2GfsAH/bb/wCxo+sU+4fVavY6+iuP/wCE1bn/AEIf9/v/ALGmnxuw/wCXD/yN/wDY0/rFPuH1Wr2Oyorjv+E4b/nw/wDI3/2NIPG7n/lwH/f7/wCxo+sU+4fVavY7KiuO/wCE3b/nw/8AI3/2NH/Cbt/z4f8Akb/7Gj6xT7h9Vq9jsaK48eNHxn7CP+/3/wBjTT44YHH2Ef8Af7/7Gj6xT7h9Vq9jsqK47/hNW/58R/3+/wDsaX/hNGx/x4j/AL+//Y0fWKfcPqtXsdhRXG/8Js3/AD4D/v8Af/Y0L42dv+XAf9/v/saPrFPuH1Wr2Ox4o4rj/wDhNnBx9gH/AH+/+xpR42c/8uA/7/f/AGNH1in3H9VrdjsKTiuNfxw6qSNP3EdvO/8Asap/8LJI4OlYI6/6R/8AY01Wg+onhqq6HfUVwP8Awshv+gZ/5Mf/AGNH/CyD/wBAv/yY/wDsaftYh9Xqdjv80Zrgf+Fjk/8AML/8mP8A7GlHxGP/AEC//Jj/AOxo9rDuH1ar2O8o6Vw0fxC3tj+zQP8Atv8A/Y1oQeMPOI/0L/yN/wDWo9rDuJ4eotWjqaKxF8QFh/x6/wDkT/61L/bxA4tf/H//AK1HtYkezl2NqiuffxGy/wDLnn/tp/8AWqIeKzuwbPH/AG0/+tS9tEapTfQ6ajFc/wD8JLxn7Ln/ALaf/WqGXxZ5f/Lln/tp/wDWo9tDuCozfQ6WiuQPjYg4+wj8Zv8A7GkPjg/8+A/7/f8A2NP20O5f1ar2Oworjj45IH/HgP8Av9/9jUR8fkH/AJB3/kb/AOxpe2h3D6rV7HbZozXEjx83/QN/8j//AGNIfH7D/mG/+R//ALGn7WHcPqtbsdvRXD/8LAb/AKB3/kf/AOxo/wCE/f8A6Bw/7/8A/wBjS9tDuP6pW7HcUVxI8euf+Yd/5G/+xo/4TyT/AKBv/kb/AOxo9tDuH1St2O2orhz4/kB/5Bv/AJH/APsaafiBIP8AmGD/AMCD/wDE0e2h3D6pW7HdUVwn/CxGHXSx/wCBH/2NKPiIe+l/+R//ALGj20O4/qdb+U7rNFcVF4+jc/PZFf8Atpn+ladv4rguANqAEnGC/wD9ahVodyZYWqt0dHikrNTVFf8Agx/wKpBqI/55/rVqSZm4SRfoqmt8G/g/WpRcA9h+dO6FysmoqvJPhGKIGbHAzjP41yNz47mtrh4H0vDocEef/wDY1MqkY7lQozm7RR21FcH/AMLEb/oGj/v/AP8A2NJ/wsRv+gaP/Aj/AOxqfbQ7mv1St2O9org/+Fit/wBAz/yY/wDsab/wsZ/+gYP/AAI/+xo9tDuL6pW7HfUVwP8AwsVv+gZ/5Mf/AGNH/CxW/wCgZ/5Mf/Y0e2h3D6pW7HfUVwX/AAsZv+gYP/Aj/wCxpB8Rm/6Bg/8AAj/7Gj20O4fVK3Y76iuc0LxMdaEx+yCER4583dn9KqeIPGw0KdIhYfaCwyT523H/AI6atST2MZQlF2Z1+aK4/SvGv9p23n/2cY8nGPO3f+y1fl8SmN9v2LPv5uP6VT0JWpvn6UvaueHiYk82WP8Atrn+lP1XX2023Wb7OJAwBx5mP6VEqkYq7NIUpTlyxWpu49/0ox7/AKVxH/CfMP8AmHD/AL/f/Y04eO2P/MPH/f7/AOtWDxlFdTq/szFfyfkdtR+Fcnb+L2mIzZhf+2uf6VqRa35oH7gDP+3/APWpxxdJuyZjPCVofFE2KKpR3u8H5R+dSm6wudv61tzxtcydOSLFGRWc+pbf+Wf5tUSasXlSPycBmC53etYvF0k7X1K9jO17GvRSDpRXSZAa828Uf8jFc/Rf/QRXpJrzfxP/AMjDc/Rf/QRXLi/gOzA/xTIxzTu1AFFeaexcXtSd6SnYx1oFdiilGMc0YpD1wKQrsANze1OYhRgUo4Gaaozlj0p2Hdjc8dDim9TmnMeMUgoHcQ05elJ2p4oAbQBk4pe9IOtOwyQ4AqDq1Pc5piLxzRYB+cUpJxTGyaXJAosFxAetPQYFNA5qbb70nYTZGRlqXBqWOB3PyjNWxZOAM1LZDqWM3YxYHB96z9Qs3jbzApCt3xxXVxwRp/DmnyRQyRNFImUPt0pxnZmTranBYIOKUVoahYNazMFHyE8H2qlsPpXUpJl37CCnZptG4U7DuSRtg5rQtrxo2BrOU55qVTzRYe51VpqaSAK3BrSSRWUYIrjInKng1p29zIoGSaL2MKlHsb7bTVG4Rckioftbn1oM24dahyuYxg0SwudpBNV7pjyBUiyDpUc65Wp6mkdGZ78jJqBmxU0gwMVXYVZ1RuNZ6jzzTyOKaBzSbRorhzRjipo49xz2qRkU9BUuQ0VQKQ8Va+y5XINVpFKnGKjmNIsYWPrRuPqaQigUFC7jSBj3pKDTAcAr+1NMWOnSkH1pyvjr0qiGiJ+PrSxXUkTAqTkH1qRgrCoGjp6CT0szrNK19GASdsHsa6WGYSIGDAg968tVmQ8GtrTNcltTtcl19+1aQm0ctbDKWsT0BWxSiVlOc1g2muQXAA3bW+taqShwDnI9a2VRPY4J0ZReppQS72zWB4l8Ofb0a5tcecvLLj71a8Rx0q5E+RjOa05VJamKm6crxPHZY2jkZWBDA4I9DUdei+IfDK3qtc2gCzDkqO9cDcW0lvM0ciMjL1BrjnBxZ69DEKovMgNNp+PWm4rM6rsTFIacabQF2FOUZptPWqW5Mm7Hc+D0WHSZZj/E/wClcr4huFvNWuJGOY1QgV0yzLpHhCOUna23OD6muBExuboRSNywJbFd9LRI8KsnKbZueFXK6Wpzz5hrYu7nMhCnp19qwtLYW8e0HCj5jU+k3P2x7l25y2RWknc53BxZr2zMxy1W/FT/AOg2y56gUy1dY3LMAARjNU/FVzukt4wcgAE1xYmS5OU9HLqbddMxKRTzRuG32pA2TXjVEj6pao0bV8YrobSXgc1ykT7SOa1bW4IPWoi7M4cTS5kdZbyH1q2XylYNtc5xzyK0ftHyZDfhXp0sQvZu54lWi1IbK4JOKit2/wBLhGf+Wi/zqKWYc5pltKDfwAHq6/zrzVJOqn5luD9mzsh0ooFFfVnjAa868TJnXrk+y/8AoIr0U1594jGdduPov/oIrlxfwHXgv4hjbOKNtTY4ppB9K809W5FjmnBfWnY5ppbBoGDe1IBThzRikMaSSQo6mlkG3CfnSr8uWPamMcruzyaYIYDzzSnNJjpRyW68UFDwOBTiBikIppNMAJ5oWkpRxQFxr0o6UHmlyAMUAA60dTinR/eOR2qzZ2zTS4x8vXJobsTKXLuQwRPI+ApOK04rI43SDFXYoI4B8qg+9JJKAOe1ZN3OaVVyegkaIiYAAqKQ45LVDLerk4FU3lZz14+tPlbCMG9yy1yFOKia7LdM1XY5NNAJ6U+VG6pxHSuJBhxkVmXMG3LL0rSCM3anCAnIK5Bq1Kw7pHNkHPFV5CVaulOmIod9m8qMha564+Y7sYyenpW8J3M3rsEcmTU6PjFU1POatoAatoqDLcLZatOFcqKyoVOa1rZTtqWVPRFoJxTPL56VKPugVLHHnmoOZyIViIpZRhKthMVDcJ8tT1FF3ZkSjrUDDirMw5quRkYHWm2dsSClAxVhYcj3pPs7VDZqmhivtFOEuOlMZCvBpvSp3KsmW0mU+1RSICx75quxxzTklosJxtsK8Py5zUJXAqyXBSm43DGKoafcrUhqdoiBUBznmmUNpaWigBM4NJnmlNJTBpBtDUjQkcilzS7zjBouTsRCV424JGPQ1tabr8sBCuxK+9YkgzUfSmnbYbipq0j0iy1eK5ICNk4rbtpcivMNJvTb3Kk5wa7+zukeNWBropVOjPLxWG5NY7G6pyPwrF17Q4tUty6oFnXlSO/1rQimB6VYVs1u0pI8+LcJXR47PbyW8rxSKVZDg5qA8V3fivRI2ja+h4kH3x61wzjHFcU48srHvUKvtIXGUUUhqDVgKsWkBubqOEdXcLUArc8MQLJqwlb7kCl2J7ccVdPcyrS5YNkvj28WGC10+MgAcsPYDiuHs7j/AEqR1xkAIvuTVvxBqMmp6lc3OeCwVB6DvVLSLcz3kIH3VYu5+nSu5OyPGS5p2Opv42sdOJGN8ihPxqXQLcrvcD5QMD3NPurdr2xYKN0iMGUVp2EK21pHGBzjJ+tKnO6FWi4yJJmESH6Vzuq3LTThmJPNbWqSiK1yTyxwK5eZ9zivPrazaPawEFCHMXkI2ZA6jvTc0RHMQppPNcNVHswJAxzVmKUjviqOR61Kr+9c9hyimjYhvCuMGtOHUMpyK5lZcVOlxgfeNbQ1Rx1cNGRrTXmSecUadcbtVtRnrKg/8eFY7zA9zVjSpM6vZ/8AXdP/AEIVMI2mvVGU6CVJ+jPVx0opRRX1R8gIa898RsBr9wCQPu/+givQjXnHigbtfuRjoFP/AI6K5cX8B14L+IUzxSZquhPHJqTdzzXmnq2HE1HjJzUmNw4oC4oGNHSl704YB5pMYy3YUWAjkP8ACO3JqPJLe1Kx5J9aSgoUmnYAXPemgU40xhmk60hpRQAoWjHNLnANGOhoEIqkninCMlwvUntU9vCzthRWrbWkcQ8xwC1K5lOpy6EFnpyLlphjI4FWQixnCgAU9pBz6VWe5AyMVnLU57ubJ3mVExmqMk5bOKa8hc1GRnvTSNYxsQsCSeaUAhTTxEzcCrkVk2zJ5qmy3JJFWK3LjJqzHZhTk8mrcCp90jBp5GDioZk6jZAIFUA4x+FPEak9ulPPSkX79SRdjRFtYD1rnvEWlpAi3EQwpPKjtXUBc5PpUdxbR3ts0UnRu/pWlOVmOM7M81OVbirMDnvVnWdNGnXSR7iyMMg4qlGSK7U7o2jvdGjC2DWtbvlRWDE9aEMxWpZrNXRsg9KuRDIrJhuATgkVowTDHUVNjlnBotY4qG5x5dL5y46iobiUbDUMiEXczJF3EgcnNPW3KgEgAmpYFXzMtUsrhjgDpWTbOzmtoVwu30qWNAR0pNuamRdoqbhKRUmgJPAFU5IGyeK1QCzVXuD82KaZcJMy5IypwaZV9U8xj3pklq2Tng1VzdTRUzinB8HmhoypqPNMq1yy0isvFV2TPNAbFOVh0pk2sQ4pOlWmQbeKrMuDTGmNJzTacBQRQMbRSkUlACEA00oCKf2ooDYiG5D/AFrZ0nWGt3AkJK/Wsll3CosMp4oG0pqzPSrLVIZwNr/hmtSO7XjBrymC7lgYFWI/Guj0/wAR8qkyj6g1tCq1ucFfBWV4nYan++0ucYJyp7V5fMuSTXoL6zA1i/zjG3pmuCmkUyMR0J4oqyUrNGuApuMZKSKZpKceppKyN2rAOo/KthboaT4TnuA224ujsTPcVlwRNcXEcCD53OB/Wo/FN9HcX8dlAf8AR7Zdigdz3NbUldnHjJ2hYwHJMeAMsx4+tdDploLWJeBvYfNWXpkAmujMRmOHgDsTXQ24BYk1vWdkcOGV5cxr2GQ+cCrz7cjbxms6CYIQo/Oob6/EMZctgJ0weprm5mkdPs/a1Clrl75t0luvSPrWUTlyfeokkeZ3mcksxzTs1ktXc9VxUIqCL8B/cimsec1HbvlCKVjXJW3O+lqh2eKVXqEtSeZis+U2sWfMPrQJPeqpkoEhqoqxDRc8z3q9o8mdZsR/03j/APQhWSprR0c/8Tqx/wCviL/0MVrCC5kYV/4Ul5M9lFFAor6E+FE71534lH/E+ufcL/6CK9ENefeJBnXJ/ov/AKCK5cW/cOrB/wAQyAmKGHHFSheKRRzXnHqpkZJUdeaAxxSMMuacFwMUFADzSSNkhRx60sahm56d6jY8kjpmkA1uTRRijHamUFLxik70h9KBi9SKeeKaBxSmmFxM1PDG07hFBNJHbtLwoP5VuWMKQQgFRv8AWpbSMKlRLREkNrFbwLg5Y9abKxiQntSzSLGpLHFZk10ZAVzxUPUwjFyd2Ne5Lmmgk9ajVRmp0jLH5eaZ0OyEwccVNHbFsMelWYbQYG7rU6r5bYI4pGMp9ERJbgcjFTodpwelOAx9KOhxQZXbI54ePMTtzTN3Ac96nU9Q3Q1XusRwn0zxSZUddB5GGFIWAY5qtJqEYiA7jiqf2hpZQQSAOaVjRUpM1zKqDriq8l4qdOaoSSs2TmoGYnjNCTNY0e43V4hqVuMcSR8j3rltrI5DdQea6jJrK1Gz25mQcHrXRTl0NOSxTjbkVbU1mpJh8elXo23CtmOLuTq5VuDV6C5O3kms7BqVCQcVJTjc0ftPvQ8+4dap808AmoaEoIebhlPFOW9IOMVAyHFREGs2jdQVjSS5UnmrauGXINYfPrUizMvc1NiHSTNYMBk56VUbLsSKgW5JwGPFWVnjZlRANoHJ96NieVxRat4MLuIGMZzUG1ppSWGFPQ1Yd2YLt4X09qgO7zOPu0rmauQSR5Yrx6ZqrPbFBmr5x5pzTXAdvUVSZopNGSQRQOKtyRAscVWkQrVI2vcUPxikIBqPNPBpgMZcdKjNWsZFQumDxQFyPtRRRigYlFLRTASjb7Uop1AEZQGkC46U+igabQu9wMbjg+9MOfWlNFAXYzFGKWl6VSRDdlcVb/8As+GWRADKy7UP933rnHmZ5GbGWY4X1qzfzNK21COOBTNMiWWczEfuhwmfbqa7aUUlc8bFVOaVjVtYfssEcfc8n61qQ4Uc1nwkTyPJ0VelWg4UZJ4rGqzfDQutC553HHHvWDqV4biQQoeAeaff6gdnlx9+Cc1Stozv3GsGz1qNLkjdlpV2IBSGnGmGhKxDd3clgOCakZsVFD9/HtSyHFctVanoYd3iIzVHupjPmm7qVjoJgacDzUIapFNFrEMsKa0tFP8AxOrD/r4i/wDQhWUDWnov/IasP+viP/0IVrS+JHNX/hy9Ge0CimjpRXunw4prgfEQzrs/0X/0EV31cH4h/wCQ3cf8B/8AQRXJi/gOnCfxDJbhaYx2Lmnn5iBTJOTivOPWQ1eTmlbgUDgUBS7gdqAA/JHgdWqFyC2B0p8r7mO3ovFQjnk0FIdmijGaeB8tMoZR/HR3oI9KBpjhyeKmiiaRwAOtNiiJYeprbtLUQpvYfMelJuxjUqWRatbaGG3xkFsc1ETsBLcCkMyocnOaqXU6vjGRUt8xyxi5PUiu5xJwDxVTHFDHLVJHGZHC09jqVooWCMySBV71qwW2w4YYNMitWjwwGCKuIQ4+Y4PahavU55zuNA2HFNwJAeRmnSHOAetIqjcexxQ9zNCqDjFITt69KQzCMHfxWfdXgbhak0hFyZZluo178/Wsu5unlbGflqN2Lc1HjJqkjqjTURpbtViJDtzSxWjyHIU49a047PfFuUkso5GKTaHKoktDPEDv91SalSykPUDFakSKEBC4Jp2zFS7mDrMzxYR/x9Kdc6fE8DoAMODj2q6RlSO9A+6M84ojuT7RnmcsZiuXQ9VODVuD7tJrI2atcDGPnNMt5K7lrE3py1NWGIMOfSpRCAc4pbVgygVOy1m2W5O5AVGatWcAl357DNQlOav2PyBiBwetZzbCUrIZ/Z6ywZyQ2aqPYt5zRpzjvWwCVf8A2T0FRlDGxf1rG7IjVZhSQPHwRURGOtbckQkkQkcDrUN1ao65UYqkzojVMilVipyvWpHt3XOATg4qLBHBGDTNrpl9NQ/dhX/OpkmDEBRkVlU+OZ42yposZypo0CdzE+9PAwtVoZlJ96nY5PWlYyaaI8DJJqrMhOcCrZA9aYygjmrRUXYziuDTa0TApWqUibTRc1UriK3GKUkYqPNLnJqhjWWmVOV4qIrzQMQCjFL0o70AFFFFACYpDS0UANoNGRjrQw4yeBTRLkkIBnr0qpe3SRoUU/NTrm7WKPC9axZ5i7ZPU9K3pwucOJrpKyEkZnOxPvycD2FXbiZbS2S2iA3MMZHaqkH7s+c4zj0p0UUlxc7mGZGP5V1dDytZSNKxdvKA5AHUmkuroudifcHGR3p10Bbulsrc4yxFMWF3X5EJxXPOLZ7OFagtSlhvMxySa0o0CRj171HBamNyzjLeh7VMeDWElqd0qnMtAph60402gzFjPziiU/MaROGFSTL85rKpG524Z2RUam1Ky8VDnBrM7LkgNSKaiBp61LIZYQ5rT0X/AJDdh/18x/8AoQrKTrWpohzrlh/18xf+hirpv3kc2I/hy9Ge0jpRQKK94+HDvXBeIz/xO7j/AID/AOgiu971wPiM/wDE7uP+A/8AoIrkxnwHThP4hlbgOe9MHJzQxxxSp92vOuesBHNJkqjkfQUr57U1jg4HQUARPgcCkxSnls0oFMoRRk4pzDHelUYyaa3SgY3HORTlG4036Vf0+xN1KB2HJoFKSitS7pdqjNuk6Y4q7IVU4B6U7ywg2oMAcVSupdnHepl2OFtzloR3Lrk1nNKSTRLISTk1FHlnAHc00jrhGyLEMRlcAVrxWewBh1FR21vsUNxmr0WR97pU3u7HPUm2IjtnB4FDLuHHUVLtQ/WmMo6hsfU07NGSYzduHzDkVHNOIVz1JFNurgRLx94dqypZmkOSaW5rCDe464ujJnmqoyxoYkmpoIWduBTasdStFDAjHgc1dt7Hdhnq5a2yKMSCrQj2jb+VJamE6vQWCJU4KjFNwYJwf4W61KDhcA8jrSTL5kJPfHFPSxhe5G+I5ePuk8Urjbz+tRfaEa22nG4cVUlvWEez071DNVBsuFlXkmoWuURx8w5rKkuXYdTUG9ickninGN2bqhpqc9rjhtYuCDwTVaBhmkv3L6hKT/epIuDXelaJCVpm9YHJFaMtZNg+GFakxwgNYyNpLUYKuWcgDbDjBFUo/mpJmaPGDipkrlON9DbBQc5GBVeabe4A6ZrHNxLtxvOKfFOUIyScVi4i9jY2doPHpUMxAQn0pkd5G6/ewaVR58qYOUXlqizRPI1qPt7XakbuOB8zZqtPbRSpNcYx2UCrspLwqoOFJ5+lQ3QBRIIhyTx9KE2KMne5jSQOiBiDVeuiubcFUR8YUckVj3NsI+U6E8Vonc6adTmKwcqcirUVwCMN1qoRg0DiqsaONzRyDin7QOtVrWZFbMnNWOHJYE4NJmLQjt2FV2iZz0qwcAYxTS20ZFNAnYoSR7WxUYq067yagZcGmaqVwVuxpXAxxUdSA5WmMipO9PYYphoGgpKXFOVCxwBmmlcTaQylALcAZpxaOE5kw3+zmqlzf7shBtHtVqJjUqpE8jJCPmOW/Ss+5vARweaqzXDEdapvITWsII4auIvsLNOT8zHk9KYidJG6/wAqVIjnfJznoKlSFriQLzgHnFdEVY8+cnJkqIGjCLye1bOnWvlMMAiTqTjpTtNsFRzI65CjgVp4WMFjgetTKXQ0p022VH0iGaRpJHYk8kmtbRtMguXKEEQRcn1f2rMkuSw7bFP51f0XUoo7qY7QoZQPaoUtT1FRl7NyN+XQNLkUj7NjPcHkVymtaR/ZkisJC8DdMjke1dpb3kMwGHXJ96q69DFc6TMuBlRkH0p1IpxbRnhpuFRRkefZjxyxpMR9m/SoAQKUMK87nkfTvC02TBRkYYGrd7B5c5A9Af0rOyCDg+1aUsnnJE564waqLvuY1KPs/hKMnp7VVfrVuU4zVNutJoqDuKpqQHFQg81IDUMplhDzWnop/wCJ5Yf9fMX/AKGKykrU0T/kOaf/ANfMX/oYqqfxI56/8N+jPbRRS0V7p8MIa4LxF/yG7j6L/wCgiu9NcB4kP/E6uP8AgP8A6CK5MX8B1YP+IYrZ6+tTKMDFRoMtk9BUleaeqxjnjjrURJAwetSOwzjHSos5JNMaFxThkDgUwZzUo7CmMTnHIqJjk1Mx7UwLzQF7Do03ED1resB9mAzxnrVbTLMFvMcZUVpGMKSccVN3e5y1Z82glxKoXcDWJdT7yTmp7y4O4op4rPILGne+pVKFtRvU1o2VlvIkAziqscXPIrctGWKLpRfoFWdlZDlQ9KfyOtKGWRuODUwdMYZfxpqKZzXZX3Hdk9P51HdywiBv4T6Z5qS52xxl1NYU0plYkk1KutDanDm1YkkrSHk/nUZNABPFWoLN5SCKNjpbUURw27zPgA4+la1vGIosBcqeCfSnQRlRgrgr3Hep2GDlflNUl3OSdRy0GMmw8cjsaekgYYbqO9EjbkAGMioWdVTB+9WbdthKNx7yCMlx+NU3vuSFJwainlYjGeKq5pG8Ka3Hh+Tz1qKQk96kEZboKmW1bGSuRS0NuZRKGwk4FPW2kPQd61IoUXooqZkCgdOSKpS1JdbseX3pY3kx77yKSFyv3icVJqSGPUrhcYxIaiQkYr0V8Jkn7xrWkwU5zmtpppZIwsVu7gdfSuetrllbquPcVtQao6hf3gOOigVk0dLu9iaJl3Y+6e6njFWmt0mGCSCBmmrcpff6xAGA4YcVPApzjvisp6CcralUaa5XO4VA9nID0JrfRcY+lO2qOdorDmJjWaOZKMp5yDUkV08e4AnkYrXmtElOAoyelZ9zprIz+WdwQc0XubxqqSsyZLuMxKAfmA6e9S27DzDJJ1xxWQyNGecipY5/VqLB7NWujTklUAljk1VY5DNjPoKiMm496twgbQDjHWjYzs4lGezZIfMPGaosCO1bbsbm4I6onaqN3HvkJRcYrRM1hNlLNWYJwDtaq5XBOaBwc0zVpMvswPIqMkn6VEsmcL3q2sK7cyHAoMZaDFTjBFQTxgj5asM38K9PWmMuF65oCO5nnI4pQ3FSuneouh56U7Gtx5wR0qPaSflo8xc8VBNcbARjmtFEylUsSM4QlT1qtLf7VKKufpVZ3Zs5bFQ7lVeB+daxikclSuLJcM/DE1Xc5PWn4LmnrCTVaI55Nsq7SacsQHUVaEOOtNZCDVRZk4tldYXlkCqM5/SuisrFIIxlR0qLSraGNDNcTRxD+83J/AetS3OoIwCW6sEHG9zyfeiUx06Tb1LElxHGhC1UmlZ/3kh2xD3xVZZIt5Jdm/lU0yJcRDE6KF7YpJo6XBrYijEt0xKfJF0X1NSoZ7QnMRIPcGq/2y6i+VZ0IB6Yq5DdpIvzkbu+TQ0XDESiuVl+y1BAN3Idegq7NqbvYzoxyShrHMasN6nk1DP5rQMijB+vWlK9janKDkmzGYkE5NJvxUr286j/AFR/Cq7Bx1jb8a5nTdz2Y4uO1yQSVcjmLQpz0rN3+tWIm/cd+tQ4uJp7WNTS5Oz7lx3qs3WnMwx1qPNTuUlYXNPU0ynKaTGTIa1tD/5Dun/9fMX/AKGKyENa2h/8h3T/APr5i/8AQxUw+NGFdfu5ejPcKKKK98+FE7V574mP/E7uB7L/AOgivQjXnviT/kP3P/Af/QRXLi/gOrB/xDLTgZpWO0ZpVHAFNc5YDsK8w9VEfUZ9aRacxz0oHFMYoGTS5xQtDdaAuN71PbRl5MAZNMjUmtXTrbad7dTSZnUlZGhbxAQ4Xg1Vu7to90fHpViRjECVPFYt3MZJWNF+hz048zuyCRizHmnRIWYADOTUXetCyGwhiM803odM3yosQwgZyKsJgcEYqVJImzxgmn+WCPlI+lTa+xyOV3qRqoByDTjKIzlxxR5Jz3FU724Cps9aNUNLmZWv590mEY7fSqANOZiaRFLnimdaSiixbQmVsCtiCIquF6imWNuqRjcOfWrjYTBI49RVKN9WctSpd2BJFZSjgK1VZEIzhjinynefl596qy3G0FHGfcGlKV9BRjfYkaTaoUH5qgkbJzmokJYFyevrSj5qyaNkrDHUscVJDabzzx9anjg6E1ZAAGBT1Bz7EQhVeAKdtx1qQLT1QEEGhRuZORCEwc0HJxnpmrAjCjBpGAHbg1ThZiUtTzTxJGYdbuRj+LNZsch6YBrc8YKV16ZfVV/lWHHE4IOK74fCardFmIqW+ZfzrTt5o06KD+FUIQQwyD+VaEQU9qlo7I6I2rVhIgO0A4rRtEwSSKoabEPwxWxBGQpIrmq6HPN2AjJFK4O3ilwQxzTgpkYCuUyRFgRMC3LY4ppUmI543HJp0md24ck8fhTvlBBJ6DkUyrlC4tElXJ4rJntWiBbHFb5UvjnNRSxLK4Q/dXrVKTNqdVo59JNpGelWVmJ4zgHrRe2vlysyfd9KqqcnmtNzqVpK5eNywXyowAD1NTLGFiLbeTVWMAHNSPI3Y/hQZyVivcQhVz3qqeK044t77pCNoqncoBIzKOO1UmaRfQrBirAjqKuo/mgbjzVPFSRPtbJqrBOxcxngUgjJzzSh0HOefSoJ7wlCo+Re+KEjnchlzNFGmF5b1rLe4yeTUNxcMzEDpUKBmPNaKJDrdEaCMpGapzSZYjHerEYITFQvH83vVxMpNsqNk0qoTVsW5bjFTLb4Haqc0Z+ybZVjgyc4qbywOnWp9oHYE0bWPG0Cs+c6IUO5XKHPzEfSmfZTI390e9XVjUHkZpSOannZ0Rw8FuQJbRxkNncfepJCZPvYIHtTsUhpczNVCK2QwBR0A/KmFVPUCpAKa1F2NxTI/KjP8Ipht4+2R+NS9qSnzMXs49gQyR4CyHA7HpUguXHVV/Co6YaOZkulEsi8x1TNKbxD1iFVabT52P2aLJlt3+9EB+FVbzyjGPKGMHmgnFRS/wCrqZu6N8OrSKrHJpuaU00Vmj0WOp60ylXrSYEynmtbQj/xPtPH/TzF/wChishTzWtoX/Ie07/r5i/9DFTD40Y1/wCHL0Z7nRRRXvHwghrz7xEM+Ibgey/+givQa4HxCMa9cN7L/wCgiuXF/AdWD/iGV0z7VE2ep71I/ZR170x+uK8w9VCbeM0oWg9AKcBxTuMVQAM5pnU07oDmkj+9QIsQLlgMd62o02oMdhVOxgDP0q6+Y1YVDOSrK7sUryVgmAayXJJ61bupSzkZqqOWNUjopqyH26b5MVtxRFUA4+lZ9pE3UCtAMydQaTdzGpK7F2AHGMGlwynilFwq/eWpA0bru6ZpWRmRNcNEhJrIuZTK27FXryXAK1mn5qFqb011GYya0LKxc/OehqrDEXkAwa3LdvKUKR0q0k2KrPQcFZFHtR5/8NPeVCOnNVpFAUsDSk7bGCVwlG358ms+VvMcCnyzkjbk0yBdzEkcVmdEVZEuzCgCrNvCCeePrSQxZ5Jq0FwOlNJkOQpwq7eM+tNxjqKdnuRT0XecjkD0rVK5k2CJ8o3cVKqAcinjBXBHynpRt24I5FdEYWIbuxm0N05puAcg/hUh4O4dO9RylcZrOo1uOJ534xUnXZM9di/yrOsxuA3Y/Guh8YRBr+GfHDLisGGLd04reEtDtpx0TNiCKIAZANQ3SLHKrJwCadBGzbQM1ZvID9mBxjDCmzVOzsaelgmI8DgVsxrtjHvzWNpgOxVHBNbbfL8v4Vx1Xqc1T4hB3JGaRgAvHDH9KeFOVUfjTD8zEDp0rGxBHsYHOOD0qF13sMZ46+9WmyBx6YpnyouT1PapY0yuz+VnI57CoVYhefvNT3BZXY5z0FVs+Q2wfNkck9qEaxElTeWOOT61m3VqYCOOTzW3uEcYKgHPUmqU6iYHOSeuatPU1pyaMtXIOKmXnrUUyeW9KrdK0Oh6q5aL/KBUfk+bweB6mhfXGar3M+1CORVJGTlbYikMcZYAgkGo0kDN1FUnkYnjinRsd34VpbQTmXHl96ryPkYNLgt1ppU/dwSfQCmrGEncqmIZpyIK0YtGu5F3mFo0/vOMYrQtPsGm5/drdzj7ueVWjmSI5X0KNpo99dKDDbOVP8bDCirjaVY2QBvb1Xcf8s4OT+dPvNT1G+GGYxxjoqcCqKxqG3MMn60nJGsKbe4TSRSfLa2+xR3JyTUBibPzHHtV35cZAFROuTmpudEVYgCAHgUwnLGpG4BNRjt70GqFpDT8cUw0ihvammnY4pCKAEFMbrTzwKaaYxtFFBoAbTKfTaAENIKUjNIeBTENaopB+7NSUjDKke1KWxrRfvFA0g6Up60gqD0LjhSr1pB1pRSYEq9a1tC/5D2n/wDXzF/6GKyFrV0H/kP6d/18x/8AoYqYfGjKv/Dl6M91ooor3j4MTvXB+IR/xObgnoAv/oIrvO9cJ4ib/icTqO5XP/fIrkxnwHThP4hiFgo3N1PQU3qc0+QB2HGMUFeeK809YQdad+FAX1pxGKQDG5FJGCZAKdjNT2kOZRTJk9DTtd0S5IwKdd3KiPjrVtgFgVWHGOtYV42JCoPGaTRzQXNK5Ulfc5NKgyaZ/HVqCEuwwM03odMnZF63JjUYqysp7jNRrbuAMLTxE46rUanK9WPLB/4BRIECZ5GKaqsDnGKiupdsePWmgS1KE8m8mq4anOcmkjXdIAaq1kdVrI1NPVcFnyCfatF416hs1BDGgiUA44ofrgUuayOWWrEbiqlxLjAzip2JTk9KoTSb3PtULUuERpJLY9auQQsMKO/NVYELyj861IlIGe9HUqbsiRVK8EVMAGGM8+9IhPQgUFVZs8jFbqNjBisGACkAg96ckew7lPTt60qBlPIyKnXaQcce1bwp9TNsb3BPHtSSMFBP8qCAo4z703G7Pp61pLyEiEs5+lKYywGelPVGB9RUhAA29TWDp33KuYHiPTWvNPJi5ki5AHeuQt1KjB4I65r0spk9s1i6j4dgu5DNA5hkPUDoapaHTRrJaMxbR1BBI6VauXR1CH7tOi8PXSuR5se31xzWlDo0UDBmkeR89+lRKTNJVIp3TG2FqY0ErjDN90e1XQDuBPapQn73GOBShOOawabOeUru4gOEJ7npTVXA45xT25xjqaiY4fYOg6mk3YBTgD6VARvbJqfhjn+Gm43c4wBU2uNFd8kjAwB/Oq10ibcvxmrjN/CvX9KgaIMQX+Yj8qSRpGRRQs7FWYhQPlHrTtmxdzLn0FFw4V8lhuz29KZcXFv9jmkziTIVFz+ZrWMTRzRn39xEGJLZfP3QOlUY5stknj0qpNJuYkZ696kgU9SeK2SNFU0sXvtGThahlO4HNW7LTLu6OYojs7swwK1oPDitncTKx7Z2qPqe9J6GM6qi7HKFdx4FPihd5AiKSx4AFdNcadYWK/6TMq+qRjj8up/Gq/8AagtsjTrVYR082UZb8B2p8yBNz2HW/h3ZH52pXC28f909TVhb+wsl8vTLPzZP+ejisaaaa5ffcSNIx5yTTopChyDj8KHI0VB7yLUzXd+267nIXP3F4FLGkUQIVRTTIWHXNADe9ZstRS2CQgpxVNlq+IyRiq8ibaaLiyv2pSuRSNxT1PHNUWVZR0FMA5zipH+ZyaBSLQ00wintTT0oHcbTacaQ9KBjDTTTjTT0pjEpDS9qbnigBDTDT6YaAFpG6UUh6UAMPSkPp60tIeooY4uzKLDDEUlSTjEh96izUHoRegucUqmm9qcKGWiRTzWtoX/If07/AK+ov/QxWQvWtfQv+Q/p3/X1F/6GKmHxIyr/AMKXoz3WigUV7p8GJ3rhPEOP7auD/u/+giu7NcF4iOdbuB/u/wDoIrkxnwHThP4hkPSrzSEbj9KXpXmnqD8cU1+KUnC1GTk0gHoMmtCziZnBA6VSiGQfbmtjTgyRl8ZzRu7GVR6DricqmG6isG4k3ufrWtqMqbDxgmsU9aaHQWlxBy1adopGCKzfeti0KGMc4OKTZVXYshnPelLsvehVU/xUeWrNy5pK5yj1YspyOKzLtwXxmtCVAkZYPmseVsuSaDWkrjCOeKu2MKs+WqmenArUtFZYwQop3LnLQtNHheDkVDgg88U6SRscgfnTN+fepkzBJkNw5VKoAjkmrF1LuOKgRdzBfcU+h0Q0RetgMDHU1fXAArLtr+3l1iXTIgzSwwrNKygFY8nC5P8AePzYHpk961FGe3p8tJK25hJ3Jc4HT3pyjcwI47Z7iuT1HWbrUPE6+G9In8h4YfPvrxVDGFTwqIDkb2znJHC8gGqVt4gvtA8cxeHdYuzeWl+m+xu5I1V1boY3KgBvY4zytdUabsZOSOnt/EViNZ/sm482zvWJECXC7FuAO8bAkN9M5GORW2zBV3evOayta0aw8Q6Y9jqEO6NsFWzh42HRlbsR6/5POeE9fvrXWLjwh4im8zUrZfMtLoj/AI/IOzZ7uMAH1weuCa6Yr3TN7nZnJGRUq4K4x26UwjAznnv9akTpxRFA2CqVFNK9+/epSe1Iq5NU0K5EV7ik8vvVkQFuRTSjDgiocQ5iApTduSf94VMRxTOAfxFZSijREZGCT70du1OYjgU1j6Vi1YaYw9c/5AqMICPb1Penn0H40nfv9KjluVcawz93gDqKikywwvA9qdI4Tknp2qjc6gFyFAUGk42Grtkss0cKckMf7tZc12ZD+8ciMfwqaqzXDFzg7s0kNpPcnCxkk9MVSiapKO5FNMGY7OnaoBDLcnaqljXT2fhhyFe5cKOu0VuQWVtar8iKPcitFFilWW0TkbLwxNMA0oEa+p61u2mg2Nnhmi81v9rpVq51SGHKqfMb07CsK81C4nypcqmfurxSk1HZkxhUqbmzcalZ2q7GYMV6RoOKxbnWbm4yiN5MfonWs1zzxTF681PM2ddPDxhvuWFMe7cVBbqWPJqOctN82PbpQMA+tTks6AKoApGmxmsCODQOOalmUh8HrUeOtUbJ6FqPaVBA5qXJAziq0LH7tS/MW254pGMlZj/MJFRSDNSYwcVG4OKECIGFRs20VIwNQPnIFM1jqBX5aZU+3IqFhzTKQym9qfimGgobSGl7UlIBhpCOKcaSgY3HFMNP7Uw0xjCaQ0poxk0AJmkJpTxTDQgEIptObpTaYupBcL91vwqvVudN8LY6iqdQzvpO6F704Uynd6RqiReta+hf8h/Tv+vqL/0MVkL1rW0H/kYNO/6+Yv8A0MUl8SIxH8KXoz3aiiivcPghK4HxF/yHLj6L/wCgiu+rg/EA/wCJ5ccdl/8AQRXJjPgOnCfxDH70p5A9c0eopxXvXmHqCMwAxUdPYZ7U5VphcfCDn610EGI4FGOMVjW6ZYZ9a2yMRDHpSjvc5ar1MjUgMZHrWXjmtK/JJAqlt5oib03aIQxeY4Fa8dqqAc1Rto/3oIrTXIqWzOpIAgXjrSqDn7tBJp6F8dqEzIr3bgJgrismTrWjeEkc1QIGadzopaIWD5pAD0zW7EUWMDZWTaR7pelS6tDq0toselXtvZyFv3k0sHmkLg9BkDOfXNVFXZlVd2W5WQtgpise98T6BpztFeavZQyDgxtMu4fhnNeZ6Kt/r3xHv9A8Q6rc39papIRGHMKSEFcZRMDoa9Ki8O6NY23lWulWUaYxgQLzkd+OfxrSpShTlaTM4ylLYittUsNVVpbC9gukXgmGQNt+uOlXo2WGCSeRgqKpJJ9AM/0rxvUbb/hG/i9ZwaQnkw3UkO6CP7u1ztZcdhjJ9q9Z8R7o/CersnDrYzEY9fLNOdNRlFrZmiqNxae6Knw+V7vw/JrUoxcapcyXT56hc7UX6BVH511uNse9mwoHPsB1rmPh4yv4A0cr0+zgfiCQa29XZk0K/ZM7xbyFfrtNRP8AjamS+E4L4TXDarN4l1+UEyXt7tyf4VAJAH/fYH4VW+NjPaQ+HtVgO24tbptjehwrfzUVlfCSXxE3hu9g0aLT0jN4WkubyRzglU4CKOeBnJIpPi5pmrWmgWM+qa6+oO11tWFYViij+UnIAyc8YyTXao2r7mV/3Z7dBMk8EcqZKuoYZ9DXCfFOwmttMsvFWmgLqOizLLuA+9ESAyn1GSPw3V2Olq0WmW0b53pEin6hQKfqVhFquj3mny/cuYXiOR03Aj+tZ056jkrofpuoQ6tpNpqFqS0FzEsqZPIDDOD781fU4AyCK86+Dd9Jc+BUtZiRJYXUtttJ5HO/H/j+Pwr0PLYJrVu0miVqh4IPSnjNQK5xnFTBuKpSuTI1LdAYhxStArdqS2bMYFTVukmjJuxnzWZPIFVXgZO3FbWM0x41cdBWc6KepUZmCy4JxUGWORWlPAwchVzmq0kKQjdK+PYVwzhys3jMrA461DLOBnHFJcXDSjbEn5URaXc3Jy3yqe5qdXpErmKE0+QQCc1ClhcXTYVSc+1dFFpVtCcv+8Pv0FTtcwwDC8gcYUUOnbWbGpvoZVp4djU7pyP90da1gtvZR/Kqxj9apS6jKciMCMevU1QeVictlifU0nWjH4RqEpbl641cR5ESA+7Vj3WpSy/K8nHoOKbPuPO3n61VMOTuI5rJzlLdnVTpRWo+Ickk9emaJc7DnmkGTxQ4GwjNKxstypkZpBjNLgUvy9+tWjW4d81IrngZqPI9aAcGmJ6jJlJJJqCrMhyuar1SLRNBjeM1bKrwRVGPIarhDlPapaM5gSDmmNg07aR1ppFCEitJgEntVYctmrM44+tV1Hb0qjaOxN0WoGHNTn7tQNTKQw1G1SHpUZ60DG9qQdKU0hoGNoooNIYw0w08mmGmMYaUUYoPSgBhptOooAYabTjTT1xTuFh6gH5T/FxWcy7WKnsa0enNVbtQJtwHDDNSzpoyK9FGeKSpOlEgNa2gf8h/Tv8Ar6i/9DFZC1reHv8AkP6d/wBfUX/oYoXxIiv/AApejPeRRRRXtnwYh61wniH/AJDc/wBF/wDQRXdnrXC+IB/xPJ/ov/oIrkxnwHThP4hk4BalPNHANFeYekKF4p6LTBmpk+XrSZLLECEnC45PX0q/K+1CB0qtZjMlWblVOOcCml7tzCXxGRdSZc5qtuAqa72hyBVbvQtjpitDRs8MTV0Rj3qhZg7Rj1rQBOKl2MKm4oQDsakVcA/KajVzmpTJhTQrGZnXPU9qqqvNTztl6jBAag6I6ItWcY3cdatzfKv4VXtcg5FSyZYUX0MZfEeQeHv3fx51Ydikn8lNeg+IPE2j+H7dmv76JJAMrAGBkfHTC9fx6CvN7axgvfjvqFpcbzG4bhJWjz+6UjJUg49q9NPhzRYbV7dNIsvKYYZPs6fN/vcc/n+NdVfl5o83ZGdO+tjmPC3h59S8QyeL9UERmmG20t0kDrCgGOWHBbHp6nvXaXlot9YXNo5yJ4mjP0KkH+deSfD+5bQfiXq/h6J3+xO8yxxE9GQ5U/8AfOc17Cksa3CxPKokcFlViAzBepA9sjP4VFdNVF8mhwd4PucZ8IrxpfBh0+X5Z9PupYHU9Rk7v5sR+Fd3LClxBJE4ykilW+hB/pXnVkB4R+K9xbONmn+IVEsJ6ATjqv4ksP8AgS16VkAeo6j3qa2lRT6PUUXpY8q+DCvYDxDotwNs9ndAuPzU/wDoNXviVbHW/EPhbw+o3GW6aeYf3Y1xk/lu/Kti88MX2n+L/wDhJtB8h5J4zFe2kzmNZhjh1YK21uBnj+fN7StCnXXJ9d1RoX1GWMW8McJJjtoR/CpIGT3LYHpgVu5x5/aLclRduU6OMHb0zzUuOQABluM5qNOFAqG+vINOsZ7y4bEMEbSyHPRVBJ/QGoh0KlscV8LIvLTxLsGIv7cnVPw2/wD1q9CDAg449q5L4fadNp3g+1e6Tbd3rvezjGPmkO4f+O7R+FdTvGccZrScveZEVoPU4GKmHGKrBuTU27kVUZCka9oeKs1zV34q0LQUY6rq9naEfwyzKGP0XqfwrIPxNtNR+Xw5oeta2W4WWC1MUGfeSTAH5Gu2m7o55bneVHLJtFcK9z8StWUtHaaL4fgxz50rXk6/QLhPzqfRdNvdJvDqOreKtQ1WdozGY2jSKAZIOVjVeCNuOvelVkorVhCN3odTIXIG0Zz3qpJZB23TyYX3PFZtz4i2yrFBDndxvk4/Sqc9zNKcySMx+vFebVrQ9TrjQl1No3Fla5Eagkd6hfUjJkAfL15GBWKXY9TViM/LkjNZe3layNPZJFuSZ5RlmbH8qh7ZPFR7sgryKVvQNWb13KUUhTsIzmomKeuPrSuHUZGDULyOSAYz+FS0i0RSlSeG/KonKgYDZqS6kCgDac9+Kh+Xbnbk1SN47CIBu+9+tJIFG7JpoCZyRilcpg4Apl21K52jvSZWghSego2+gqzSwvy0Ej0o28H5c0oU4+7imJgWUrjFVm61Oyt6VXb7xqkVEcpwQauiRigHGKoA81bQ/LSZM0LyfWjGAfWlzTcn0pIhFa44wKgxg1NOcmoqo2jsO3HGKibrTxTGHNBSGUwinmm0yhh600049abQMQdKaelP7Uw9KQxhpppxptMYlIadTTQA2m9qdSCgYw0Ac5oNKOlACHpUNyN0QPdanNQFid/oBzQy4SsynRTpF2vj16U2oO1O48GtXw+f+Kg07/r6i/8AQxWTWp4f/wCRi07/AK+ov/QxTS1RNf8AhS9Ge+UUUV7R8GJ3rhvEBxrVx/wH/wBBFdz3rhvEI/4nNwf93/0EVyY3+GdGF/iGQTlsUtGM80teYelcBTg4LhAQWHUZ5pvQ0sSKrtJg7j3osJmnZH5ialuCCOTUViu4NSzg/NxRf3TB6yMq4I3nBqEdalkBLcUKvIzQdK2LtoCFFPmuY4R88gB9M061AVBRcWVrdOryR/MvQ5paGDab1JoUkdAwGQehp7pIqnPShHIAVeAOgFEhYrkk4paE9TNk++aYBSu2WNAoNuhftG2rmpZHYnOB7VDa8qar6qmoS2Zj0ya3huGIHmXEZdQO/AIyf0pW6MxlueW2Z2ftD3I9VI/8gCvWHJeRFHIBJI7cVxsPwz0241STVtZvrzUr6Y5kk3eSDxjgIQRxx96uq0zS7HSLL7PYW0dvCGJ2J69yc8k/WujETjK1nrYmmmjzDW/DGtaN8S4vEmnWUt5ZySiVhAAXXcu1xtPtk/jXf6bFd6jrw1e7tHtIYYWgtYJivmHeQzu20kD7qgDJ6H1rXJqROuO9ZzrOaSe+w1C2xk+LvDcPifRTbGQQ3cTia2uBkGKQZwfX0z/iBUPhXxHPqCvpOsR/ZdctFxcRH/lqAceah7qe+OAc10YP4+orO1bRLDWljN1GRPE26G4ibZLE3qrDn8DwffpQqiceWQnGzuabZAJPrzSKe9Z1xqen6HaxrqWqwxbV2+ZdSojPjvxgEnrwPy6Vgt8QtLncx6Paalq7gkH7DasVB92bAx70lTk9kHMjslY5qpqumQ6vZ/Y7pn+zl0eSNTxIAwYK3qpIHp+RNcC/jbxHd+IxoMVlpmh3joHQahMZGYHsuwAbuOhNbg8GanqIzrnizU5x1MNkFtI/oQoJI/GuhU5RV5OxDld6HQalrmk6RGP7R1G1tB2WaYKT9B1NYDfEPT7shNF07VdYYnAa1tiIgfdnwPxq5pngjwzpbbrbRrbzQc+ZKvmvn13Pkj/PFdEMD5VAGfQYpXgvMLN7nJfa/HmqcQadpeiwnvdTG4lA9ggC5+ppV8E32oHdrvivVbwd47Yi0ib2KoM4/GuuHWk3EGrday0FylPw/wCCfC+kOHstEs1lB4lkTzJAfXe2TXZgYX6+mBWRYHJ/GtgEbRyOa7aDbV2c09GB5z+oritb8yyupEjZlUncO9dt1Fcr4utuI5wOoKms8XG8Lm2GaU1c5HzmeUOzEkHNbhIYKR3Ga59lIyK6CzTzdOimHb5TXlWPWr2SuNAyQPerCnHFM27csaF6ZpI5pO5Nn2pp4pN1NJJIoJB8sOCaTJUDmnU04J60ikQTnd1GTUOKe5y5qSCaCNj5yE/SqRqtEUyuWxTJBgVauHgZ90Oce9VHbg0zSLuRZ4puTmlNN7VaNR2T61Iobbw1Q5qaM/LQwaEO6qz/AHjVonmqrn5zTTHAaKsRsSOKr5qzAODTYS2H87aY5IWpTwKik6UkZohYcVCanI+WoTTuaoRaa3SnimPTKREaSloNFyiM02nNSUDE7U0080w0IZGetNNOPWkxxTASmGnmmGgY3tQKKKBjMZNOHFIOtKaAGk1Afldg33HGM+lTkVDKBg56GmhSXUicZHXJXoRUNPBxchR070SxlWyOBSkjpoTuhvetPw//AMjFpv8A19Rf+hisutPw9/yMOm/9fcX/AKGKmPxI2r/wpejPfhRRRXtHwYh61xHiD/kMT/8AAf8A0EV2561w/iEE6xPj0X+QrkxnwHRhfjMocUnelAoUZevMPRFIp8Y4NIeuKlAGOKTJbL1hhVai4bO7nAosx8ppJR1zR0sY/aMtxhjzmhRmlk+8aRW5p30OhbF+25GKs+XxVa2ODVvPFSYT3AKBTJASp5p+6o3b5CfamJbmcw+c0AUN97NKDhvakbF216GntjOe/sP84qo95bafay3V5PHDBGuWkkICqPfNeK+OfircauZNO0N3gseVaf7skw9B/dH6mtaVGVV6bGE5qG57LYazp2qXl5Z2V0lxLasqT7OQhbOOe54/StGXkZOfrXzp8L9U1i08RSWOjNY/ab6IoPtu7YCvzZwvfG6vX28L69qIzrHiy7C94dMiW3A9t3LEVdbDxpSs2TCpzK5uXmo2OmxeZfXkFsh/imlVB+ZNYLfEHR3lMOlxX2rSg42WNszjP1OB+Oams/Avhuyl83+zY7mc8ma8JnZj/wACzz+FdDBGkKrHGqogGAqjAA9MAVl+6j5mj5mc0dS8a6kALHQ7HTEPSTUbgyMR7InQ/U07/hEtb1Ff+J14tv3Q9YLBVtlHsWGWIrrBSk0e2/lVieVdTndP8C+GtOfzItJglmPLS3OZmJ9cvmugVVRQiqEQDAVRgAelOpD1rOU5S3YWR4D8aFaHx1DKp2lrKNgQcYO9x2+ldH8Pfiz5iw6P4knw/Cw3zdD6CQ+vo35+taHxA+H+peMPFdlcWzRW9pHaiKW4kOcEOxwFHJOD7DnrTfA/hHSPDni2/wBJ1C1judRhUXNldzJnzIehKqcgMrA+/J9K9OMqcqKi97HPytTuj1A9Mr09qcGAHPWlc7gAOmPXNRHg4rg22Ogl3+9MZwATlQAOS3T8aYTXAfFjxDNpvh+DSLFm+26q5iGzqI+jfiSQv0Jp04upLlJlpG50Wga5qnjPULgaFdHT9Ds3MX9oCJZJbmTuIw4KhR6kHtWx4S8SXk/ijXPCurzxz3+lsjx3KoENxAwDAsBxuXcAcYHPStHwbocPh3w7YaXCABbxBXKjG5/4j+Jya878L3hvv2mPE8sRzGlkYn9Pk8lD+or2KaSVkck9We0r0/WsvXrf7Rpj8ZK4atQdM1HMgkhdD0IOadSPNBoUHaSZ5XMMOT+FdL4dQT2M0R/hORWJeweRcPGf4WIrY8LzCO9CHo4xXkUvisz18Q+aldE9zbNDx1BNV8GupubQPk7RWTNp53EitauHa2OOFVdTLpQMCrDWsiHBUn6UwwSHop/GuTkkuhrzohI4qJjtNXUtJX4xxVO4jMblSOc0nFpXLhJMrt1zUZ5qQ8n3o8s9qpLsbcyRF5eRnIqJ14NWSpAqs/BIo6lxknsQUmOKfimkccVRqmMqWOosVMi0XG2K4xzVR/vGrUhwKqmmhwEqxDmq1WImIApsJEpyBURbNPZyaizzQSkIehqBzzVg/dqs/U00XEUGmOeKWmt0plWGUhpRSHvSKGN0pKU0lMYhOBTCaeaiNAxDyaBQBS0wGGmEU802gYyg0tNY0AC/SlNKOlIaBjD0qJ8Y5qVqrznCGmhN6EUChi0h6k8VOyh0wetMjXaoFSA4IqmiIT5SqVIbFaXh/wD5GHTf+vuL/wBDFVZYw/Iq5oK48Q6Z7XUX/oYqEveR2TqKVGXoz3sUUg6UV7B8SBrh9e/5Dk//AAH/ANBFdx3rh/EH/Ian/wCA/wDoIrkxnwHRhvjM4jC5pqU2STtSoea8w9BkmKXnIxRQKTJNO0GenpTZjjNLZNxjvRKOTmmvhuZfaMqQfMaYOtTSjk1Go5pM3T0LkHWrmeKpwdat4zUmMgJpjnKEetP280mVHXmhiRnOpU4pB1qSblzUYHNBstUTS2VpfwG3vLaG5hbrHMgZfyPFYN78O/Cd8cy6JbIx7wlohn6KRXRwmpgvzqT0FVGco/CzKUU9zi9O+Fmh6RrNpqun3F9bz20gcIJAysO4ORnGOOtds/SndaRhxSnUlP4ncUUlsVz1oBwaVqbUGhODS0wHpTx0oJaFoopDQIXdiuc8X6Tc3lpBqmmDGraYxmtv+mi/xxH1DAfmK6E8mnZ6HPI9Ov4VcJOMrkyWhR0LW7XX9Ig1G0J2Sj5kb70bD7yt7g8f/rrQbjPrXE6vBceDNYm8QWETS6RdEHVLWPrC3Tz0Hp03AdsfUdda3cF7bxXFrKksEqB43Q8Mp6YraorarZkxfQlAOcn1rx3X4LvxV8b7bT7W6EDWEaMkrR+YsZRfMztyM5YgV7KRuHA6V5t4TtPK+O3iRpR84td6Z7BjEc/0/Orw2kpPyJq7WO2fS/F1hYT3c3je1jhgjaWQ/wBjpwFGSf8AWdgDzXHfAGyudQvvEniu8G6a7m8kSFcZckySfQZKV0nxX1qe28LxeHtOVpdW12T7JBGnUISN5+hB2/8AAs9q6/wZ4bh8JeFbHRoirNBHmWQDG+Q8s35k/hivUhojlk9ToKPUUUVbJOH8S2wivyQOH+aqGmTCC5jf0auk8U226OKYDnpXIqxWZUPXOa8eouSq2etSfPRsenqwdA3YjNI0SntVXSp/P0+JieQMGrteqrSijy3o7FZrZSegpv2Nc9B+VW6MUvZoOZlYWqjsK57WoAk5bGM11WKwdfj+RWrlxdNezujWjJ8xh20Sy3CK3QmupTSLfYMoCa5e3JSdCOxrtrdt0Kn2rPBJSTuaYiTT0MLWLGKG23IACK5OXgniuz184tgPU1xs33jXPXSVSyOrCNuN2VzTacelMqDtACpl6VEvWpRSBsZLVUmrEp4qs1Ui4gvLVZQVXjGWq10FDCTGNxTcd6dIPlpF+6KVyRGOFxVdhlqmkqDNWi4iYpDT6YaZQymmn0w0ihtNp1IOlMBp61E3WpT1qM0xpjaO1FIelAxp60lLSUDENNxmnGkUUAFIacetNNAxjVVm+aRF96sNVdTvmLdhVRRE2S4oxzSCnU7kCjir+iIP+Eg00j/n6i/9DFUa0NC/5D+nf9fMX/oYprdBKTVNryZ7gOlFA6UV6h8uL3rh/EH/ACGZ/wDgP/oIruDXEa+R/bM//Af/AEEVyYz4Dow3xmOwyaA2GqTr2qNsbjXmHok2T1p6kGo1+6KAcGkyWi/ZnEtWJiOap2rfvBVmXOTmi+ljJ6MoSDLU0LUzrg0xRzSNL6FmFcYqbcAQB1qvGSTirAAB96RmxDvbPanBQF5pASTTwKZJTuQvGBVdetXLlOKqAc0mbRehMjYHHWroX90Cepqigy4q5vJXFImQoPFBORR0FJ2pEkbDioz1qZulQmgtBv8AmqYHiq3vUqNkUCZLnmgnigetNJoJFFAODSZphPPWmgJCVbIYA7uCCMg/hXFyaff+BrqS+0eCS70KVi9zpynL2x6l4fUeq/l6jsQMHJp6nnOSO3FaxqOOnQlor6PqthrOnx3un3CXED8gp69wR1B56HpVW68NyzeJIPEGlXcVtqMcJgl86IyRTx5GAwBByDyCD2/LM1HwgyXz6t4cuxpept/rFC5t7jrxIn4/eHTJqXT/ABymnXiWfi60bR7knak7HfazH/ZkGQvrhuldFKHvXgZz21Oo0PwglnrUuv6pdHUtbdPLWcxhEgT+5EmTtHJySSTk88murXOORioLOaKe3SaGVJYnGVdCCrD1BHFWDXqJaHI9wooopiKOsW/2jTZFA5AyK88kH+k7unOBXpzqGjZT3BFec6nEbe6ZCMFWIrzMbG0ro78FLeJ1XhmfdbyQnnBBrfrjPDlx5d4ozw4xXZ114aV4I5q8eWbCiiiugxAVk66ubbPpWtVDVk32je1c+IV6bNKekjk1bDA12WnvvtEPtXGAfNXW6S2bJPauPAPVo2xCKXiI4gWuPlOXNdd4jP7tfrXIN941jiH+9Z1YT4SFuKbT2GTTcVmdoCpO1MApWOBQBDK2ahPNPem4zVGi0Q+NeanPC81Gi56VIx6Ck2S3dkZOeKUDpRjLZpaLARSjmoSMVNIcmoTVIuImeKaeaWm9qZQ002nGm0DE7U00+mN0pgMNNIp9IaBjMUxjipKiYc0x3EFA60uKDQVcYaFoNOAxQA09aaac3Woz0oGRyNtQmoolxGCRyeaWflQo/iOKfjAAq0rGcncSnd6TtQKBDq0NC/5D+nf9fUX/AKGKzwK0dCH/ABPtO/6+Yv8A0MU47omfwP0Z7eOlFA6UV6h8wKa4XxCwGtT/APAf/QRXdmvP/EIP9uT/AEX/ANBFcmM+A6cKrzKO4YppHGabQW7V5tj0CZDlaCOfxqGMnPXiplI3ZpNCZbt+HX61fmXvWbCwVga0ZHDRqRSXUxnuU5RzUYyDU7+tVyeaRSY9XIbNWUOeaoM1WYH3YFIUkWhTqaOKM+1PmRAkoBWqbJhuBVw81C68Y71L1Kixka8ZqZTzTRwAKUHBzUjY/PNLSDnmnGgQxhULirB+7UJHFO5SZERSq2DjNDDmo1Hz0FblsdOtH41DvxxTwc0yGh1NJVA0jkBV5JPangUyVBIhRuVYYIqlYXXUjjmS4GY3DL6irCriq1jYR2URSPJ3HJzWvb2u8ZarjByegptLYrIM1bgtIbyJ4LmCOaGTho5EDKw9wanSxx24rQt7YIRx0rpo0JRlc55zVjk5PhpZWcrXPhfU7/w9OTu2Wkm+3Y/7UL5U/him5+JWkHBTRPEEQH3gWs5z9fvJXd4xRXpo5jhv+E5161GNS+H+uRsPvfYniuh+GGGaT/hZSd/BnjIH0/sdj/JsV3VIaYHD/wDCwL+44svAnih5OwuLZIF/Nn4/KuW1u58bX14ZF8O2WjiTkG8vRMSOckCLofr6V7EOlYfiS3D2yS45U4/OufEK8Lm1GVpo5TT5mhuI2YguCC23oa9FjcSRKw6EZrzWPKS5Nd9pE/nafGc8jiufBS3ib4uOqkXqQ0tJXoHEKKqaiM2jj2q2Kguxut3HtWVbWDRUHZ3OKOQ9dPobH7EBXNSjEh+tdDoD5gIrzsFpM6q/w3IfEf8Aql+tcg/3zXXeI/uL9a5F+GNZV9arOnCfARkc9aAOaD1oXrUHXcWo5DUvA61BI2WGKaKSIzQBzQetPQZNMtkqDAzSEc0/Py03vUmdxFXNI3FOXrTX4ppj6kLVERUrGozVGiG4pvSnd6aRQUMPWkpxFJimMZSEZp5FMPWmAyjHNB60ooGMbiozzT2pg60wEpDTsZNMbrQNMaBk0+kXig0FDGphp5qNzgZ9qEPoV/vz5zwtPFMhHylu5qUDitEZMKWjFKBSYIB1rT0Ef8T6wP8A08x/+hCs7FamhLjW7A/9PMX/AKEKcd0TU0i/RntI6UUDpRXqHzAtcF4h/wCQ5cf8B/8AQRXemuC8Rn/idz/8B/8AQRXJi/gOnCfxDK/jpOrUYJY09VrzrnogF2mpFpvenikxMkStGL548Vmg4rQs3GCpqDGY5k4qlKMGtBx8prPmHNAoMhzmp4GwQKhxzUkZwaGasvA5p4qJKlqTFhTGXqaczbRSspEY9TzQCICc0A0EU3pUlkynilU1EGp2eM07iY9zxTSOKA26lbAFIRC4wM0wL3qY88VGwxTKTI2znipU96YBk5py0xkopwxnJpgp460Eskj5bPrXQWMI8sEisKFMyAV01qm2IV6GDWlzlrMkCAdhTwAKKK9GxzhRRRTEFJS0UAAqpqcPn2MiYzxmrdIwBUj1FRUV4tDi7NM83lBEldR4ZmPlvET6EVg6pbmG8kU8bWNXNCuPKvY8ng8V5NBuFSx6NZc1JM7KijrRXsnmiiop/wDUt9KlHSo5uYiPas6i91lROJn/ANYfqa3vD/8Aqm+tYd1xM31Nbfh85ib615eF0mddb4CPxGf3a1yTn5zXW+Ix+7WuScfMait/FZ0YX4Bh5pAOacBzSE4qEdlhrtgVBkE5pztk0wc0ykKBk1PGgzmokXmrMfUUmxTYONpxUZBp55Yt6mkoJuIox1pjmpD0qFutNFLcjIpmKk7UwjBqi0M6Gm1JUZFBSY2ijFLimBGaaae1RmmMbjNHSlFNagdxjdaaacetNNMBBTWHNPJ4pnU0FC9KjbrUlRtQMaTVe5OYsA8k4FTtVVzvnVfTmqQpOw9RtUL6DFPpAKdjimTcWijFFADvStfRRjW9PH/TzF/6EKy4xk1q6N/yHNP/AOvmL/0IU47oVT+G/Rnsg6UUo6UV6h8uHeuC8Rf8h24+i/8AoIrvTXBeIv8AkPXH0X/0EVy4v4Dowv8AEMwCjPNKRSV5dz0XqL1NSAUxRT884oEx6irVsdrj3qsnWrCHaQal7mci7JwMVRl4NXJCHRSOtVplytN7kR3KmRmnLTSMU4cUmbFqJqmVqpLJg4qyjZFSZslUb3wegqbGWxUcWRk4pctnNMkjmTBqHtVgoW6mq8gwakpMbUm7jFRinZ5oKFwRyKfkEdajJPSlHFIRIuAOaY/zUuaZu4x700IYRigHmnGos81RRPninq1Q7hinqcjNIlmnYJvmHFdJGNqAViaTHnBrdA4r18LG0DhqvUKKbI4jQse1Y51ZjNgcKDWtSvGDSZEYNo2qKZFIJYw4PBp9ap3JENKKSimAtB/pRQelILHJ+JIQt2HxxIKybOTy5kb0INdN4khElmsndDXJRna5rx6/u1W0elS96lY9EgkEsCOOjDNSVn6LL5tgoP8ACMVoDpXrQleKZ58lZijpTJRmJvpT+1Nf/Vn6UT+FgjirwDz3Hua2PDxAVl71kXwxcv8AWtXQOXevKw38RnZW/hjvEX+rX61ycn3jXWeIv9WtclJ941Nb+KzXDfCR96jdqeTioic1mjuQ00qgUmM1MiDFNjbFRRTmbavueKVRzQwBYD0qSGNxgYpBTsHPNBXFADG6VEakNMqkykRmm4zUjcimdqZXMMPBpuM08jNJj3plIjxSEYp5U5ppBoHcjNMIqRqZ2qh3G45pr8VLUT0ARmmmnmmd6ZSEakFKaMYFAxKjbrTzUbHmgpDWOOTVOP5nZ/fFWJ2xGcdajjTZGo745qkZzHr0p9NU8UvemIcKMUCnEZoKJYhwa0NH/wCQ9Yf9fUX/AKEKpouFq7o4/wCJ5p//AF8x/wDoYpx3RNT4H6M9mHSigdKK9Q+YA1wfiAf8T24P+7/6CK7w9a4XxB/yG5/+A/8AoIrkxnwHThfjM0AmlK0ClJrzDuEwAKF55pSM05BSuBIi4571JnimikByalmbLtuwZTntTSNxPFRo2wj3qVjg8UEvcqyqBwKixirTplc4quVxTLiyMHmrcOSQMVVA+arFux3E9O1S9CpF7oMUmaYDTqRkLk+tQSjinueODSKN3WlcdyvnaKdmklU54ppO0Uy0KzY70I241CTmnKdvNMLE5PFHaog/NSBqQmhrnikwMU44PNA5OaoY0ocVLGvQUY4qaFSSOKN2iJvQ6DS4wIwa1KpWK7Yh2q5Xu0laJwT1ZDef8esn0rkd+HNdhOMwuPauOk+WUj0Jrz8b8SZtQ2Z0ekTeZbbc9K0zWJoTZDCts13UXzQTMJqzEooorYkKZK6xqWY8YpXkCDJxiue1bUvMzHEeB3zXLiKyprzNKcHJlHV9RaZjGD8lYithue9WJSSTmq+MGvKbcryZ6dOKirHVeHJzl4ieDyK6GuO0Wby7yM54PFdl24r1cLK8DzqytISkflDS0j/dP0refwsyW5xmoDFy/wBa0vD5+dhVDUv+PuT61d0E4nYV5WH/AIh2VNaZP4i/1S/WuRk+8a6/xCMwr9a5CUfOTU1/4rNsN8JA9MpzGheahHaKiVKFxSJ3qQdKlsTYKMCmkfNTv4c0lIkQUEcZpwFI1MERHFMxUhHNIeBTRaZCaaRTj1pDTuMYaT8KWimO42mNUhFMYcUykyFqZUhFN71RQnQVGRk1I3So6BjCKYetPNMoKQmKDS0hoGMNRn1qQ1Gc00UVpjllT1NO6mmA77hm7KMCpQKpGb1DFLiigCmIcBT1GWAplTRDnNAyYnFXNG51yw/6+I//AEIVSbpWhoK51myP/Twn/oQqo7oir/Db9T2IdKKQdKK9M+aF71xGv/8AIZn/AOA/+giu371xGv8A/IYn/wCA/wDoIrkxnwHRhvjM3jFIFxSqODS44ryzuBRmnhcUAYFKTSEGcVIox2qHrT9+FoFYdu+arcYDLk1QU5bNWopMMB2PFJiexMwz0qtMuBVzAUknpVOVt5I6UhRKzHaue/ap1+VQO461Ao3zAdVXk1MTzQzR7FhWzT88VVDYPtUysGFTYhod1p6jAplPFFhDSM1VlGKtdKidN1MpFZRk0rcU8psNMc800UN3c1Ir4qDktTycd6LDsTbs1IlVlfmp0bmglkgGTV61jBkAqkv3q1NPTdJnHFaUVeaMZvQ3LdcRipx0qOPhAKlzxXuLY4W9SOTiM+4rjLkbZ3H+1XVX9yIIGJPOOK5KV98hJ7nNeXjZptJHVh46Gzob4lYe1dBXI6ZP5V2vPXiutU5UV1YSalDToZVo2dxaRiAMmlrL1O+EKFAfmIrerUUItkQjzMqarqXWKM47E1gM5JPU+9SyOZGOTkmkjj3OF7mvGk3VnqdsUoRJLGxN3MOCVB5qTW9NW0kjZBhWGDXR6Zai3thlRkiotdg82xJAyVOa7ZYdKlfqYqs+c5O2k2OGzjBruraTzbdHHcVwPAfHrXXaFciaw2k8pxUYOdm4srER0uatI33TUE13FAcFhUiSrLHuU5BFd7mndHLZrU5PUv8Aj7k+tWdC/wCPg/Sq+qD/AEx6s6FxcGvLoP8AenXU/hlzXxm3BrkZeSa7DXRm1FcjL941OJ0qs0w2xWCc0qx804nFOUjHNZXOzmE24pccY9aU0qjjPpRcm40jjFJjFOznmkNAXCkNFL2oGmMApjirGPlqBqaKTIilIRipaY/WmVcjxSEcU/B9KaelNMdxh6VG3SpCOKjIqikRnpTQKewxSdqosjbrUZqU1EeTQCGnpTTTmppoKEprU80xulBSIyahlbCk+gqVu1U7piQEH8Rq4g3oEC/Ju/vc1KKaowMDoKfiqsZphSiilApAOA5qeNeM1EoqyBhaChjHitbRFxqlj/13j/8AQhWUBlhWzo6/8Tax/wCu8f8A6EKqO6MqztTZ6yOlFKKK9M+cENcbrsedYmP+7/IV2RrkNbBOrzemF/kK5Mb/AAzfD/GZewY4puMGpsAUwkHmvKudlxuOaa3BpxNMY5oGhc0xm5xSk45qIEls9qdiyZcCpFfmoQRTge9JoTNJnEkAx1HWq5UYye3emQykHaehqwYi2B2qTPZkCxeWpPduajNXHXIqsyYakUmMx3qRWxTegoFJlFkHinA81CG4pcmhEWH5+aimAktilc44FMQyTG3rVaRSBnNWQNx5qOfBAAoLTK6DnmhjzUhXYpJqEnNUaIUHmpFlwcVD3oX71DE1c0Y2LEV0NlFtRfWsGwTzJgp6da3PtaQJycVthmou7OWqr6I1VYAVXub9IR15rHn1cEERnms6W5aTksc1rVxmlokRot7lm+vWuG6nGazGcljmkeXNR7q4tXqzqjHl0LEbYYEdRXSWGqqVCSHBA61zEbAgmpUYg9a0p1ZU9iKkFI625v44ot24E445rl7q4eeUuTnNNklYjBYkVDznmnVryqbkwpKOo9eTW3pWn7mErjj0qjptoZ5ckfLXVxxrFGFXjFd2Fo/aZz1amthwAAAA6VFcxiW3kQ91NS/jSMQF5rtl8LuYLc88nUxyMp6gkVa0zUntFdezUawipfyhSME5GKoKMfSvFu09D1YpShZmjJdtcSZLH8629Gncgo3QCuaiXLDHJrp9GtnjVnYHnpW+F5nN3OasorRGZqnF42an0Qj7Uaj1dcXp96foxxeVFLSsxT1pmnrYzaGuPlHJrs9YGbJuK46bvSxS/eGuGehBj2pSBilxSGsDqE6inAYUD1po5pScEUAIetAoFKozQDDbSheaXoKBQK4hPFQkZqZulMxxTRSZGBgU0jJp/FJj3qhjCKYwPapvxqM9aEUmREEDmojUz1E1Wi0yMjJpCMU8Dmmv1qirkR4FR+tSPUZoGiPqaMUo60UFDWqJqlaojQUiNjVJv3lznstW5GCqT7VUhBKlj1Y1pEmepMtSU1RxTsUxBTgeKTFLikBJGNxqweFqKFcCpGOAaB3HQruatjShjVrH/rvH/wChCsy2XAzWrpf/ACFrL/rvH/6EKcPiRhWfuM9VooFFeofPiGuQ11guqzf8B/kK681xPiBv+JvMPZf5CuTG/wAM3w698oNJnikzxgUzqKcoryjtHZwOlRFuTUrdKhOMUIpDHbIojFIOW9qlGB2qxi454pwoHTNGaliY9Tg1ehfcgz1rOGWIFW4ztxWbJktCy1QuvFTZBFMNIhFVhQOBUrLzmoXOBikaIQtTg+ahzmkzTSHYtBtvNNLEtUAYk9amTk5piaHk7EJqFcyNg0SOTwKkhUKpY0Athsy8BahERPQcVLncx571Kg2gmncEyntPPFEa8k1YMefxpBCQM0XK5h9vcmBiR6UkkzyHJY1AfvU8n5KBOKGux4xTCzetKemajJprQtASSetObO3jqajFSR8n2FFxslztQUqvTHPApppWFYlZyaVCSRUQ96kU8ilbUmSsjsdIjRbRGAGSK0CQBzXOadqYgh2OcAVLdawCuEP416UMXCMLHBKk3I1Z7yOEZLVh3uuE5WI1l3N3JLncxxVInNclTEym9Dop0EtWLcSGWQsxyTTUHNMNLEw3c1mvM6LWjodFpGm+YRK/TtXSqqomAOlZehSiS02gfdrWPSvWoxSp6HmVG3I5jWlH2vNN0ji6FS60MXIqLS+Lpa4o/wAc2b/dm3qo/wBDauKkPJrttT5s2+lcVIOTSxnxovDMjFIacKb3rmOsAAoyaaeacRnim45oHcQntT0FNK09eKAbBqTtSk5NIaBCdqYetO7UhpoZGQM0mB6044yaTimUmNPSmVIaY1NDRG/tUJqVqjq0Who61Gw5qUio270ykyJqjNS+tRt1ploZjHSkIp1IxoKRGw4qJjUjGompooqXbkR4HU8UgG0AelJMd9wq+nNPA5rVGcnqSL0paQCnd6BJi0oGaXFPQZcVJZOq4QUEZIpelLGNz00gZZiXCitDSx/xN7L/AK7x/wDoQqoi4FXNL/5C1l/13j/9CFC+JHNVfuM9UFFAor1DwRD1rh9fOdduB3wv/oIruDXFa4gOtznv8v8A6CK5MZ/DN8P8ZnBBgUvQU4jFMbpXlHYtRrNmomOBT6YeWxTLSBV4p4FAwOtBNDYx5+7TM4prOaQtlSaQE8HLFj0FT89arx/KgqTfUMlosxyY4NSN0qmHqwj7higlocelV5BVhzhahKk80AmViMU0nFTSLxUOM1RomKBTw5UGmgcUUrAKgLsKsOQqgCoImxmnMc9TQJiovNS9BTE4FOPNIljxTj0xTQaHYhaCepVcDdxSH0oJ5pQeKZqIBkY9KhI5q0QBHx1xVfbzzRcaG9ATT4ulIVzxUgTaMUXGI1MzTyKjI5oBDhTgcUKvFIeKBXuSbj60pY461EG5qZU3ChRJlZEfJqVIS3QZNXLWwknbAHy+uK3bTSY4cFhk+9dVPDuRjOslsYdvoslwjFhgdqyZrdoJmRuqnBr0RI1jGFAxXIa/B5V6xA4fmrr0VTjoTRquUrMt+HZmEzJnjFdNu5IritInMd2nOOea7FDkM3r0rpw07wsYVlaRga23+kCoNNP+lLUmuf64GoNMfF2lcV7VzVr92dHfDdZMB6Vxko+Y121zzaN9K4yQZkb61WM+JBhyseKYetSPTeik/rXKdiEJwKYpHP1pXzgCkAwaYx3WndqRacBSENHFIeTT8U3FADG6Uh6Zpzio2PGKZSEyDSgZpqjmpO1MBjCo26VKaibvTRSIGpg609qavWrNEDDmon46VIx+aopOtNFIjPFRnrUjVHTLEPSmGnnpUZoGhhqF22jNSOaqXTlYzTRV9CCE73kc9+BU9RRLsjUd+tTAc1qYoeOlKOtJilHWgofipoV5JqIc1YjGBmpKFbpUtsuTUTDNXLZQF5pikyYVb0xcatZ/9d4//QhVbFW9M/5Ctn/13T/0IUR+JHLVfuM9QFFIOlFeoeIBrjtcGdYm+i/yFdielcdrhxq8wHX5f5CuPG/Ab4f4yhj5eahc4od8A89KiMm5M15aR2pDWbAzSJzzTGbJ21KF+Wmy2B5oPSk70rdKQDSOKEG9wvpyaDwDUsKbU3H7zU2MePWgU4DIpdmBWYriU9Ce1RltoqRW4oJZYDAjBpPpUO70NTI4I5oIsRSc1GI80/q5+tPxgUDTIGG0VGTUzfMQKjkGDjFO5aY1TijfzzSZxTCaNyrE4lAp6SAmqe4DrS7xniiwOJfJ5yKRiStQLLxTi/HWlYmxGc5p688Uwnmnp3NAxSTTAOeaUtQOaAWgoXmnd6SkJoACKZjinFuKQnimMlixmmzDnimxthsVI4yKCepEuM1uaTYCf5ycj0rCHWt3RrxYX8onGelb0GlL3jKte2h0cVukS4CipKargjginZB7166kraHBZ9Ra57xLBuhWQdR1roKz9Xh86xkA7CsayUoO5pSdpnEpP5A355yAPrXfWb+baxt/sivPJFDSLGw4Dbs/Sux0G4D2ZDN90+tceGnZ2OnERuk0VNeGJlqjp5/0yP61e15lMqYqhp//AB9x/Ws3/HF/y7sdZN/x6ke1cTOxWVvrXby82x/3a4q5XM8n1rTGbpk4dlUyc0pO9Qo9eaQLzT1UAZrkOwa/LcCmtwBTu9DLmmAIckVKajQYNSZpCY00w9acaSgANREDdUtRkfOaZSAKKCMU5RTWoAaahbrVhun4VXaqRSIWGaQDaDT8c0j9KstMhpjDJqQ9KjY4potETUxqkpjUy0xjGoiakaojTKRGx61QnffIqZ71dc8VnRDfO7noOBVxQpssAZOakApi9KfVEIcBTjSL1pTSuVcenJFWcYFQRDJzU5pDQKNzACr8YwAKqWwBerooImx9WtM/5Ctn/wBd0/8AQhVbFW9MX/iZ2n/XdP8A0IUR+JHPU+Bnpo6UUDpRXqniga4vXjjWJvov8hXZ/wCFcXr/APyGJ/ov/oIrkxnwG+H+MxpHLNtHfrQw24A6ClQDeW/CmyH+deYd6GIPnJqwBxUaRnrUwHFJjbGAYNIRmnHrSUAIE3kKPxq2VHao4V6tUlS2JsQDmnGkzilJ4qREDDLU7d2oPXNRsfm607DRKvJpxbHSoA5BpdxY0WFYshhxT36ZHpVTcRipzICg5FFhWBCGJ9qYxBeliPJpjH56ASB1BGarvwKtgAioJgOgoRcWVGPFKG4oKYpoFUapkoeneZxUWMUU7BYsBuKUPioOaXOKmxLJd3NSA81AD3qVOeaTE0SEjvSFhTWph64pCsSHnpTcHNOHSigBPumpt2VqBs5pQxFOwmri5wTUkcu0gjII6VCWFLniiwmrmvHq0yoBnNTx6zIDzWHvNKHPrTU5rqQ6aZ0i62AozTLjWo3hZcHJGK50tUbuelX7Wpa1wVFXIpDmUn3q5a3klsp8tiM1SanBiFxS1NnFNWLUt1JcPl2Jq3YH/TI6y1yTxWlp5Iuo/rThpJMyqxSidi3MH4Vxl4Ns8n1rtBzB+FcdqHE8n1rpxnQ5qD1KHennhaaBkilauI7bjAeKXrSU9BzTuAuOKXvSmg0rkjDSChjSA80xinrTD1NPzTKY7jgaaeaKTuKAGtURHNSt1NRt0qkUmRkUx8YqXtUTjGau5aISaiapO1Rmmi0NIOKZjipCeKYxxTLRC1RNUjVC1MtFeeTahNV4VxGM9TzS3jfdjHVjTwMACtEjOTux608UwU8daYIeBSkUAU7FSMlhXg0805V2qDTcZOKB3LNqmBmrYFRwptUVNQZSYoHFW9OH/E0tP+u6f+hCq3arenf8hO0/67J/6EKI7owqfCz0gdKKB0or1Txxe9cVr/8AyF5/ov8A6CK7U1yGtWtxLqkrpBKykLgqhIPArkxibhobUHaVzFwAOKiC72xV1rG828Wk/wD37NImn3g5+yT/APfs15vLLsdqkl1IAMcU+rH2C7/59Z/+/ZpGsbv/AJ9Z/wDv2aTjLsHOu5UbrSZwPc8CrBsbzcP9En/79mnR2F202WtJwB/0zNPllbYrnXcagKqBSjirH2O6Iz9mm/79mj7Fdf8APtN/37NQ4S7EuS7lfNNLcjFTmxu8/wDHrN/37NH2K7H/AC6z/wDfs0uSXYfMu5VkbFRMeKttY3jN/wAek/8A37NRtYXn/PpP/wB+z/hVKEuw1KPcrAmn7yF+tSiwvP8An0n/AO/Z/wAKVrC8/wCfSf8A79mnyS7D5o9yEkY70A56GpTY3u3/AI9J/wDv2f8ACnR2F4vP2Sf/AL9n/Cjkl2Dmj3EgbaxzQcFjUxsrvHFpP/37NNFle/8APrPn/rmalwl2J5o9xF4FQNy9XlsrraM2s3/fs1H9gut3/HrN/wB+zS5JdhcyvuVfLz2pDB7VoLY3X/PtN/3waf8AYbjH/HvL/wB8Gnyy7D9ou5ksgHFM2VptYXWeLWb/AL9mm/2fdf8APpN/37NO0uxXtF3M/aaNtaIsLn/n1m/79mm/Ybnd/wAek/8A37NK0uwe0RTAAwPU1PtwCKmXT7ppM/ZZgB/0zNS/Y7rn/RZv+/Zpcsn0E5ruUtvFJt5q2bG6zxazf9+zSfYbv/n1m/79mjkl2DnXcr9qXHerH2G6/wCfab/v2aQ2V3g/6LN/37NHJLsHMu5UY00HNWfsF2f+XWf/AL9mnDT7sf8ALrP/AN+zVcsuw+aPcrc04DNW0066fpbTfUoRV620SdiPNRlH0qo05y2REqsUY+zIpfLNdQuhxnqh6VPHpEKjAj/OuiOEm9zJ4hHIGM0Lbu5wFJ9sV2J0mI/wD8qlj06NP4B+VWsI+pLxHY4mfT5oY/MaPCVWAyDzXeahZiWzdFQk44wK45rC7B/49Z/+/ZrCrRcHZG1KtzLUqqu3HNaFhn7RGfeoBY3n/PpP/wB+z/hV6ys7pZkLW0w57oaiEJcy0HUknHc61B+4/CuQ1Qf6VJ9a7CPd5WCCPwrmNUtLhrpykErAnqEJrrxUW0rI5aLs9TIAwKb1NW/sN3j/AI9Z/wDv2ab9hu/+fWf/AL9muDll2Ozmj3KxAp0fWp/sN3/z6z/9+zTlsrtelrP/AN+zRyy7BzruQUhIxVj7Hd/8+s3/AH7NNNjd/wDPrN/37NHJLsHMu5WYjFMBqw1lef8APpP/AN+zSfYLz/n0n/79mnyS7D5o9yCirH2G8H/LpP8A9+z/AIUfYbz/AJ9J/wDv2f8ACnyS7BzR7kFI1WPsN5/z6T/9+zTTYXn/AD6T/wDfs/4Ucsuwc0e5UPWmGrZ0+9x/x53H/fs/4Uz+z7z/AJ9Lj/v03+FUoy7FKce5WqGQ84q99gvf+fO4/wC/Tf4VAdPviT/odz/36b/Cq5Zdi4zj3KZ6VGRzV46dff8APnc/9+m/wph02+x/x5XP/fpv8Krkl2L549yketRv1q8dMv8A/nyuf+/Lf4VE+magW/48Ln/vy3+FPll2KVSPcoNUEhwK0jpeo/8APhdf9+W/wqCTSdR/6B90f+2Df4U1CXYv2kbbmIR5l1k9FqcDFTwaJqg3MdOvRuPeBv8ACpxo+p99Ou/+/Df4VpyvsZ863uU6kWrf9j6l/wBA+8/78N/hThpGpD/mH3f/AH4b/Cjll2H7SPcqgU5RlwKtDStS/wCgfd/9+G/wqWDSdR3kmwuv+/Lf4UuV9h+0j3IicDFEQ3S/SrR0rUP+fG5/78t/hUttpV8CS1lcj6xN/hS5ZdhOpHuPQcU8CrSadeAf8elx/wB+m/wp39n3mf8Aj0n/AO/bf4UrS7GLnHuVgOKtaaP+Jnaf9dk/9CFA068z/wAek/8A37P+FWbCxu01G2ZracKJlJJjIAGRTjGXMtDKc48r1O/HSigdKK9Q8oD1ooooAMe1GPaiigAx7UY9qKKAExS4oooAMe1GPaiipAMe1GPaiigAx7UY9qKKoBMe1GPaiigBcUY9qKKAEx7UuPaiipAMe1GPaiigAx7UY9qKKADHtRj2oooAMe1Jj2ooqgFx7UY9qKKkAx7UY9qKKADHtRj2oooATHtS49qKKoAxRRRQAUUUUALRRRQAlGPaiigAx7UY9qKKVkAUYoopgGPajHtRRUgGPajHtRRQAY9hRj2ooqgEx7UY9qKKADHsKMe1FFABj2ox7UUUAGPajHtRRUgLgelGB6UUVQBijFFFACYoxRRQAY9hRiiigAx7UY9qKKADHtRiiigAx7UfhRRQAc0uDRRQAYox7UUUAGPakx7fpRRQA4UUUUAf/9k= None. +2 EuPhO_2025_2_1 "A table is made by fastening a metal frame to a massive uniform plate (so they form a rigid body) and attaching it with chains to another frame that is fixed on the horizontal ground. The motion of the table is limited to the plane of the side view (right picture). + +The masses of the chains and the frame can be neglected. The chains are frictionless, inextensible, and remain tensioned in oscillations. The grid step is $a = 0.100 m$, the acceleration of gravity $g = 9.81 m/s^2$." Show that in the configuration on the side view (right picture), the table is in a stable equilibrium. "[[""Award 2.0 pt if the answer shows that the table is in equilibrium. Partial points: award 1.0 pt if the answer only gives a sketch of forces or an equation for forces. Otherwise, award 0 pt."", ""Award 2.0 pt if the answer shows that the equilibrium is stable. Partial points: award 1.0 pt if the answer gives a sketch with returning forces, but there is no proof that $\\omega_{0} = 0$; award 1.0 pt if the answer gives a statement that the stability comes from $y = k x^2$ if $k > 0$, but $k$ is not found correctly ($k = \\frac{1}{3a}$), which could potentially be negative. Otherwise, award 0 pt.""]]" "[""""]" "[""Open-Ended""]" [null] [4.0] text+variable figure Mechanics EuPhO_2025 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAt4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiijNABRRRmgAoqtLf2kGfNuoEx/ekAqp/wkWk79n26LP44/OgDUoqCG7trj/UXEUnsjg/yqfNABRSZAGSeKM5GRQAtFGRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWHL4v0GCV4pdTgSRGKspzwQcHtW2etfOutYGvajx/wAvMnb/AGjQB7b/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhNPDv/QXt/zP+FeCf56f/Xo/z0/+vQB73/wmnh3/AKC9v+Z/wo/4TTw7/wBBe3/M/wCFeCf56f8A16P89P8A69AHvf8Awmnh3/oL2/5n/Cj/AITTw7/0F7f8z/hXgn+en/16P89P/r0Ae9/8Jp4d/wCgvb/mf8KP+E08O/8AQXt/zP8AhXgn+en/ANej/PT/AOvQB73/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhNPDv/QXt/zP+FeCf56f/Xo/z0/+vQB73/wmnh3/AKC9v+Z/wo/4TTw7/wBBe3/M/wCFeCf56f8A16P89P8A69AHvf8Awmnh3/oL2/5n/Cj/AITTw7/0F7f8z/hXgn+en/16P89P/r0Ae9/8Jp4d/wCgvb/mf8KP+E08O/8AQXt/zP8AhXgn+en/ANej/PT/AOvQB73/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhNPDv/QXt/zP+FeCf56f/Xo/z0/+vQB73/wmnh3/AKC9v+Z/wo/4TTw7/wBBe3/M/wCFeCf56f8A16P89P8A69AHvf8Awmnh3/oL2/5n/Cj/AITTw7/0F7f8z/hXgn+en/16P89P/r0Ae9/8Jp4d/wCgvb/mf8KP+E08O/8AQXt/zP8AhXgn+en/ANej/PT/AOvQB73/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhM/Dn/QWt/1/wrwT/PT/AOvRgZH65FAH0laXcF9apc20okhkGVcdDU9c/wCCP+RN0z/rkf8A0I10FABRRVSXU7GH/W3lun+9KBQBborGl8T6PD1vVY/7Clv5CqUvjXTEJ2JcSH1CgD9TQB01FcXL48HIhsD9Xk/oB/WqcvjbUmyI4beMeuCT/OgD0CjNeZS+KdYlyPtm0eiRqP1xmqMuqX8/+svbhx6GQ4/nQB6vJNFEMySIg9WYCqUuuaXCMvfwcf3XDfyryskk5J596Tr2FAHo8ni7SEztneQ/7EZ/qBVKXxzZrzFaTuf9ohf8a4WigDrZfHdw3+psol/33Lf4VSl8ZatJ91oYj6pH/jmufooA0pfEGrTfev5gP9k7f5YqlLczz/62eWT/AH2LfzqKigA+oo/DiiigBQccjj9P5Vcg1jUbbAivZ1A6DeSPyqlRQB0EHjLVYvvtDN/vpg/pitODx2vH2iyPuY3/AKH/ABrjKKAPRoPGGkS8PLJD/wBdEP8ATNakGqWNyB5V5CxPYOM/lXkucev50fp9KAPZcg0teQwX93bY8i6mj/3ZDj8s1pweLNYh6zrKPSRAf1AoA9LyKM1w0PjucDFxZI/vG5X/ABrTg8a6ZJjzEmhPcsoI/Q0AdNRWbBr2l3PEd9Dn0Ztp/XFaCurqGUhgehHNADqKM0ZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENeB63o+qf2xqM39m3nlfaJH3+Q23G4nOcV74c1BcGJbeU3G3yAhL7hxt75/WgD5+/sLWMZ/sq+/8AAd/8KP7C1j/oE33/AIDP/hX0Oo4/GlxQB87/ANhax/0Cr7/wGf8Awo/sLWMf8gm+/wDAZ/8ACvojFGKAPnf+wtYH/MKvv/Ad/wDCmrouquoZNMvWU91gYj+VfRJHrUVuYmhBg2+XzjaMDrQB8+/2FrGP+QTff+Az/wCFH9hax/0Cb7/wGf8Awr6IxRigD53/ALC1f/oFX3/gM/8AhR/YWsf9Aq+/8Bn/AMK+iMUhHY0AfOw0TVmZlXTL0shwwFux2nGcHjg8inf2FrH/AECr7/wGf/CvoKEws03lFdwfEu0c7sDr74xU2KAPnf8AsLWP+gTff+Az/wCFH9hax/0Cb7/wGf8Awr6IxRigD53/ALC1j/oFX3/gM/8AhTf7E1bfs/sy934zt+zvnHrjFfRWKhJh+0lfk84Jnkc7cn9OtAHz7/YWsf8AQKvv/Ad/8KP7C1j/AKBV9/4DP/hX0QBijFAHzv8A2FrH/QJvv/AZ/wDCk/sLV/8AoFX3/gO/+FfROKQijQD5nlZYJZYpmWOSH/WI5wU5xyD06irVpp97f24uLOzuLmFiQJIYmdSR15ArmviAJD4/8QldxVbk+Zg8YyvX2zivcfgsf+LbWnOf383/AKGa93H5TDC4SGIU7uVtPVXMo1OaXKedf2FrH/QKvv8AwGf/AAo/sLWP+gTff+Az/wCFfRGKMV4RqfO/9hax/wBAm+/8Bn/wpraLqqKWfTLxVHUtAwH8q+isVDcGFYSZ9vl8Z3DI68UAfPv9hax/0Cr7/wAB3/wo/sLWP+gTff8AgM/+FfRAHFGKAPnf+wtY/wCgVff+Az/4Uf2FrH/QKvv/AAGf/CvojFGKAPnf+wtY/wCgVff+A7/4U1NF1WRFdNMvXRhlWWBiCPUHFfRLYHJ//VUVv5TW8Rh2+SVHl7RgbccY9sUAfPv9hax/0Cr7/wABn/wo/sLWP+gTff8AgM/+FfRGKMUAfO/9hav/ANAq+/8AAZ/8KP7B1j/oE33/AIDv/hX0Rig8UAfOy6JqzZ26Zetg4OIGOD+VL/YWsf8AQKvv/AZ/8K+goGhbeYdvDsG2j+IHnNTYoA+d/wCwtY/6BN9/4DP/AIUf2FrH/QJvv/AZ/wDCvojFGKAPnZtE1ZVLNpd6qjkk27gD9KoWf/EwlSKy/wBJkk3bEg+dmwMnAHPAIr134wXE1r8K9dkicoWijjJBxlWlRWH4qSPx71wPirwxo/hfR/A9/o8QttQt9StI5HRjmQSKWLN6kmP+Y6YoA9d8HxSQeE9OimjaORYyGVhgjk9q3aavf606gBGx36d6+W4NY1C1OEunOOof5gfwr6kOc1h6n4S0LWQft2lW7uf+Wirtb/voYNAHhlv4slUf6TbKw7tGcfpWtbeIdOuCF83y2PZxjH49K6nVPg3ZSkvpeoSwHr5dwvmKfbIwR+tcXqvw18Tabub7H9sjH8ds3mf+O8N+lAG6kiSqHRgynoVORTq85b7VYTlW823mXqpyrL7EcYq/b+JNQgwHdZh/tjn86AO3/EUVz1v4st2OLiB4z3KncP8AGta31OyucCK5jJP8LHB/I0AW6KO1H4H8qACiiinZoAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGfSiigAqSKeaA7opXjP+w2KjooA1rfxJq9uAFvXYDs4D/wA60oPHF8nE9vBIP9nKE/jk/wAq5eigDuoPHNk/+vtpoj6qQ3+Falv4l0e4IC3qIT2kBX+fFeY0UAewxXEM67opkkHqjAipc140jFDuUlW9VPNX4Nc1S2/1V9Nj0Y7h+TZoA9WpMgda89g8Z6nEAJFgmHuu0/ocfpWlB46iOPPspF943B/Q4oA7GisG38WaPNgG5aI/9NEI/lxWpBqFnc/6i6hkPojgmgC1RRmjNABRRQCD0oAKKKKACoLmOKW2ljnCmJlIcN0xjn9KnqC6t47u0mt5c+XKhRsccEYNAEw6UtIOlLQAUUUUANPQjt3qO3jiigVIQBGOmDmpW6Goba3S1t1hTOxc4z9c0ATEgdaAwPQ1Q1XU7XRtNudRvphDa20Zkkc9gP69gO9cLoOs+MvHFq+r6ZNZ6Fo7sy2azWpuJrhQcb2+ZQq8cY54PXgkA9JBB6HNHUivOfhn401nxjc60NSjsVg050to5LZGAmky25vmJwOFwPevRccdetAEUMcMbzGIKGd90mD1bAHPvgCp6ght0gkndM5mk8x/rtC/yUVPQAUUUUAFQeXD9pMuF87YFz325P8A9ep6gFun2s3PO/YE68YyT/WgCeiiigApD1/ClpD1oA+SviAzr4/8RKhIV7lg+O4yDz+OK9z+Cv8AyTa1/wCu83/oZrw34gTPF498RxrjbLcsr/QMG/mBXuXwV/5Jta/9d5v/AEM19tnf/Iqpf9u/kc1L+Iz0OiiiviTpCobiOKWIpMFMZIyGPHWpqgurdLqBoZM7WIzj2OaAJx0opB0paACiiigBrDKkcc+tRW8cUVtFHCFESKFQL0CgcY/CpXGVI9Rio7eBLa2igjyEiQIoPoBgUATUUZozQAUlLmkJB4zRcCKCOKMP5QUbnLNjux61NVe2gjtxIEzmSRpGz6k1YoAKKKKAOE+MVvLc/CnXY4Yy7iOOQgDPyrKjMfwAJ/CvINQ8cf8ACYXWkaPbwlnXVtONkVU5aNImDgnpkO+fbd7V9HX8ttBY3Et40SWqRs0zS42Bcc7s9sda8N+F+ueEH+Iut29ulvHHNc7tELwEYDZEgUkfLnCYzg9R3xQB76KWkXpS0AFFFFABSEc0tFAFK90yy1OLyr6zguU/uyoG/mK47VPhN4fvcvafaLGQ8/un3Jn/AHWz+hFd9RQB4bqnwi12zy1jNb3yDooYxv8AkTj9a4zUdG1PSHK39jcWxzjLxlQT7Hofzr6kqOSNJUKSKGRhgqwyD9aAPlu31O8tMCK5kUA/dJyPyOa1oPFdzGcTwxyY6kEqa9U8beDdCHhnVtSg02KG8trOWeNocoNyoWGVBAPT0r520/VjdSxRPGFd2CAqcDJ9RXXhsHWxMW6Mb26Eyny7npVt4l0+bh2eFv8AaHH5itSKeKcZikRx/snNcrqngnxFpIJudLnaEc+ZCPMXHqSucfjWEjvE25GZGHpwRXJZLYo9L9u/pRXC2/iHUbcAGfzV9JBuFa1v4sQ4FzbMvuhyPyNK6A6SiqNvrNhc4CXKBj/C5wf1q8ORkcj1FMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKMH0NAB/npQP8AP+eKOvcVJHDLKcRxu3+6uaAJ7fU7+2x5N5cIB2DnFacHjDV4fvSxzD0dAf5Y/nVCPR7uT7yKg/2z/hVyPQV/5azk5HIVf60Aatv47YD/AEixU+pjkx+hH9a07bxfpc5Ct58RP99N38s1hx6VZxY/db2Hd2zVpI0jGEUKPRRQB11tdQ3Ue+F9y+uCP51PWRoRzDKP9qtegAqveW/2uzntw7J5sbJuXquRjNWKq3sby2M8ccohdo2CyH+A44P4UAWhRUMM8M8XmQypIn95WyPzoinhn3eTNHJtODsYHB98UATUVClzBI7ok0bMn3gGBK/WkFzA05hE8ZlHJj3DcPw60ATGoLSD7NbpCXL7c/M3U80rXMCzCAzRiZhlULDcfwrmdV8a+HvCsUdtrGt2wvM7fKD5kJJ4yB90e5wOOvFAHGftBahPH4S03TIGKrf3qiRh0IUZAP8AwIqf+A123iHULLwP8P7maHbHFYWXlWyDuwXagH44/nXM/EFvBnjzw8LBvGOiWlxDKJreY3sLBWAIwRu6EE9D6HtWX5Wk61o1xb+K/iXod/cm1e3tTDcQLHAzKVMpG4F3wepxgFsYzmgDU+A+mfYfhnBckfPf3Ms5P0Plj/0DP416d1wff868n8BXmn+FdPt7HUPiVoN1Z2iskFpDPbquCScs5YsevAGMd811afEbwedVOnnxHp/nModXE6tEwORxIPlzx0Jz7YxQB01vB5Mtw+9m86TzMN/D8qrge3y5/GrNUrGRZRPPHdpcQSyb4mRgyqu1RjI9wT+NTxXEE+7yZo5NpwdjA4NAE1FQpcQyOyJKjOn3lDAkfWgXMBmMAmjMoGTHuG78qAJqri3/ANNNwJG/1YTZ26k5/Wla4gSZYWmjWVhkIWAJH0qCSRYdQVpLtESRAiRMwBZsnkevUUAXqKhmuYbdQ080cQJwC7Bcn8aWWaGCPzJpUjT+87AD8zQBLSE84qMzRCLzTIgjxneWGMeuaRJopIhIjq0ZGQ4ORj60mB8o+P5fK8e+I49qt5twy5P8OGVuPyxXuPwV/wCSbWn/AF3m/wDQzXh3j6RB458QkpvE058p88D5gcj8Aw/GvcPgwDH8O7WN/lcTSkqeCAW44r7bO/8AkV0v+3fyOan/ABGeiUVClxBJI0aTRs6/eUMCR9aPtEBmMPnR+aBkpuG78q+KOkmqvd2/2q3aLeybiPmXqMHNKbmBJlhaaNZWGVQsAx/CodQkXyfJFykEshAQs2CeR0oAuClqGaeC3QNNNHGpOAXYAE/jSyzwwR+ZNKkaf3nYAfnQA+kJA700zRCLzTIgjxnfuGMeua5zxtc3x8EapNormS58g+U0RycfxFcd9uce9OEOeSj3Ym7am7JdWyko1xGrdCN4BFQ2s9pbWkMP22J/LjVN7SDLYGMmvjeZJopibiORZPvMJVIbPqc89jTr2Nhcu4t3gjkYtEjLjC54A9a+wjwjFtL234f8E53iPI+zft1p/wA/UP8A32KPt1p/z9Q/99ivixoZEjWRonVG+6xXAP40eRL5Pm+U/l/39vH51p/qhD/n9+H/AARfWH2PtP7daf8APzD/AN9ikN9af8/MP/fYr4tWGR4jIsTsg6sF4FLHDNKH8qJ3CDLbVztHqcdKT4Ril/G/8l/4I1iH2Psy0a3TzFS5WVnkaTG8HGTnA9qvLyOK+LVZ5Zoms4pFkiRcmLO7I/iyOnavq/wdqcl54H0m/wBQlAle2QyySHGWxjJ+teJmuTPARjPn5r6bWt+LNadXnOloqLz4vJ87zU8rGd+4bceuaEniliEscqNGRnerAj868Y0OG+Mrunwp11kZlOyJcr1wZkBH0IrzfxJ4JtvDGkaFqtuIlNxrWntasi4eJTD84J93QH8BXpvxQtX1z4Y65babi6lMSuFiO4nY6uw46nC9OteMt4q1Pxpe6NoAs7wvJqVjcW6smFjjih2yY9sncT7UAfTw6UtIpyKWgAooooAKKKKACiiigApD1paQ0mBkeKIvO8KavF132Uy/mhr42sX8oxSD+Bg35GvtXUo/O0u7ixkPC6/mpr4mtj+659f8K+r4Xf7ycfJ/kYV+h9wKA6Kfoa5vxZZeGU06XUNfs7UwqyqZmUK+ScAbuCOSO9b2ny+bp1tJnO+JG/MCuU+KGhXfiPwNeWVnNDDIpWZmnbYhVPmILdB06nivmIRi6ijJ2Vza+mh5b4htfB8bsdO1CazfP+ruZVcD8M7v1rjpL2xWXZHeRy89VVgP1Arb8PfCTxD4m0631SG406C1uYxKjNMWOD2woOCPQnI6GuxsvgBbKQ2o69JJ6pBAF/Uk/wAq+lqYbJYR1rS5vK7/AEaMlKq3ojzhWSQZRgw9jkVYt765tvmguHT6HP6Vx0U772KjyihC/IT+dfRmk/DfQtd8JaRekXFrdTWUEryRybgzGNSSVbI/LFebmWWrCQjVhPmjJ6XVn+ZUKnNo9zzq38VXkZxOkcv47T+da1v4nsZcCUSQMeu4ZH6Vp6p8H9Yttzadd294nZHzG5/MkfrXEapoep6NMI9RsZrZiCV8xeGAxnB6HGR09R615JodzDdW9wMwzI/0NS15mCUbK8N6jj+VaFvrmo2wAW5Z1/uyfMPzoA7zI9aK5i38WY4ubb8Ym/oa1rbXdOucBZ1Rj/C42/8A1qANGikUh1yhDD1HNLQAUUUUAFFFFABRRRQAUU5I3kOERmPoozVuPSryUAiLYD3c4/TrRcClRWzFoLdZZwPZAT+p/wAKtxaRZx9VZz/tt/hgUAc3ViOxupsbIH55BYYB/E11EcEUJ/dRKh/2VGf5U449fzNAGDHodw4HmSIg7gHNW4tCt05kdmPsABWskUkhARGY/wCyM1bj0m7l/wCWYQern+lAGVFY2sX3IFz6kZP5k1YHHT6cH/CtiPQv+ek/4IP61S8T6JdTeFdUh0UuupPbOLZ/Mwd+OMHoCcYz79RQBVVWdgqgsfQcmrMWm3cuCsLDP97j+dc18MbzV/Et5e+KdSsvstvNCLS0XIw6pNKxIUdMBlXPfaetemigDEj0KQ/62VR7KKtx6Pap95TJ/vGtGigCOOGOFdsaBR6CpKKKACqt4LhrSdbVlW4MZ8ssOA2DjP41aqtePNHZzvbIJJ1jYxoT95gOB+dAEsaLGm1EVVHQAYFIkSxg7EVcnJ28ZqQUtAESxxo5ZURWbqQME/40BIwxkCqGPVscn8ayvEniGx8L6LPq2ozbLaAZwBlnbsqjuT/9foDXIReJPHV74em8SR2Gi6dYLC1zHaXnmvO8SgtlnUgISOQMGgDs9evxpGi32qJbGea2gZ4kRNzSNg7VGOeTgfjXkvw98OaF8SvBsd/4h0gNq9vO6m9RTG843bg5Iwr8krzn7prt/BHiu78beDrvWrmxjs1eWWOCNJC/yKo5LYHO7dyB2FU/geP+LT6UR/fn/wDRz0AbI+Gngojnwxpv/fgUv/Cs/BX/AELOm/8AfkV1YooA5M/DPwUf+ZZ03/vyKp/8Kn8FjVv7RbQ7dmVQEg2gQrjP8AwGJz/Fmu4pD1FAFKwtjaJLAsUMVuj4gjiUKqptXjA6c7qtJEsYOxFXJydoxmooGnaW4EqBVWTERH8S7VOT+JYfhVmgCJIkR2dY1Vm+8QME/WlESBy4Rd54LYGTUlFAEZiQyByilh0bHNQNFI99vYIYVQbcgEh88n8sVbquGn+2lNg+z+WDvzzuyePyxQA94kkADorAcgMM0rIJFKuoIPUEZFSCigCPy12bNq7MY244pBGqKEVQEAxtA4qWkPWkwPkzx95S+O/ESSKdwnIhC9FO4dvTG7869w+DDF/hzasTk+dKM59GPevD/H6Qt4+8SF3KutwTGP7zblBH5En8K9x+Cv8AyTa0/wCu83/oZr7bO0v7Kpf9u/kc1L+IzvhGiMzqihm6kADP1NKI0EhfYu89Tjn86kor4o6SMxIzhyilh0YgZFQXkLyQ5gCecrAqzKDjkZ/SrdV7x547Zmt0DyjGFPfmgB7RrIAHRWHUBhnFK6B0KsoIPUEZFPFLQBH5a7Nm1dmMbccY+lIIlVBGqKExjAGBj0xUtIRzSaA8e8c+HtO1j4teE9GntY1sp4bieZI1CeYyqSNxHX7oH0qDwh4cs9K+L2saJJbxTWh0uK58iUeYscmUDbd3QZLfnjtUvxP1lPC3xJ8N69Ov7qHT70RkjhpBG21fxLKPxFM+H+uReKPi/qur2x8yFdGihllVcKZNyE/TOD+RrT2s7WUn+IrLseor4c0XaB/Y9hgdB9nTj9KP+Ec0TG3+x7DHp9mT/CtUUVHM+4WRljw7ogXb/ZFhj0+zp/hTT4d0QAgaPYAdT/oyf4Vq0j9OaOeXdjsj44114YtevVs98SrK6tg453HI+n+FfTvw6RX+HOiKyqym1XIPSvmHxEkKeIL7yXLAzOW9m3HIr6h+G/8AyTzQ/wDr1WvteJbfUaLXfrvsc1H4mdNsXZs2DZjG3HGPpQqKiBFUKo4wAAKkor4o6TO1O/stC0q51C6ZYLS2jaWRgOgA7AdTXiHw5+IXh4eP9Vd7W4tn1y6C2skiDbEOqIcH5dxPbjOO3I9F+MeR8KNdI/55xf8Ao1K838W+E7XRNE0vU7eMAX+paUwIwAm2F1KjHIHQ/wDAqAPoJeR7dqWkX7tLQAUUUUAFFFFABRRRQAUUUUARyAMjKehBBr4giQpvVuCHK/lX3C3Q18UXqeVqt/D02XMg/wDHsf0r6fhV/wC1NeRhW2PsPw3J5vhrSpM532cLfmgqDxdZzX/hHVrW3hM80lq4SIdZDj7vPr0pngmTzPA+hPnJNhBn6+Wuam8UtdR+E9ZaxaRbpbCcwtHncHEZ27ffOK+brK1SS83+ZutjF+GSxt4U8+209rCynuHltbZv+WcZAGPXqG6/XvXZt0rhfhfJYf2FqMGk3EtxpMF+Y7KSRi2U8mJmwT1HmNJ+td01QB8RuoS6vF7LOR+GTX134Ebf4D0A+mnwj8kAr5LvVCanqajot2w/DLV9XfDxt3w90I/9OcY/Svrc81y6g/P9Dnp/GzpzXmfxca1jg0r7Rf3VoJmlt7g28e8mzfZ55PoAAnPPXpXpteb/ABTWULpoiv7K1+3rNpEn2p9uI7jZudfddg9vmr5I6DodU8BeHNXDGbTIopT1lt/3bZ9Tjg/iDXF6p8GTy+k6p9I7pf8A2Zf8K9aXpS0AfOGqeAvEukbmm0yWWMf8tLf96Mevy8j8RXOMpVmRhyOCp6g/SvrAgk54rL1Lw9pOsxkahpttcEjG90G7/vocj8DQB8zw3U9ucxTNGfRWx+latv4nvoQPNEcwH99cH8xXqOqfB/SbkFtOu7iyY9Fb96g/AnP6muL1T4V+I9PJe3ihvoxzmBvmx/utj8hmgCC38U2kgAnjkhPr94f41q299a3IBhnjfPYHB/KuCu7C80+Ux3lrPbyH+GWMqT+BqAZRsjgpzkcEfWgD1KO1uJcbIJGBOM7TVyPRLtvv7Ix7tk/pXQ/TkdsUDk4HJ9qAMmLQYgf3szt/ujFXI9NtIfuwAnuW5zWjHZXMx+SBz9RgVcj0S4bl3RP1NAGYoCrhQABwAOKOKofEaabwv4Fv9VsZf9MjMSxl1DKC0ig8d+CetfPF34s1/VUJvdWuZFbgqrFFI/3VwK9bK8qq4+T5ZcqM51FA+mooJZseXGzD1A4q5Ho93J94LGP9o5/QUeBkMfgXQgepsYWP1KAn+ddAp4ryqicZyi3ezsaLVXMqPQox/rJWb2UYq7FptrF92FSfVuat0UgGBAowqgD24p9FFABXJfEC7vIPDsdvY3Ulpc397b2SXERw8YklVWKns2M4rra4f4p26y+Brq7+3pZT6ewvbeRyAGkjyVTnu3Qd8kYoAo/Cex1HRNP1Xw/fXf2kaZcRxo27cEZ4UkkUHuA7mvRR0rifhfo0uk+DYJ7m9S9udR2XkksfK8xoqqD3wqLz3Oa7cUAFFFFABRRRQAVWvZ3trOaaOJpXjjZ1RerEDpVmqt7cLaWk1y6syxIXIUcnHOB70AWhRSDpS0AeLfFxzrnxG8GeFJifsUs63Nwh6SAvj9FVx/wKul+MeuRaL8NNQiDBJ71RaQoOMhvvcem0N+lHxB8B6n4h1jR9f0C9trTWdMf5Dcg+XIudwBIBPBzxg5yelZ/ij4b6/wCMPDVyNW1SyfXHKeQsSMlrAgOWRerfMfmLHJJVR0FAHQ+ANNGkfCnR7QDBNh5zD0aQGQ/qxrN+B3/JJtJ/35//AEa9a/h/T/Emn6BLF4gv7Gd47ZYo4bKFgqbVIyXY5Zm4zwBxwOayPgeQPhPpQ/25/wD0c9AHotFFFABSHrS0h60AV4JmkkuEaIoIpNik/wAY2qcj8yPwqzVa3uVnedApBgk8tsjAJ2q2R7fNVmgAooooAKr+c/20weU2wRh/M7ZyeP0qxVb7Qn2z7NtO8IHzjjGSPz4oAsjpRSDpS0AFIaWkNAHyb4/jV/H/AIjZnCmO5LAH+I7gMfkSfwr3D4Lc/Daz/wCu0v8A6Ea8P8fQGTx/4jdSMRXJchu+WUcfnXuHwW/5JtZ/9dpf/QjX2udv/hKpa/y/kc1L+Iz0OiiivijpCq15M9vbtLHEZXXGEHfnH9as1Xu7lbS3ad1ZlXGQo55IH9aAJxS0gpaACiiigDz/AOL58PL4Cvhrv2fzGjcWHmAlxcbTtKY5znGe2OvFV/g//wAI9D4SFro0tvLdQuUv3jBDPICQGOc8EDjB29QKxPifo0fif4leGdEuTmGbT74qDyEfymw34Mqn/gIql8MdFTw58T5tOhbh/DtvPMF4V5cxgsB+f5n1oA9vHSlpBS0AFNc4HTNOprnAP0oA+NvEUSxa9fbZA++Z3JHYljxX1D8N/wDkneh/9eq18veIoGt/EN8GK5kneQbe2WJxX1D8N/8Aknmh/wDXqtfbcSu+AotPr+hy0fjZ1VFFFfEnUcr8RdFufEPgHV9Ms1DXEsIaNc43MrBwPx24/GvBtJl8ReMtWt9HaCYO2pWkl1C4I+wrbRCNiyn7u7dnHcpjrX0b4i1u18O6De6xeBjBaRGRgvVj0Cj3JIH414P4F8fXFh47v9X1PTvItPEl5FA+1jm2bGY85HIYP168E+xAPo0dKWkXpS0AFFFFABRRRQAUUUUAFJ3paTvQAHpXxh4giMPi3XY+gS/mX/yI3+FfZxr488Yp5XjzxKmMZ1KVgPq7H+tfRcMStjDGv8J9N/DqTzfh7oTeloq/lx/StvVJnttKvbiEAyxQPImRn5lBI/WuY+FMnm/DXRmznCOv5SMP6V18xVYJC43KFJK+ox0rxMWrYmovN/max2RxHwvlnj0S7sJdQiv0t7ktFNGoACyASFTjjIZmz+XpXe9q85+Ewe30W7tZdLt7AzSf2hGsDFgYpyzRgn1AGB7Ad816Kc4rAZ8YaumzXtbUdFv5B/489fUnw0bf8OtDP/TuB+RIr5h8RIE8VeIV7Lqko/8AH3r6Y+Fb7/hpox9I2H5O1fW5zrllF+f6HPT/AIjOzrzb4pWdzO2nCDTPtxure502LlR5M8/l+W5z0A8tue3Fek15d8XDb/aNJF01yP3F0bHyc/8AH9mHyM47/fx364r5I6D1BTkUtNTG3inUAFFFFABSGlooAr3Nrb3kRiubeKeM9UlQMD+B61yOqfC/w1qOWitXspeoa2bAH/ATkD8AK7aigDNj0a2QDfvlI7s3WrkdtDFwkSL9BU1FABiiig0AeZ/HSXy/hncLn/WXMK/+PZ/pXzRDxEtfRf7QEuz4f2qZ/wBZqMY/8ckP9K+dY/8AVLX3HCqtTlL1OavufZfhqLyfC+kx4xss4Vx9EFaw6VVsYvJ0+3hxjZGq4+gFWcgCviJu8m+7OlbDqKM1Uu7+1sU33U8cS46u2M/T1pJN6IC1RXJXXj7S7d/lSaSMffkwFAH41s6LrNjrunre6dMJYGYqGHqOo9PyrSeHq0480otL0FdGrXm3xQttP1W/8PaTq1x5Gnzm7kmckfLiBlVhnuGcEV6TXkfxzu9FOj6dY3sV1JqRuElt2tQd8Me9VkbPuDtA7sR6VmM6j4YQxweCkWAbbf7deeSg6IguJAAPQcV2lY/hm30u18M6dFogA0zyFa2xnlGGQeecnOefWtigAooooAKKKKACq91PHbW0s8xxFGhdzjPygc8VYqvdCE2swuNvkFD5mTxtxzn8KAJx05pc1Xt7dLaLyot+zJ+85Y/mTmkgtY7YMI9/zNuO52bn8ScUAWaM1WhtY4ZJJF8zfIfm3SMw/IkgfhQtpGty9wDJ5jDBzIxH/fOcfpQBS8Qx30vh/UF0tlW/8hjb7lyGfGQp9ieD9a4T4FRajF8OIGvTi3M0n2SMJjEe45Y9yS5f8AK9Ha0ja6S5Jk8xBgYkYL3/AIc4PWoYbO0aCA26BIoiTGsDFEBzzwCARnNAF8YHFGRx71Xns4riNUk34U5GxymD/wABIp09ulzCYZd+w9drlT+YOaAJ6Q9ahe3V4TCd2zG3hyD+fX9aRLdYoBCm/YBjlyx/MnP60ALDPFK8yoctE+yTjGG2g/yIqfNUrKC3t0lityeH/e5csd20dSSTnG3vUlvbR2wbyt+XOTudm/mTigCzmjNVYbaOKWSUb90nXdIzD8iSB+FC2sQuWuP3m9hg5kbb/wB85x+lAFrNQefH9qMAP70IHxj+HOOtNNpE1ylwfM8xBgYkYL/3znH6VFPa2095Gzk+fGAw2yMpxnvgjI4PXNAF3NGRVee0iuYwkm/CnI2uU5/4CRSz26XMJil37D1CuVP5gg0AWKQmoWt1aLyju2bdvDkHH16/rSJbrFbiJd+0DHLkn8yc/rSYHyn4/hlk8f8AiJkBKx3JZzntkAfXkivcPgsc/Daz/wCu0v8A6Ea8O8feYvjrXkjDeXHOQ3f5cjG49+SOua9x+DbGX4e20rfeaWUccDhsdOgr7bO3L+yqV7fZ/I5qX8RnomeKM1WjtY4ppJVD7pPvbpGI/InA/CgWkYuTc/vPNIx/rGx/3znFfFHSWc1Bczx28JklOEBAPGepwP1Ipr2kUlwk7b/MUYXEjAfkDior22tplR7vO2NgQDIyrnIxkA4POOuaALoNGRVee0iuY1STfhTkbXKYP/ASKWeBLiExSB9jYztcqfzBzQBYzSZxUJt0MPk/NsC7eHOcfXr+tEdusMAhXfsAxkuSfzJz+tAHkHxf1G68M+MPDviaOF3igtby3jdRkLM8TBAfxYH6K3pVf4Wajf8AiD4k6jq93E7Pa6RFp91OQMNcKybunGSVbp6e4z0/xV1rRPDfgS9069V5ZdShlgs4DmRjKV4f5jwFJU57cY5qv8HNf03UfDb6ZEskWsWRxfxSjaWcsfnAzg57+/XrkgHpwPHelzVWO2iimknTzN79d0jEcexOBSi0jF0bj955mMf6xtuP93OP0oAsZpGPpUD2sUs6Tvv8xPu4kYD8gcGmz2sc5R38zMZJULIy8++CM9O9AHx74hhkh1+/8wY3Tu45z8pY4r6i+HGB8PND/wCvVa+Y9auLm28R37n7xmkA8xQ/ylyRjdkYr6X8AwrcfDfRo5N21rVc7GKH8xjFfacSOTwVG/lt6HNR+JnYZpM1B5CfZ/I+bZt243nOPr1/GiK3WC3WFC+0DA3OWP5k5/WvizpOO+MXPwo17/rnH/6NSvP/ABvpekWnhLSruzGb+5v9Ke8XdnbtgZEGO3yj9c9xXqHi3wv/AG54K1XRLV2jkuoj5Zkdm+cEMASSeCVGfxrwnw5oXjPxT4lOgajAIrWxvrWW/diuIzAhQYIPzFlbtkfd6AUAfTw6UtIvKjFLQAUUUUAFFFFABRRRQAUlLRQAlfInxDiMfxM8QqB/y8l/zwf619dmvlH4ox+X8U/ES9MiNh+KRn+te5w7LlxqMq3wnt/wak3/AAz05c52STL/AORGP9a7xhk+2OnrXnPwRk3fDxFz9y7lX+R/rXo7EetcGZx5cZVX95/mXD4Uea/CZbKJdZgtob9AJI5Lc3mCTZnf5G3H+6/Xn1r0uvM/ho8P9t+JLddYjvjp7w2EMaxFSkEe4oSe/LuvHdfcV6Z2zXEUfHXipdnjPxKvpq03/ox6+jfhE2/4Y6QfTzR+UrivnfxmgTx14mH/AFE5T+bOa+g/g2+74Y6YPR5x/wCRWP8AWvrs21yei/P9GYQ/iM7+vN/ifeXNvd6UINT+w/ZobnUYxtU+dND5QROe2JXyO9ekV5x8TWma/wBC8mwsrkWDS6pKbldx2Q7F2L7sZB68qDg4r5E3PRV4z9adSL046UtABRRRQAUUUUAFFFFABRRRQAUGiigDxv8AaHl2+E9Khz96+3flGw/rXhFhF511axYzvkVcfUgV7X+0VL/xLdBiz96aZsfQKP615B4bj87xHpEWM77yFcfVxX3HDfu4Wc/JnNW+JH2Ygwij2rnPEvjDTvDM1rb3Tj7RdKzRKzBQQuMkk8DqK6ReFrwP9oG1uZNZ0GURM1uYpEUg5JbcCwx16YNfI4GjCviIwnszeTajoaOufF9V3JHdqn/TO0G4/wDfR/oRXnuo/EC/unZraMRk5zJKfMY/n0/Wqmg+AvEviSJJ9M012t2JAnkIjj4ODgnGcEEcZ6V2U3wUutM8O6hq2q6vEslpayziG2QtkohbBdsY6elfbxWT4D3XJOXbf8v1OX95I8yvNRvb9913cyykcgOeB9B0FfSvwaj2fDPTj/fkmb/yIw/pXzDFIJrdzsVCGUDbn0Oep+lfVXwri8r4baMvrG7fm7H+tc3EtWE8DTdNWTl+j6FUU1LU7TNePfEjX9N0Hx3JJqsW9ZdECWpI4WUSyPuHuDGn4kV7Aeorxf4leJL1PGViY9HgvdO8NzJc3Ty8szPGTgcYGFII9W2+lfDnUem+ELR7DwZodnImySCwgjdSOQwjUH9a3KavTpj2p1ABRRRQAUUUUAFV7mKKe2linAMLoVcE4GCOf0qxUF1bpd2k1vKSI5UKNj0IwaAJhS0g6UtABRRRQAh6YNRW0UUECxwACMdMHNSt0OahtrdLW3WGPOxc4yffNAE9FFFABSHqKWkNAEEMUMbzNEFDSPukx3bAGT+AFcDbeNdc8W6xf2vhC309NP09/Jl1LURI6Sy/3Y0Qg8epPceoz3DW0UUV4Q5TzyXkYt935QufbAANeM/DHUNY8K+GNQ0qx8NXesN9tkezv7VkW1uchVB8xmHy5UcjI7dRQBo6Xr/jrxxqF/YWWpWGj3ehXaQX8McBdLjLsCwZskDCHC9+7YPHSfE7xjqXg2w0m402O2ke7vlt3E6FsKQTxgjBqb4b+Drnwtpt7c6nNHNrOq3Bur10+6rEkhB64LMfqTXM/Hv/AJBnhoeurJ/I0AevCoTFD9qM21TNsC577cn/ABNTioBbp9sNzz5mwJ14xkn+tAE9FFFABSGlpDQB8lfEF3Tx94iVGIWS5ZXA9NwPP44r3L4Kf8k2tP8ArvN/6Ga8O+IE7x+PvEaLjbLcMrZ9Awb+YFe5fBX/AJJtaf8AXeb/ANDNfa53/wAiql/27+RzU/4jPQ6KKK+KOkKguYop4THOAYzjIPTrU9QXVul1A0UmdrYzj2OaAJx0opB0paACiiigDyX4haXBrfxZ8JaZdDMNzZX8Z4zjMLjI9xwfwqDwhpEWh/G66sUl85h4dRpZwoXzn3xhnIHTPWmfGf8AtXRdT0XxZYW0k0VlDdW0jqP9S0sZRXPoPmPPTI9xVL4Nzat4m8WXXim8t2itIdKj05JCMLK4ZSSPXGw/TIoA9wFLSDkUtABTW6U6mv0oA+NPEMksviC/MpJKzuq57AMcV9R/Dj/knmh/9eq18u+Ip3n8QXxfHyTugwOwY19RfDj/AJJ5of8A16rX2/EumAoLz/Q5qPxs6qiiiviDpMPxVrqeGvDGoa1JH5otIS4QfxN0A+hJFeA+FPHviXRfGdzqmqWiNZand263yhMCJp03RlOcj5RnB7DB5Oa9i+L/APySrX/+uKf+jFrgfHD6Q3gfTRZSxNqAu9KN8iHkHyT5ZP1T9BQB7qoIHJzS0gORS0AFFFFABRRRQAUUUUAFBoooASvlj4woY/irqeBzLDCx/CNf/ia+pz2r5n+M8QT4oux6vYK/5Iw/pXrZHLlxkTOr8J3nwQ1C1tfAl2bq4ihRL+QZkYDjy4z/AFrsb/x5o9mDseS4IHVFwv5nH6Zr5dstav8ATrZ7a0lEaOxYnaCc9P6CtXTfC/ivxWwa0sL26jJyJZTtjH0ZsD8vyr6PGcP0ZYieJxFRRjJ+n5mMasuW0UeqfD3xVYS+Lhp7pDFPLDJFE0Ugl8873k3EqPlwmB83JxXsQP8AOvG/APwi1Pw94gs9b1K/txJb7ittAC2SyFeW4x97sDXsgGB+NfJ5jTw1Oty4WXNG2/mbwcmvePkXx2oT4g+I19b9j/Mmvevgq2fhvaD+7PMP/HzXhPxGXb8SfEIHe6B/Na9w+B7bvh4g/u3Uo/UV9DmSvktJ+ZnD+Iz0mvMviktm+qeHftFjd3PkySz3LQPtC2g2iUNzyCTHx3AIyM8+m5rzP4nm3Gt+HI5NVkszdySWlwiQmTfbPtLk4+6AyoMn+9n+GvkTc9LXpS01BgdT1706gAooooAKKKKACiiigAooooAKKKKAPA/2jZM3Xh2L+6lw35mP/CvN/A8fneONAX0v4D+Tg/0rvf2iJc+ItGi/u2jt+b4/pXH/AA1i834h6GmM4uQ35An+lfb5MlHLakv7rOar8aPrYdK82+I/iCLwt4k8Ma1eQu1pELqJmGQodxGFBOPTefcKa9JFeW/Fu81e/wDsfhrRrKC4klCXtw0oJwizxqoGO25gWPZQa+H0e50nR/DSN1+H+lu8ToZzLcYkGDiSV3Bx7hgfxq149fZ8P/EJ6Z06cfnGR/Wr3hrVDrvhjTNWaLymvLaOYoOillBIHtWV8TH8v4ca+fW0Zfz4/rV0l+9jfuKWx8jWpIVx2NfX/wAPovK+H2gr62Ubfmuf618iQAfZA3q7D9BX2N4Qj8rwZoceMFbCAH/v2tfW8Q6YGjHzf5GFL42bZ614l4oi1+Xx9q/hm00/zLbX2huTcDBCxR+QpY+gXZKMdyy4r2xuuPavE0fX5PiLa+LDqZNpNrUmiRW+MqYRK6lQO3EW/Pr9K+QOg9tXpS0i9KWgAooooAKKKKACq95B9qtJrfeyebGyb16rkYzViq15HJLZzxQP5czxsqP/AHSQcH86ALA6UtIDx0pc0AFFJketLmgBDUFrb/ZbZId7Ptz8zdTzmpiew61DaxyQ2yJNJ5jjOW9ec0AWKKM0UAFIeopaQ0AcJ4x1m3tpn8KQ28+oan4iSRI7ZZfKWKIx7GZnIO1QFY8Ang8VyVj4C+KXh7SYbfRvGVqywRgR2sseVAH8KlkPHYZx+Fdf4j8DXmq+JLXxJpmsfYNXs2KwO0IljaEqAY2XI4yXOQf4vXBDbnRfiBqdu1ndeI9JsYXBV5rCxczEd8F3IUn1HTPFAD/hZ4vvPGfhE3+owpHeQXL20pQYVyqq24DtwwB9wa5r4882XhdfXVk/lXofhnw5p3hTQrfSdNjZYIcks7ZZ2PVmPcn/AOsOK87+O2DB4UXudWXj8KAPX6ri3/003Ikb/VhNnbqTn9anFVzHKL0y+Z+68sL5f+1k8/qKALNFJketLQAUh60tNJFAHyZ4/m8rx74jTaG8y5Zcn+HDK3H5Yr3L4K/8k2tP+u83/oZrw7x+8a+PfEavHuZ7giNs/dO5Tn8sj8a9x+C3/JN7TP8Az3m4/wCBGvtc7/5FVL/t38jmp/xGeh0UZor4o6Qqvd2/2q3aLeybiPmXqMHNWM1Xu45Zbdkhk8uQkYb05oAnHSlpARilzQAUUmR1pc0Aeb/F/wAZweG/DEumfZnurzV7ee3ijBwETZh3b2AYcd+emDVD4OeOLfXtLbQntGtb2yQzKvVZInbIK8cAFgMemD6gSeOLO31H4w+DLK6QPBPaX8cinuphYGqnhfTrbSvjc9lZiMQxeGIwrR8q37yMbh60AeuilpB0paACmt0NOzTX6ZoA+NfEU/n+IL35FXZM6fL3wx5r6i+HH/JPND/69Vr5e8RSRSeIL0xR7Nszq3uQxGf5V9Q/Dj/knmh/9eq19txLpgKCtbX9Dmo/EzqqKTIxnPFLmviTpMPxToUXiXw5f6PLKYxdwmMOP4W6qcexAP514L4T8Fa5rXjK58OareQG30W7gnv3VifP2IFhVeOyqw5xwx717r4212Tw14N1TWIVVpraAtGG6biQq59skV8/6Dr3ifwx4hbXbqXzZZby0GqlwP8ASI7qISRj0BQK2COhYDpkUAfT6nj6dadTVGF4p1ABRRRQAUUUUAFFFFABRRRQAlcl4o+Hmg+LbpLzUIZVvEj8pZ4pSrBeeMcqep7V1tHFOFSVOXNF2YHJaL8OvC2hbWtNIgeZf+W1wPNfPqC2cfhiuqCjGcYpce1L0FFStVqy5qsm33buCSWwooNGRSEjtUgfJnxPGz4oa+vrMjf+Q1/xr2b4FNnwDKM/dvZB/wCOof61478V1x8VddA6ZiP5xIa7v4VeL7Pw74Iuo7lMn7c7b3cJGAUTGWPfivtcVSnWySmoK7ujnTtVdz3SvPfiDYahc6xoYso7V471pNNlM5IMe8eZuX8Im/l3OOU1r40KN0dpICeQBbR5x9Wb+a1wGp/EbWL66juIWaCSJt8UrSNJJG2CuQcgdGI6d68ijw7jZxc5Ll9S3WitEfVqjFLVe1kMltG56soP6VYrwmrOxqFFFFABRRRQAUUUUAFFFFABSE4paQ0MD5t/aCkLePNPiB4XTkP4mST/AAFZHwki834m6PxwplY/hE1W/jtL5nxJVc/6uziX9WP9aX4KxeZ8RbZsf6uCVv0x/WvtsCuXJ6r/ALpzT/iI+na8n+Js+vaN4o0zVtHtBdLfW39lBVZQwkeUOF+bpuCkZ7bT0r1fmvG/idZ6vrXiC+ltNVltLfw1p6akqI2P3uy4YOOOWBjQfQtXxCOk9O8L6bLo3hXSdMnKma0s4oJCpyCyoAce2Qawfiy/l/DDXG9YkX85FH9a6nS5ZbjSbOecDzZYEd8DHzFQT+tcb8Z22fCrWMfxGBf/ACMla0FerFeaE9j5cgP+iqPRm/kK+0tFj8nQ9PixjZbRr+Sivi2BCVUDqzcD8cf0r7cgUR28SDoqgfpX0/Ecv3GHj5NmNHdkh6//AF68X8L+H7qb4q6lZDWYJtJ0W6W9S3Q5cySGdgvHGVMzhj/uivYL+4+y2Fzcd4YWk/IZ/pXi/wAO9E06w8T+F73T7lnvL3TZp9Rw+cMYbchW9TmTf9Wr5Q3PcR/WlpBnHNLQAUUUUAFFFFABVa9FwbOcWpAuPLbyiegbHH61ZqtevLFZzyW8fmTLGxRM/eYDgUAEEUscW2WdpnyfnKgfoBii3hmiDCW4ack5BZVXA9OBVgUtAFWKGZJJGkuWlRvuoVUbPyHNKsMwuGkNwzREcQlRgfjjNWaKAKrRTfaUkFwwjA+aHaME885xmoY4L14oDLc+W6kmVUVSHGeByOKvnrUFm80lqjzx+XKc7l9OaAEuIJpVURXDQkHJKqDuHpzS3EUskBSKdoXPSRVUkfgRirFFAEDxSNblFmZZNuBIFGc+uOlCRypAEaVncDBkwASfXHSp6Q9RQBSso7uITLdz+b+8/dPtAO3aOoA653VLBBNEHEtw02TkblUYHpwKW3kmeS4EsYRVk2xn+8u1Tn8yR+FWKAK0cUySyPJcNIjfdQoo2fj3ryT44RyibwqWnJjbVUCxbRhenevZK8g+OPM3g0Dp/ay/zWgD1VoZmuUkW4ZYwMNFtUhvfOM1FLDdyX6Mlx5VsqDIVQSzZ6cjpjFXh0qDfN9tMez9x5YIf/ayePyxQA24hmnjCw3LW7ZyWVVbI9Oc06eKWWEpFM0LdpAoJH4EYqwKKAIWjkMBQTFZNuPMwM59cdKSKOVLcI8rPIBgyFQCT64HFT0hoA+TPHvkjxzr6y5aUTFVcD7z7hkkfTIr3D4ObX+Htq6qFXzZQEHIU7jkg9eeteH+P0ibx74kLuVdbgmMf3m3KCPyJP4V7h8F8f8ACtrT/rvN/wChGvtM7S/sulv9n8jmpfxGd0kMyyyO9w0kbfdjKqAv44pRBMLoyG4YxYwItq4B9c4zVmivizpKzwzNcJItyyxgYaIKpDfiRmob+K9kjVrO48uRTkqVBDjPQ56cVfqvePNHbO8EfmSjGF9eaAG3MM0ybYbhrd853qqtn25H+cU+eKWSBlimaFz0cAEj8DxU4ooAgMUht9gmIk24Eu0Zz646URRSpbCN5mkkAwZCoBJ9cdKnooA8f+Luha7FFp/ibTHku5NMiuY7n5VDJDJHtZ1Ax90bvfnPQVX+D+lX97q0vieW2a205LAabp5diWmiVwQ3PQDYByOc1s/GPxbdaNosWhafbefeaxDPGzEEiKFU/eMMEfNg8duDms34NeKpZnm8H3EAEdjCbiwnUYM1uX6t2zlh0x6Y4NAHq8cM4md2uGeNvuxlVAT8cZNKIZvtPmfaG8rGBFtXA/HGasAYFLQBWeGZrhJFuHSMD5ogqkN+JGabcQzSOhjuGiA++AqnePTkcd+lW6a2O9AHx3rktpH4jv2Fv5q+a+5WYj59xzivpbwDG8vw30RY5jC5tkw6gNjn0bP0r5k8RpEniC+8mTeDM5b2bJyK+ofhx/yTzQ/+vVa+04jS+pUWr/P0Oaj8TOj8uT7Ps81vMC48zaM59cdKIYpY7cJJM0sgGDIVAJPrjpU9FfFnScD8UopIvhT4gSW4advJU7mVRgb14wAPSvOvF+tWt54ItNOjuRLNZz6SzqUCkF4WcAMPvfLjr0r3DW9Ktte0a80m8BNvdwtE5U4YA9x79x9K8I8H/C+3n+IWoabe6xLcxaJcRSyw7cC4CqpgDDsACwPXgYGM5oA+iVIYcHNLTV6fjTqACiiigAooooAKKKTIoAWikyPWopZ4beMyTSpGg6s7YH5mha7ASUfjXO3njHSbUEJK9ww7RLkfmcD8q43Wvi1b2pZI5IIGzjr5rg+mBwD9a66GX4mu7QgyXOMd2ep5A6msq98Q6VYnEt3GXH8Efzn9OlfP2sfFa8vwyxrPKD3nfCg/7i8H8xXNHWfEevzGCz+0yMTkQ2MRyP8AvnJx9TXuYfhirbnryUUZOv2PetY+J9jp6HYqRnGQ079R6hRyR9K4DWPjHcTMyW0s8i56R4hXH1xurH0j4M+LNWKyXUMOnxHkvcyAv/3yuTn6kV6Bo/wJ0S02vqt7c37jqifuYz+WT+oro9nkmC+OXtJLsr/8D8RXqz8jwzVdSl1zUzdvbxpcScHytxZ+wzknJ7Zrb0b4beLNaKtb6RLDEcfvbrEQA9fm5P4A19MaR4Y0TQU/4lel21s2MF0T5z9WPJ/E1r7T9Kzq8VOEeTCUlFeev5f5sFQv8TPEdG+AJIV9b1j6w2aZ/wDH2/8Aia9B0j4aeFNF2tb6RDLKo/1tz+9b/wAeyB+AFdeBQRXh4nNcZidKlR27LRfcjWNOKBRgYxinUlLXnpFhRRRTAKKKKACiiigAooooAKQ0tIaAPlT40S+Z8VNQXP8Aq0hX/wAhqf61t/AiPd47uGI+5p7n83jH9a5r4rSef8VtbbOcSRr/AN8xIP6V2PwCjz4o1OXHK2YX83H+Ffa0/cyWp6I5n/ER9BnpmvGfiToZ1D4iaTY22vx2B1xDb3UTYLBUjlUMOf4lldAD3Ir2Ynt+VeDeOdP0q/8AEXiy/u5sapa3NrHYoWIbaEtwxB7YaXP/AAKviTpPdYY0hhSJF2ogCqPQDgV598cH2fDC9X+/NCP/AB8H+leijpXmPx5k2fDkr/fvIl/9CP8ASujCK9ePqJ7HzzpUImv9MixnzJUXH1fFfaSfdX6V8b+FE87xPoUXXdewJj6yD/GvskdK+h4nsvYL+6zKh1KmqXNraaZd3N+VWzigd52bkCMDLZH0zXkvwUtfDzahr93p63YvI7h44Uus5jtCwEeM+8eD3+QDtXc/E6Rk+G+ulM82pVsDOFJAJI9MZrB+H2oaXrvjHXdV0aAQ2UdtDABjhpGmnkc/U7g3/AhXy5semLwKWgUUAFFFFABRRRQAVWvbhra0mnSNpWjjZwi9WI7VZqveXC2tpNcMpZYo2chRycDPFAE44FLSDpS0AFFFFACGoLSdri3WV42jZs5RuowcVOagtLhbu2SZAwVs8N14OP6UAWKKKKACkPUUtIeDmgCvBM0slwhiKCKTYpP8Y2qcj8yPwqzVa3uFnkuI1UgwSeW2RgE7Vbj2+arNADSOa+a/i142u28VWuj6jpyrNouofaUmjkwLiI4ZOCPlO3GTkjOeK+lSMkV4X8cvBE2seIfDl9Yp++vpl02VgOhJyjH8C+T7CgD03wL4hvfFPhuLWryzS0S6kc20CsWIiB2gsT1JIJyABgiugE7fbTb+WdojD7+2ckY/SmabYQaZplrYWy7be2iWGNfRVAA/lTxcp9tNtht/lh89sZI/pQBYHSigdKKACkNLSHrQB8m+Polfx94jcuFMVyWCn+IllGPyJP4V7h8Fv+Sa2f8A12l/9DNeH+PoTL4/8RyAjENyWYHvllXj869w+C3/ACTaz/67S/8AoRr7XO/+RVS1/l/I56X8RnodFFFfFHQFVruc21u0qRNIy4wi9Tzj+tWar3dwtpbtO4YquOF68nH9aAJxS0CigAooooA8v8bCE/GHwQLkIYPs995gY8FfJbOfbFUfC62K/Gi3/s2OOOx/4RWLyEjfcqr5iYAPfjv3q58ZPCmoatpUGv6TcLFd6RDO0iscb4WX58H1AB47gnvisv4M+DdT0+abxFqtyjsbY6dZxRtnESSYY+3zJx9TnrQB7KOlLSCloAKY/T8KfTX/AKUAfG3iOEQ+IL7EgffM7nHYljxX1D8N/wDknmh/9eq18veI7drfxBfByuXndxt7Asa+ofhx/wAk70P/AK9Vr7biVp4Gg07/APDHLR+NnVUUUV8SdRzHj7V7nQvA2salZnbPBbny2xnaxIUN74znHtXz7ZaP4g8G3Vv4tXUp2m+1WXnbmP8ApCTxiRtxP3hklfbGevT3X4sc/C/XwASfsw6f7wrzLxd4ntNV+HGmaXDt3Ws2mpG4fd5rGEO2B/s5A/MdqAPoBfugZzS0gpaACiiigAoopD1oAo3uq2NhzdXMUWBnDNz+Vc5qHj7TrRHaGOSYKMl2OxQPXJ/wrgPjNH4l07xBa65pkE0mmpZiK4KrvjVg7nLL1Xgj5uPrxXB/25o3iuKKHVN1jeICI5C2U59Ce3sfzr2svy6hWSnNvzsZzm1seg6x8X1i3JHeIMcbLRN5I/3jx+RFcDqfxFvbxyYYuTkGS4cux98cY+mTXReGfhZouoTD+09fkU5+WGKIR7h2+ckjn0xXrWjfDvwroWx7TSLdplxiacea2fUFuh+mK9epi8qwD5YQc5ell/X3mSVSe7Pna00zxj4ubFta393G45IXy4T+Jwtdlo3wH1i6xJq2oW9ineOJfNf8eQB+Zr6BChRgDj0oxgVwVuJ8U1y0IqC8ld/5fgWqEep59o/wc8J6VtaW1k1CZf47t8j/AL5XA/MGu5s7C10+3FvZ20VvCOkcSBV/IVaIyKQADoK8Kviq9d3rTcvVmqhFbIUcUoopaxSsMKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0hoA+PviDL5vxM19yel3In5cf0r0n9n2PdqGuy4+7FCv5lz/SvK/GEnneP9ffOc6lcY+nmNivYP2fY8Wuuy4+88K5+gf/ABr7XEe5ksvPlOZfxD2s9a8R12bwnefHiwjuILlnUiK4kUMIXuwY/KDeuPkB7E7M9K9t57da8I/tWxm8YTeHxbE6u3isXBfb8whE6uR9NsStn6V8UjqPeB0ryn9oF9vgG0X+/qUY/wDIch/pXqwwK8h/aGkx4Q0uPP3tQB/KN/8AGunA64iHqRLY8f8AAUO/xx4fTGf9Nhb8mDf0r6+FfJ3w1jEvxH0FRziRW/JCf6V9Yivc4nf7+nHtEzo7M53xprMmieHXmt7SO7urmWO0t7eU4R5JWCAN7ckn6VzPwZnK+CFsJNPWyubKRUmCgfvS6JKHbgYbbIAQemKvfFSS+tPDFtq1jbG5Ol30V9LGDzsQN83uAxU49Aal+GqahNod/q+p2jW1xq1814sTjawTy40XI7Z2Zx7180bHbDpS0CigAooooAKKKKACq91NFb2s00zYijQtISM/KBk8fSrFV7sR/ZZTLsMYQ7hJ90jHf2oAnB45pc1XtjcGHNwkSyc8RsSv6gUluboh/tKRKd3y+Wxbj3yBQBYyPWjI9arQ/azLIJkiWP8A5ZlHLE/UEDH4Uqm6+0uGjh+z4+UhyXJ9xjH60AWDUNvPDPAssLZjb7vGP0pjm7+1KFSH7Pj5mLneDz0GMeneo90irCLGOBoM4YlyuBnsADnvQBezSZGM1XuPtSqDbJE7Z5ErlQB7YB5pZzcCIm3WNpPSRyq/mAaAJ8jGaTqRioWM/kkokZmxwpbC5+uM/pQnn+QrSpGJscqrErn64/pQAsM8UrTKjZaJ9knGMNtB/kRU9UrMtsl3pCs4f96ImyN20YycDnGO3pUkBuiH+0pEvPy+Wxbj3yBQBYyD3qGSGOUoXRX2NuXIzg+o/X86ji+1maQTJEsf/LMo5Yn6ggY/CnKbv7SwaOIW+PlbeS+fpjH60AWBwKhM0X2ow7v3uwNjH8OcdfrTWN19pUKkX2fHzMXIfP0xjHTvUM3mLex+THbtLt/eF32uEz2wpz39KAL3QUZGM9qr3BulRfsscLNnkSuVAHtgHmnTm4EJNusbS9hI5VfzANAE2RjOeKQn34qEmfychIzPt+6WwufrjOPwoj+0G3UypGJschWJXP1wD+lJgfKXxAieTx/4hdASiXJL89sgfjyRXuPwVI/4Vtacj/XS/wDoRrw7x95n/Cda7jcCZz5wT7o5HfuM49Oa9x+DZA+Htt5XzR+dLhjwc7ueOn619rnb/wCEukvT8jnpfxGeiZpMj1qtEbpppBMkQi42FWJJ+oI4pR9q+1EFIvs+OG3ndn6YxXxZ0FnNQXMsUEJkmOEGAeM9SAP1xTXa6FygRITBj5yzkNn2GMfrUV8ZFjT5IHg3DzfOcjAyMYwDn8aALooyPWq1x9qWMfZUids8iRioA9sA806b7QIi0CxtL2EjYX8wCaALBIHWjNQZn+z7tkZn2/d3Hbn64zj8KSM3H2cGVIxNjlVclc/XGf0oA8w+Mmv6xa21j4c0TC3GrRXBmkPJEMaZZRnoSC3PXj34yfgvrGuaffP4N1kDyo7I3tmcDMa+ZtZcjqNzE856HtitbxlcNb/FfwNPqIhjSOO+ZyjFlCCLknIHvUXh++g1H42peWyBIn8N/JGq42J5ygAjsR0I6DHWgD1sGlzVVDdGeVZUhEP/ACzKsSx+oIx+tKPtX2rBWL7Pj72878/TGKALNNY/yqB2uvOjEcUPlfxlnIYfQAEfrSXBug0YgSNlz85kcqQPYAc0AfHniGGWHxBfiUYLTuwyc8FjivqP4cf8k70P/r1WvmLWQh8Rah9uedV85yhVQxxuOOCemK+l/AHnj4b6KbdUd/sy4EjbQee+Aa+04llfB0V6emxzUfiZ2GaM1XHn+RkpH5+37u75d31xnH4URm4MAMyRibHKo5K5+uM/pXxZ0jNQsrbU7C4sbuJZbe4iaKWM/wASkYI/WvBfA/w90GP4rapA1wbmy0yVXsFeZSJZFCs2QPvbCw/r3r1Tx/fajp/w4127DpBdJbMEeFycA4XIJAweT+nNeCyeEbvwlp1h4ktrmaOSGbT7i1JYbW85CXwAc9VAII6cc9aAPqpeB0xS01M7eRinUAFFFFABSd6WigCNl3DBwRXmXjD4L6F4h8y60wDStQYliY1/dSH/AGk7fVcfjXqFGKqnUnTd4Owmkz5Ov7Lxh8OLoQ38DGz3bUYnfA4/2W/hPtwfUGu98IfFlHKW0km09Ps9y3X2R/6H8q9rurWC+tpLe6gjnhkG145VDKw9CDwa8e8YfAa0uzJeeF5ltJj8xs5smJj/ALLdV+hyPpXsU8wo11yYmOvczcGtj1DSvEmn6oqoknlTH/llJwT9PX8K2cgd6+Rhq3ibwTff2dq1rKAnSG5z06fI46jj3Fep+EvivHdKsDTeZgf6idtsgHs3f/PSs6+VtrnoO6GqnRns2aWsrTNesNUQfZ5sSd4nGGH4d/wrUzXlShKLtJWZotR1FFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkY4BNAHxRq7/aPE+qzZzuupXz9XP+Ne7/AACQJ4a1WU4Aa72kn2RT/wCzV8/rJ513cyk8uWb82zXU6D4s/sPRprEQySs8xk279qcqo59+PSv0GeDni8s9jT3bRyc3LO7Ppq+8U6TZBla4Esg4KRDcf8P1rhbTxLpK/Eu91vUI0s4f7Lht455QPveZIT83rjA/CvGbzxlq10SI5Ut09IlGQPqR/hWQqX2qXKxxrc3dxIcKg3O7H2HPr+tcUOFYRpt1JWt/XoV7fXQ+0InWWNZEYMjDKkdwa8a/aJf/AIkOix+t07fkn/169d05WTTLVGBBWJAQRgg4FeNftGP/AKL4ej/vSTt+QQf1r5bAxX1qMV3N5fCcP8IUMnxL0c4zsErflEwr6pFfMnwXg3fEeHj/AFUErfpj+tfTY6V63Ez/ANtiv7qM6PwnnfxSj1XWLew8L6RcGCXVkuPMIIG9I487CT0BYqD7ZHetn4dXd1e+B7GS9n8+aN5oPO27TIscrxqxHYlVFc18YYL6GLQtX0vUYLW+guhaxpM23zPOePoRzwYxnH8Jau28KaG3hvwxYaS8wnkt0PmShcB3YlmOPdia+eNjbooooAKKKKACiiigAqvdQxXFrLFOAYpEZXycfKRg/pViq93bJd2k1vISEljaNtpwcEYNAE46UtIKWgAooooAQ9DmoreKKCBY4QBGOmDUrDINQ2tslrAsUZJVc4yc9TmgCeiiigApD1paQ0ARRQxRvM0SgNI++THdsAc/gBU1VoLZIJJ3QnM8nmPk99oXj/vkVZoAKKKKACoPJi+1GbaDNsC577cn/E1PVcW6fbDdZO/ywmM8YyT/AFoAsUUUUAFIaWkNAHyV8QHkTx94iRCQr3LCQDuNwP8APFe5/BX/AJJtaf8AXebj/gZrw74gTtH498RxqFxLcMrZ9Awb+YFe4/BX/km1p/13m/8AQzX2ud/8iul/27+RzU/4jPQ6KKK+KOkKhuIYp4THMAUJGQfrU1QXVul1A0UhYK2MlTg8HNAE46UUg6UtABRRRQB5v8XvB48ReHv7Ugumtr7R4ZriJwMh025dD9Qo559Mc1j/AAU8KvDYf8Jff3rXF/qULRIpGBFGH+Ye5JUH2xU3xjudYvbnRPCukXLwHVBcPPsODIsabgnHY85Hfj3rH+D2o67Z+Kn0bU52e11LTP7XhgfP7kvIOFBPAO5jj6GgD3EdKWkHTpiloAKa3Q06mt0NAHxr4hlll8QX/mkkrcOq57AMa+ovhx/yTzQ/+vVa+XfEU7z+IL7ft+SZ4xj0DGvqL4cf8k80P/r1Wvt+JdMBQXn+hzUfjZ1VFFFfEHScb8U42k+GfiFUBY/ZCxA9AQSfyH6V4pr3je217wpbaDAiNJENKhgdCxaZhETIpHT5WO3jua+lblYnt5EuAhgZCJBJjaV759sV4P4GXwU3xc1GytntGs7WXzdF+d9pldV8zYScMQV+X8x2oA9/XkZpaQdP8KWgAooooAKKKKACiiigApCM0tFAGTrWg6Z4hsGstVsYru3P8Eg6e4PVT7gg14f4w+BN9ZFrzwvM11CDk2czASr/ALjcBvocH619C0hGe1b0MTVoO8GJpM+RdN8Y6z4fvDZ6pFM5hbayTZSaIj3POfr+BFew+FPijDfIsbzfagBho3O2ZPqD979frXbeKPBGh+L7UxatZK8oGI7iP5ZY/o39DkV4L4v+Dev+GZGvdH8zUrJDuBh4njA7lR1+q/kK9eGKw2LXLVVn/WxnaUdj6N07WLHVYi9pOrYGSnRl+orQ4x1r5K0H4h3+nSxi+DzbD8syHbIh/r+nvmvZ/DPxPg1CBTJKt0gHLrgSJ/vL2/rXLiMqnD3qWq/EpTvoz0+lqnY6la6jD5trMsi98HkfUdqt5rymmnZ7li0UZopgFFFFABRRRQAUUUUAFFFFABRRRQAVBdbvs0wjGZPLO0D1wcVPSEZPSi9tQPiefRtT0q/Nlf6fc2102QIpIiC309fwrr9C+FfivXgki2As7dv+Wt23l/8Ajv3j+VfUbRKzKzIpK8qSMkH608D2/Wvoo8TV6VFUqUEmuu/4GLoJu7PJtC+BWj2ZWTWLybUJByYk/dR/odx+uRXo+laFpehwmLS9Pt7RD1EKBS31PU/jWpSHNeNisficU71pt/l9yNFGMdkKM45614N+0Y2bjw2notyf1ir3mvn79oh863oMf92CU/my/wCFaZXG+LhcJ/CVPgagk+IN2392ykYf9/Ix/WvozIr55+A22PxNqtzIyqkdlhmY4Ay6nr/wGvX9S8Z2FmTHbBrqTkfJwufr3/CvT4gpTq5jKMFeyRnRaUNTifiNoVp4l8T6kt87m30jQReIgJ++ZJCfoSIwM9q9F8KCUeD9FE7s832CDezHJLeWuSfxrwnxx4k07VdUlu7q/uEnktxaz22nyYWaIMWCSHpjOe+eelev/DnxJP4o8L/2hPAkIEzRRxp0VFAA579682vluIw9H21SNolqpFuyOxooorhLCiiigAooooAKrXsBurOe3DtGZUZN69VyOtWar3kcstnNHBJ5crIQj/3Tjg/nQBYFFIOBS5oAKKM0UAIelQWsH2a1SEuzlc/M3U85qYk449KhtI5YbZI5pPMkGct680AWKKKKACkPUUtIeaAK9vAYZbhzIz+dJvAP8PyquB7fLn8as1Xt45UkuGlk3q8u6Mf3V2qMfmCfxqxmgAooozQAVXEH+mm4EjYMYTZ26k5/WrGar7Jftpk8z9z5YXZj+LJ5/lQBYopM0uaACkPWlpCaTA+TPH03lePvEa7ATLcsoJ/hwytkflXuPwV/5Jraf9d5v/QzXhvj54l8e+JFdNzPcMEb+6dynP5Aj8a9y+C3/JNrQ+s83/oZr7bO/wDkVUv+3fyOal/EZ6HRRmjNfFHSFV7y3+1W7RCRoyxHzL1GDmrGarXiSy27RwSeXIcYf05oAsDpS0gIxS5oAKKKM0AeWfES9h0z4n+Br66k8uCFb5mb/tmP/rD8ayvBms23iD4uadqNqXKP4VQOHOWRhKMhj6+/uPWuu+KPhPTvE/hS4muy0dxpkUl1bzJjKlUJKn/ZO0Z+grE+C/hfSrLw/wD8JPbRv9r1UOAHOfJiEjBY19sKufoKAPVRRSAjFLmgAprdDTqa/TNAHxt4jmE3iC9wipsmdPl74Y819Q/Dj/knmh/9eq18veI2jbxBfeXHs2zOre5DEZr6h+HBH/Cu9DP/AE6rX23EumAoK1tf0Oaj8bOqooor4k6TkPifNJB8NvEDRSFG+xsuVODg8EfiMivE9c8ER6B4G0/xFAkUYZ9OuLSWNv3m94l83d6fMAwx6+1e3fEq2mvPhzr8ECF5WtHYKByQvJ/QV4Lf+PX8UeGbLwnbRSSTb9OgtUCfxJGBJ/5Ez+GKAPqZRgc0tIKWgAooooAKKKKACiiigAooooAKKKKACkPNLRQBwnjD4WeH/F4e4lg+x6ieftduAGY/7Y6N/P3rwXxR8OvFHgW6+2bXmtEOUv7QnC/7w6p+PHua+sxTXQOpVlBBGCD0Irrw+Oq0dN12ZLimfKvh34lXVhKn25nDLgC5g+Vh/vL0P4fjmvafD3xIgv7dGnljmiPHnw8Ef7y9j/nFUPGHwU0TXhJc6OF0q+bnEa/uXPun8P1XH0NeG6x4d8T+AdQzdQT2hJ2pcRHMUg9Nw4P0P5V66nhccrSVn+JFpRPr21vLe9hEtvMkiHup6VPxivl/wz8T5bOZBdu9vKOPPgHyt/vL/wDWP0Fe0aF8QLW9hjN0yMjfduYDuRvqB0rzsRllSnrD3kUqieh3NLUMFxFcwrLDIsiN0ZTkGpcj1rzbNaMsWijNFMAooooAKKKKACiiigAoozRmgAoozSZFABmg9aztQ1mw0xM3VwqNjhByx+g61xWt/EVbWFnhMdpDnHnTkZJ9h0z+f0rooYStXdoITkkd7c3dvZwmW5mSJB/ExxXz58aHk8Qa3ZX+nwyTWVpAY5JQOh3E5x1xjHaqGu/EZ7qVjbiW6mPHn3BIX8FGD/L6VyUlxrHiS+S3Hn3kzn5IYkz+Srx+P5mvq8s4fnQkq9aVrd/6/OxzzrKXuon8Pa6uhNcv5JmklUKqK2Ae+SeePbH5Uy91/WNckFvufbKcLb2ykBs9sDlvxzXoPhn4H6pflJ9fuRYw9TBEQ8p9ieVX9fpXsPh3wZofhiILpVjHFJjDTsN0j/Vjz+HT2rqx2eYChUcqUfaT/BfP/ImFKUlrseH+Gfgvr2r7J9TxpdsecSDdKR7Jnj/gR/CvdvDHhqy8KaLHplgZTChJLStuZiepPQfkBW2M0Dmvk8fm+KxztVfu9lt/XqdMacY7DqKKK84oKKKKACiiigAqtemcWM5tgDcCNjHkfxY4/WrNVr2SaKynkt4/MmSNmjQ/xMBwKAC3lM8G9oZIuT8kgGaLeczhs28sO1sfvFAz7jBqwBRigCvFcNNLLGbeVAn8TgYb6YNItw7XTwGCYBRnzCBsP05zVnFGKAKz3DLcpB5ErbxnzAo2D685qGO4uYo4EuIHklkJDtEBtXnjOT6VfNQWkk0lsjzxiOQ5yuenNACXE7W4UiCWUscfugOPrk0tzMYITKsUkh4+SMDd+tT4oxQBA8rJAZfLckLnYAN3064zRHIzwCXypFJGdjAbvpwcVPQeooAo2M1xOJ5JonjXzP3SOBu27V64P97dU1vOZw/7iWLacfvFAz9MGlt3meS4WWPYqSbYzn7y7VOfzJH4VPQBXjuDJNJGbeVAnRnA2t9OaRbhmumgMEo2jPmEDYf1zVmgigCu87LcpD5ErBhnzABtX9c1BPPcw38aiF5Ld0xlADtbPJOT0xV/FV98324x+X+58sMJM/xZPH5UAJcztbxhhBJKScYiAz9eTTrmYwQGRIZJSP4IwN361OBRigCBpSsBlEbkhc7ABu+nXGaI5mkgEnlyISudjAbv8KnpGGSOKTuB8m+PTCfHGvvICrvMWjXurbhkN+G7867/AMBfEzQPCHhG20u/a5lnV3cmCMMAGOcckc1X8f8Awt1298U6jqml25u4bwiWNUdVKyEqGVskcY3HP4Vx3/CqvG3X+wZf+/0X/wAVX6BF5djsHTpVqySSWl0ne3mcnvxk2kexP8b/AAkkavi+OewhGf8A0Kj/AIXf4S8nzMX3P8PlDP8A6FXjv/Cq/GwP/IBl/CaL/wCKo/4VV42/6AMn/f6L/wCKrm/sXJP+f6/8CiV7Sr2PY1+N/hNoWk234wehiXP/AKFUUnxs8MzW0v2c3kcoAIMsIx1/3q8h/wCFVeNv+gBL/wB/ov8A4qpIPhT4xaZRcaHKkfdhLGcfgGoeTZKk37f/AMmiHtKvY9eh+N3hOViMX64GfmhUf+zUkfxx8JSSbNt+M9zCuP8A0KvHv+FVeNyOdAlz/wBdov8A4qj/AIVV43/6AMn/AH+i/wDiqP7FyV/8v/8AyaP+Qe0q9j2L/hePhLzfL26hnOM+SuP/AEKhvjh4SSXYRfnnGRCuP/Qq8d/4VV42/wCgDL/3+i/+Ko/4VT414/4kUn/f6P8A+Kp/2Lkv/QR/5NEPaVex6p4g+MXhW90W/wBPj+3b7m1kiVhCpALKRz83vVPwb8TfCnhjwxp+iSSXQEJkHmCPeqK0jMMnOejDtXnA+FXjXIzoMuO+Jov/AIqpj8J/GLXbxwaO/leYQkjzRr8uThj82elRLJ8l+H2//k0Q9pV7H0tY6jFqESy26u9u6h45hjZIpGQQc1OJybkw+RL0/wBbgbf55rK8IaK/h3wtp+lSyiWS3iCu46Fupx7ZJx7Yrdxx/wDXr4ucYxk1F3Seh0rYgkuGS4SL7PK28f6xQNq/XmkuJzCyAQSybzgmMA7frk1Z70jcD8KAPjvXIYJvEl+kEqRDzXLmQkAtuOcYr6W8AuYPhtoziN5itsuFjwSfpmvmTxGkSeIb0RSbwZnZvYljkV9QfDjn4eaJ/wBeq19pxGrYKjby/I5qPxM6QSnyPN8p/u7tmBu+nXrSQzNNbCQxSISM7Hxu/wAKn5oxXxZ0lE30SWU15cK1rBCGeQzYGFUZLcE8f4V4j4Q8SeBovive31qsMSaowSyf7OFSFtqDH+wXbzPrnnFem/E8sPhn4gZTg/Y2Gc9jjNeNeJfBllpHw5g8QxRlZLu30l4yAAEcR7XIPqep+tAH0oOnWloFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhqre2Ntf20lreW8VxbyLteOVQysPcHrVuij0A8P8Y/Ae3ufMvPC832eXkmymbMZ9kbqv0OR7ivH5F1/wZqr288VxY3I+9FIvyuPX0YcdR+dfZ2MVla14f0vxFZG01eyhuof4RIOUPqp6qfcGvSw2Z1Kfu1PeX4kSgnseAeF/ih9nmRZ3axmPBdeYX+oOcfjkD1Fex6N47s72JBd7YiwyJkO6Nvf2/l715R4y+BN/YeZeeGpje2/JNpKQJV/3T0f9D9a80s9Y1jw3ePCnmwOjfvbadCBn/aU8g+/Br0pUsLjVdb/iR70T7PjkSaNZI3V0YZDKcg/Q1JkGvnfwr8U0ikCGf7FMescxDQyfjxj9Pqa9g0nxlY3u2K6xbzEDknKN757fjXkYjL6tLWPvI0U0zqqKYHUqGDAgjIIp2RXEULRRmjNABRSZFMeVIkZ3YKqjJJ4AFG4DycUma5nUvGdhagx2u66mHaPhR9T/AIV5t4l+Jq/PDPegnobW05P0J/xP4V3YXLMTiHaMSJVFE9V1LxNpumllabzZRx5cfJz7noK4DxH8SjAGRriOyUrxGh3SsPw5H16e9eQan401G9LR2wFnCT/B80mP94/0xVXQ/DOu+KLorptjPdHd88p4RT/tM3H9a+qw3DtDDR9ripWXnb/hvzMHWcnaJsar4+ubhmWxQxBus0/zufw5A/8AHqwrLTta8U6j5dpb3N/dN1Iy2B7t0UfkK9j8M/Ay0tjHceIrv7XKOTbW5Kxg+hf7x/DbXq+naXZaTaLaadaRW0C9EiUKPr71NfiDB4RcmDhzPu9v83+A1SlLWR4x4Z+BUsmy48R3YRev2W1bJPsz/wCGfrXrmjeG9I8PW3kaXYQWyEYYovzP/vE8t+JrXC4PtSmvlcbmWKxrvXlp2WiN4wjEBS0YNKK4rFBRRRTAKKKKACiiigAooooAKrXtw1taTTpG0jRxs4RerEdqs1Xu7hbW0muHBKRRs5C9TgZ4oAnHApaQdKWgAooooAQ9KgtLg3NukrRtGWzlW6jBxU5OKhtbhbmBZUDBWzgN14OKAJ6KKKACkP8AKlpD1BoArwTmSW4Qxsgik2An+MbVOR/31j8Ks1XguFmeeNQQYJBG3pnarce2GFWKACiiigAquJyb024jbaIw+/tnJGP0qxUAuU+2G2wd/lh89sZI/pQBOOlFAooAKKKKAK005int4xGzCVypYfw4UnJ/ID8asCq81wsM0ERBzM5RSOxCk8/lVgUAGKMUtFIBMVXvJjbW7TLG0hXHyr1POP61ZqvdXCW0DTOGKrjhevXFAEwFLigUtACYoxS0UAMbgEkZwOlRWkxuLSGdkaNpEVyjdVyM4qZzgE+nNQ2k63VpDcIGCyxq6huoBGefemBYooooAKa/SnU1+lAHxt4jhEPiC+xIH3zO/HbLHivqH4cf8k70M/8ATqtfLviKBrfxBfByvzzvIMehY19RfDj/AJJ5on/XqtfbcTO+AotP+rHLR+NnVUUUV8SdRzXjzTbnWfAutafaJvuJrR1jQdXYDIA+pGK+dhrmteKtMtvCsMU0klw9nZR2hHNqLaMLI7DtuZsknptOa+otT1C30rTLrULt9ltbRNNK2M4VRk8V4D4Y+I1lD8UNR8S3ljJb6frrpaRsTloSixhWfjowIPHTnrjkA+iQc0tAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaRmuZ8U+BNA8XwFNUs1MwGI7mL5ZU+jdx7HI9q6f8KKIycXeLsG58u+MPg5rvhzzLmwB1TThzvhXEqL/tJ3+q5+grkNH8TaloxEcMpltx1glyVHrj+7+H419n4NcJ4y+FOgeLhJP5X2DUW5+1W6j5j/tr0b9D717OHzZ6Rr6+ZnKn2OA8JfFBCyxRXP2dyQPs1wcox9Fb3/A+1es6R4usNQ2xSn7NOTjZIeCfY96+ZvFvw28Q+EGeS6tfPsM/LeQDcn/Au6/jx7mqei+MtS0kLC5+1W3Ty5ThgP8AZbqPxyBXXVwlDFLnja/dEqTWh9jBgRkHioLm7t7OIy3MyRRj+J2wP/114noPxQjaxcQ6iIQiZaK6xuQdPlPf8CfpXNa58R2uJWNt5l3N0E9wSFH+6vB/l9K5sPkOIrT5VsN1kj2fU/HlvCjixi8zaOZZTtQD19fzxXlviH4mxzyFTPLfOD/q4jsiU/XB/QHPrXmuo6xqGqvuvLl5Fz8qcBAfZRx/Wul8M/DHxL4l2Sx2ptLQ8/aLrKAj1UfeP4DHvX0lLJ8FgI+0xMkvn/T+5GLqTnpExNT8TanqgaOSfyoDz5MI2j8T1P41b8OeBvEHihlOnWDC2J5uZfkiH4n730GTXufhn4PeHdCVJruP+1Lted9wo8sH1Ccj8816EqbFCqoCgYAHauLF8T06UfZ4GHzen4fqy40G9ZM8u8MfBHR9MCXGtSHU7gc+URthU/Tq34/lXpttZwWkCQW0KQxRjakcY2qB9BU+OKXoK+UxWMr4qXPWk2/66G8YqOwopaKK5xhRRRTAKKKKACiiigAooooAKKKKACiikyBQAVBczRQWss0xAijQs5Iz8oGTx34qO81Ky0+NXvbuC2VjhTNIEBP41RbxH4enUxNrGnOH+UqblDnPbrTSla6Qro2R0orIPifQlwG1ixUnoGuFB/nS/wDCTaGv3tYsF9N1woz+Zo5ZdgujWorJbxNoajLavYqPVrhQP50f8JNoYGTq9iB6mdcfnmnyS7BdGsahtpYp4FkhIMbZwQMd6zj4m0M8jWLEj1+0Lj884oTxBoMKBE1WwVV7LOuB9eeKXLLsF0a9FZI8S6E/3dZsW/3bhT/I0DxLoROBrNgx9FuEJ/Q0csuwXRrUh61lf8JNoX/QZ08n0FymfyzR/wAJNoWcHWNPyOxuUBH60csuwXRoRTRSvMsZBaN9kns20H+RFTVjDxDoETE/2vp6NIdxzcICxxjPX2H5U/8A4SXQl+9rFiv+9cKM/maOWXYLo1qKyT4m0ILk6xYAepuFA/nR/wAJLoYXJ1exA9TcLj880csuwXRrVD50RuTACPO2BiO+3JH9DWePE2hlcjV7Ej1FwuPzzTR4h0AuZl1bT2bG0utwhwOuM596OWXYLo2B0orJHibQm+7rFi3+7cKf5GgeJtCJIXWLFiOoW4Un8s0+SXYLo1qKyf8AhJtC/wCgzp5PoLlM/lmj/hJ9Czj+2dPB9Dcpn8s0uWXYLovzSxRywJJw8jFY+M5O0k/TgGpxWO3iDQGZWfVbDMZ3KWuFBHbPJ98U4+JtDUfNrFivu1woz+tHLLsF0a1FZJ8TaGFydYsAvqbhQPzzR/wkuh7c/wBr2O3+99oXH55o5ZdgujWqG5miggaSY4jGM5Ge9Z48S6GRkaxYEeouFI/PNNbxFoM6FDqthIueQJ1IH154o5ZdgujYFFZI8TaE3C6xYMfRbhT/ACNA8TaESQNYsCR2FwpP5Zo5ZdgujWorJ/4SbQs4/tnT8+n2lM/lmj/hJtCDYOsWIb+6bhQfyzRyy7BdGq3AyePeoraaKe1imhOYpEDIcYypGRx9Kzm8S6Ecq2sWAyOjXCDP5mkXxDoNvGqf2tYRIo2qGnVQAPTJo5ZdgujYorJbxNoarltYsVX1NwoH55o/4SXQ9uf7Xsdv977QuPzzRyy7BdGtSNWUPE2hkZGsWJHqLhSPzzR/wkuhMPl1ixb/AHbhTj9aOWXYLo+SfEMMkPiC/EgI3Tuy85+UscfpX1F8OP8Akneh+v2Va+YdWgur7X77ykknzK7IV5ym44I9ua+jfh/ruj23gPRrebVLNJ47ZQ8bTruU+4zkV9pxI+bBUY9fL0OelpJ3O7orJ/4SfQc4/tnT8/3ftKZ/LNH/AAk2hbsHWLEN/dNwoP5Zr4vll2Oi6Mj4n/8AJMvEPOP9DevI/Fvh7S7T4SW2sQ5N7d2OkmVCPljxHtDD3YDB+ler+ML/AEjXfCWq6TFrWnR3F3avHF5lyq5Yjjv0zXjN3ruq+JvC2ieCLnSk094mhhudSmmURGGEYB3HjgHPU5PSnyS7BdH0wOlFZC+KNBxzrWnf+BSf41ow3MFzCs0M0ckTfddWBB+hqXFrdDuT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEciLKhR1DKwwVIyCK8r8Y/BLRta8y70QrpV6ckxqv7iQ+6/wAP1HHsa9X/AApDnsKulWqUnzQdhNJnxxrHhHXPC181pqmnyxGT5YnUb0lOR90jgn26+wrq/C/wh8Ra9snu4v7Ms2/5aXA/eEeydfzxX0vJAkpUuitsO5dwzg+oqQLgYr3YcSYmlh1SpJJ9/wDgGXsU3dnE+Gfhf4c8NBJY7b7Xer/y83QDMD7DoPw5967YDA6UuKWvBrV6teXPVk2/PU1UUthaKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNYfWnUhHPSgD5h+L8Gpx+Prua+WQ20ioLRiPk2bRkL/wLd79/SuDhmaCeOaNtskbbgcZwR0619rPGsgw6qy+hpgtIMY8iP/vkV9Vg+KPYYeNF0b8qtva/4GEqF3e58UE0Z45r7X+y2/8Azwj/AO+RR9kt/wDnhH/3yK6lxil/y5/8m/4BP1d9z4nyKK+2PssH/PCP/vgUfZYP+eEf/fIp/wCuX/Tn/wAm/wCAH1fzPijPp+VPmmeaVpJGy7dT0r7U+y2//PCP/vkUfZbf/nhH/wB8il/rgr39j/5N/wAAPq77nxPn3/WjIr7Y+ywf88I/++RR9lg/54R/98in/rl/05/8m/4AfV33PifNLnJzX2v9kt/+eEf/AHyKPstv/wA8I/8AvkUnxjfej/5N/wAAPq77nxZJM8qxK7ZESbEGBwuSce/U1Fx3r7Y+y2//ADwj/wC+RR9kt/8AnhH/AN8ikuMFHaj/AOTf8APq77nxPkf5NGRX2x9lg/54R/8AfAo+ywf88I/++BVf65f9Of8Ayb/gB9X8z4nyMf8A16k8+T7P5G793u3Y9/8AIr7U+ywf88I/++RR9lg/54R/98ipfGCe9H/yb/gB9Xfc+J8//XozX2x9lg/54R/98ij7Lb/88I/++RVf65f9Of8Ayb/gB9Xfc+J80Zz/APrr7Y+yW/8Azwj/AO+RR9lg/wCeMf8A3yKP9cv+nP8A5N/wA+rvufFcczxpIithZFCv3yMg/wAwKj49a+2Pstv/AM8I/wDvkUfZLf8A54R/98ikuMEtfY/+Tf8AAD6u+58T5H+TRkV9sfZYP+eEf/fAo+ywf88I/wDvkUf65f8ATn/yb/gB9X8z4nz/AJzUkMzwSCSJirjvjNfan2WD/nhH/wB8ij7LB/zwj/75FD4xT0dH/wAm/wCAH1d9z4ozSZr7Y+ywf88I/wDvkUfZIP8AnjH/AN8ihcZf9Of/ACb/AIAfV33PifP+c0ZzX2x9kt/+eEf/AHyKPstv/wA8I/8AvkU/9cv+nP8A5N/wA+rvufFAPQ9wfrTppmmmeWQ5kdizHpkk5r7V+y2//PCP/vkUfZLf/nhH/wB8il/rgr39j/5N/wAAPq77nxPx/k0ZFfbH2WD/AJ4R/wDfAo+ywf8APCP/AL5FH+uP/Tn/AMm/4AfV/M+J8/5zRx619sfZYP8AnhH/AN8ij7LB/wA8I/8AvkUf65f9Of8Ayb/gB9Xfc+K5ZnmKGRtxRAg+g6CmZGa+1/skH/PCP/vgUfZYP+eEf/fIpLjBLaj/AOTf8APq/mfE+ff9aM19sfZYP+eEf/fIo+ywf88I/wDvkVX+uX/Tn/yb/gB9Xfc+KM+9PMzmFIS2Y0ZmVcDgnGfr0Ffan2WD/njH/wB8ij7LB/zwj/75FS+ME96P/k3/AAA+rvufFHXtXu/wIh1SLStUkm3rYSSR/Z/N4UsAd5X8Nntx7GvX/ssH/PCP/vkVMFA4HSuDM+Ivr1D2PsuXzvf9EXTpckr3H0UUV82bBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z None. +3 EuPhO_2025_2_2 "A table is made by fastening a metal frame to a massive uniform plate (so they form a rigid body) and attaching it with chains to another frame that is fixed on the horizontal ground. The motion of the table is limited to the plane of the side view (right picture). + +The masses of the chains and the frame can be neglected. The chains are frictionless, inextensible, and remain tensioned in oscillations. The grid step is $a = 0.100 m$, the acceleration of gravity $g = 9.81 m/s^2$." Find the period $T$ of the small oscillations: (1) write the formula for $T$, (2) calculate the number of $T$ (keep three significant figures, and express the unit in $s$). "[[""Award 1.0 pt if the answer shows that the table can rotate, either explicitly in the sketch or by introducing $\\varphi$ in the equations. Otherwise, award 0 pt."", ""Award 1.0 pt if the answer correctly argues that the table does not have immediate rotation, either by: geometric reasoning showing $\\varphi \\sim x^{2}$; or constraint equations leading to $\\varphi \\sim x^{2}$; or using immediate velocities to show no rotation. Otherwise, award 0 pt."", ""Award 1.0 pt if the answer outlines a valid plan to find the oscillation period using any of the following ideas: second Newton's law: $\\ddot{x} \\sim -x$; or identifying kinetic and potential energies; or using curvature of the trajectory. Otherwise, award 0 pt."", ""Award 2.0 pt if the answer includes all necessary elements: small horizontal forces; correct approximations of kinetic and potential energies; accelerations/curvatures. Partial points: award 1.0 pt if not all elements are present or if the answer contains mistakes; award 1.0 pt if the answer misses the proof of $\\omega_0 = 0$ (or does not consider the rotation), but everything else is correct; award 0.0 pt if only partial elements are present with an unrelated approach (e.g., using energy but only writing force expressions). Otherwise, award 0 pt."", ""Award 1.0 pt if the answer provides both the correct formula ($T = 2 \\pi \\sqrt{\\frac{3a}{2g}}$) and numerical value ($T = 0.777 s$) for $T$. Partial points: award 0.5 pt the answer only gives the formula or only the number; award 0.5 pt if a simple mistake is made in the answer (like inverse formula under the root). Otherwise, award 0 pt.""]]" "[""\\boxed{$T = 2 \\pi \\sqrt{\\frac{3a}{2g}}$}"", ""\\boxed{0.777}""]" "[""Expression"", ""Numerical Value""]" "[null, ""s""]" [3.0, 3.0] text+variable figure Mechanics EuPhO_2025 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAt4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiijNABRRRmgAoqtLf2kGfNuoEx/ekAqp/wkWk79n26LP44/OgDUoqCG7trj/UXEUnsjg/yqfNABRSZAGSeKM5GRQAtFGRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWHL4v0GCV4pdTgSRGKspzwQcHtW2etfOutYGvajx/wAvMnb/AGjQB7b/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhNPDv/QXt/zP+FeCf56f/Xo/z0/+vQB73/wmnh3/AKC9v+Z/wo/4TTw7/wBBe3/M/wCFeCf56f8A16P89P8A69AHvf8Awmnh3/oL2/5n/Cj/AITTw7/0F7f8z/hXgn+en/16P89P/r0Ae9/8Jp4d/wCgvb/mf8KP+E08O/8AQXt/zP8AhXgn+en/ANej/PT/AOvQB73/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhNPDv/QXt/zP+FeCf56f/Xo/z0/+vQB73/wmnh3/AKC9v+Z/wo/4TTw7/wBBe3/M/wCFeCf56f8A16P89P8A69AHvf8Awmnh3/oL2/5n/Cj/AITTw7/0F7f8z/hXgn+en/16P89P/r0Ae9/8Jp4d/wCgvb/mf8KP+E08O/8AQXt/zP8AhXgn+en/ANej/PT/AOvQB73/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhNPDv/QXt/zP+FeCf56f/Xo/z0/+vQB73/wmnh3/AKC9v+Z/wo/4TTw7/wBBe3/M/wCFeCf56f8A16P89P8A69AHvf8Awmnh3/oL2/5n/Cj/AITTw7/0F7f8z/hXgn+en/16P89P/r0Ae9/8Jp4d/wCgvb/mf8KP+E08O/8AQXt/zP8AhXgn+en/ANej/PT/AOvQB73/AMJp4d/6C9v+Z/wo/wCE08O/9Be3/M/4V4J/np/9ej/PT/69AHvf/CaeHf8AoL2/5n/Cj/hNPDv/AEF7f8z/AIV4J/np/wDXo/z0/wDr0Ae9/wDCaeHf+gvb/mf8KP8AhM/Dn/QWt/1/wrwT/PT/AOvRgZH65FAH0laXcF9apc20okhkGVcdDU9c/wCCP+RN0z/rkf8A0I10FABRRVSXU7GH/W3lun+9KBQBborGl8T6PD1vVY/7Clv5CqUvjXTEJ2JcSH1CgD9TQB01FcXL48HIhsD9Xk/oB/WqcvjbUmyI4beMeuCT/OgD0CjNeZS+KdYlyPtm0eiRqP1xmqMuqX8/+svbhx6GQ4/nQB6vJNFEMySIg9WYCqUuuaXCMvfwcf3XDfyryskk5J596Tr2FAHo8ni7SEztneQ/7EZ/qBVKXxzZrzFaTuf9ohf8a4WigDrZfHdw3+psol/33Lf4VSl8ZatJ91oYj6pH/jmufooA0pfEGrTfev5gP9k7f5YqlLczz/62eWT/AH2LfzqKigA+oo/DiiigBQccjj9P5Vcg1jUbbAivZ1A6DeSPyqlRQB0EHjLVYvvtDN/vpg/pitODx2vH2iyPuY3/AKH/ABrjKKAPRoPGGkS8PLJD/wBdEP8ATNakGqWNyB5V5CxPYOM/lXkucev50fp9KAPZcg0teQwX93bY8i6mj/3ZDj8s1pweLNYh6zrKPSRAf1AoA9LyKM1w0PjucDFxZI/vG5X/ABrTg8a6ZJjzEmhPcsoI/Q0AdNRWbBr2l3PEd9Dn0Ztp/XFaCurqGUhgehHNADqKM0ZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAENeB63o+qf2xqM39m3nlfaJH3+Q23G4nOcV74c1BcGJbeU3G3yAhL7hxt75/WgD5+/sLWMZ/sq+/8AAd/8KP7C1j/oE33/AIDP/hX0Oo4/GlxQB87/ANhax/0Cr7/wGf8Awo/sLWMf8gm+/wDAZ/8ACvojFGKAPnf+wtYH/MKvv/Ad/wDCmrouquoZNMvWU91gYj+VfRJHrUVuYmhBg2+XzjaMDrQB8+/2FrGP+QTff+Az/wCFH9hax/0Cb7/wGf8Awr6IxRigD53/ALC1f/oFX3/gM/8AhR/YWsf9Aq+/8Bn/AMK+iMUhHY0AfOw0TVmZlXTL0shwwFux2nGcHjg8inf2FrH/AECr7/wGf/CvoKEws03lFdwfEu0c7sDr74xU2KAPnf8AsLWP+gTff+Az/wCFH9hax/0Cb7/wGf8Awr6IxRigD53/ALC1j/oFX3/gM/8AhTf7E1bfs/sy934zt+zvnHrjFfRWKhJh+0lfk84Jnkc7cn9OtAHz7/YWsf8AQKvv/Ad/8KP7C1j/AKBV9/4DP/hX0QBijFAHzv8A2FrH/QJvv/AZ/wDCk/sLV/8AoFX3/gO/+FfROKQijQD5nlZYJZYpmWOSH/WI5wU5xyD06irVpp97f24uLOzuLmFiQJIYmdSR15ArmviAJD4/8QldxVbk+Zg8YyvX2zivcfgsf+LbWnOf383/AKGa93H5TDC4SGIU7uVtPVXMo1OaXKedf2FrH/QKvv8AwGf/AAo/sLWP+gTff+Az/wCFfRGKMV4RqfO/9hax/wBAm+/8Bn/wpraLqqKWfTLxVHUtAwH8q+isVDcGFYSZ9vl8Z3DI68UAfPv9hax/0Cr7/wAB3/wo/sLWP+gTff8AgM/+FfRAHFGKAPnf+wtY/wCgVff+Az/4Uf2FrH/QKvv/AAGf/CvojFGKAPnf+wtY/wCgVff+A7/4U1NF1WRFdNMvXRhlWWBiCPUHFfRLYHJ//VUVv5TW8Rh2+SVHl7RgbccY9sUAfPv9hax/0Cr7/wABn/wo/sLWP+gTff8AgM/+FfRGKMUAfO/9hav/ANAq+/8AAZ/8KP7B1j/oE33/AIDv/hX0Rig8UAfOy6JqzZ26Zetg4OIGOD+VL/YWsf8AQKvv/AZ/8K+goGhbeYdvDsG2j+IHnNTYoA+d/wCwtY/6BN9/4DP/AIUf2FrH/QJvv/AZ/wDCvojFGKAPnZtE1ZVLNpd6qjkk27gD9KoWf/EwlSKy/wBJkk3bEg+dmwMnAHPAIr134wXE1r8K9dkicoWijjJBxlWlRWH4qSPx71wPirwxo/hfR/A9/o8QttQt9StI5HRjmQSKWLN6kmP+Y6YoA9d8HxSQeE9OimjaORYyGVhgjk9q3aavf606gBGx36d6+W4NY1C1OEunOOof5gfwr6kOc1h6n4S0LWQft2lW7uf+Wirtb/voYNAHhlv4slUf6TbKw7tGcfpWtbeIdOuCF83y2PZxjH49K6nVPg3ZSkvpeoSwHr5dwvmKfbIwR+tcXqvw18Tabub7H9sjH8ds3mf+O8N+lAG6kiSqHRgynoVORTq85b7VYTlW823mXqpyrL7EcYq/b+JNQgwHdZh/tjn86AO3/EUVz1v4st2OLiB4z3KncP8AGta31OyucCK5jJP8LHB/I0AW6KO1H4H8qACiiinZoAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFGfSiigAqSKeaA7opXjP+w2KjooA1rfxJq9uAFvXYDs4D/wA60oPHF8nE9vBIP9nKE/jk/wAq5eigDuoPHNk/+vtpoj6qQ3+Falv4l0e4IC3qIT2kBX+fFeY0UAewxXEM67opkkHqjAipc140jFDuUlW9VPNX4Nc1S2/1V9Nj0Y7h+TZoA9WpMgda89g8Z6nEAJFgmHuu0/ocfpWlB46iOPPspF943B/Q4oA7GisG38WaPNgG5aI/9NEI/lxWpBqFnc/6i6hkPojgmgC1RRmjNABRRQCD0oAKKKKACoLmOKW2ljnCmJlIcN0xjn9KnqC6t47u0mt5c+XKhRsccEYNAEw6UtIOlLQAUUUUANPQjt3qO3jiigVIQBGOmDmpW6Goba3S1t1hTOxc4z9c0ATEgdaAwPQ1Q1XU7XRtNudRvphDa20Zkkc9gP69gO9cLoOs+MvHFq+r6ZNZ6Fo7sy2azWpuJrhQcb2+ZQq8cY54PXgkA9JBB6HNHUivOfhn401nxjc60NSjsVg050to5LZGAmky25vmJwOFwPevRccdetAEUMcMbzGIKGd90mD1bAHPvgCp6ght0gkndM5mk8x/rtC/yUVPQAUUUUAFQeXD9pMuF87YFz325P8A9ep6gFun2s3PO/YE68YyT/WgCeiiigApD1/ClpD1oA+SviAzr4/8RKhIV7lg+O4yDz+OK9z+Cv8AyTa1/wCu83/oZrw34gTPF498RxrjbLcsr/QMG/mBXuXwV/5Jta/9d5v/AEM19tnf/Iqpf9u/kc1L+Iz0OiiiviTpCobiOKWIpMFMZIyGPHWpqgurdLqBoZM7WIzj2OaAJx0opB0paACiiigBrDKkcc+tRW8cUVtFHCFESKFQL0CgcY/CpXGVI9Rio7eBLa2igjyEiQIoPoBgUATUUZozQAUlLmkJB4zRcCKCOKMP5QUbnLNjux61NVe2gjtxIEzmSRpGz6k1YoAKKKKAOE+MVvLc/CnXY4Yy7iOOQgDPyrKjMfwAJ/CvINQ8cf8ACYXWkaPbwlnXVtONkVU5aNImDgnpkO+fbd7V9HX8ttBY3Et40SWqRs0zS42Bcc7s9sda8N+F+ueEH+Iut29ulvHHNc7tELwEYDZEgUkfLnCYzg9R3xQB76KWkXpS0AFFFFABSEc0tFAFK90yy1OLyr6zguU/uyoG/mK47VPhN4fvcvafaLGQ8/un3Jn/AHWz+hFd9RQB4bqnwi12zy1jNb3yDooYxv8AkTj9a4zUdG1PSHK39jcWxzjLxlQT7Hofzr6kqOSNJUKSKGRhgqwyD9aAPlu31O8tMCK5kUA/dJyPyOa1oPFdzGcTwxyY6kEqa9U8beDdCHhnVtSg02KG8trOWeNocoNyoWGVBAPT0r520/VjdSxRPGFd2CAqcDJ9RXXhsHWxMW6Mb26Eyny7npVt4l0+bh2eFv8AaHH5itSKeKcZikRx/snNcrqngnxFpIJudLnaEc+ZCPMXHqSucfjWEjvE25GZGHpwRXJZLYo9L9u/pRXC2/iHUbcAGfzV9JBuFa1v4sQ4FzbMvuhyPyNK6A6SiqNvrNhc4CXKBj/C5wf1q8ORkcj1FMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKMH0NAB/npQP8AP+eKOvcVJHDLKcRxu3+6uaAJ7fU7+2x5N5cIB2DnFacHjDV4fvSxzD0dAf5Y/nVCPR7uT7yKg/2z/hVyPQV/5azk5HIVf60Aatv47YD/AEixU+pjkx+hH9a07bxfpc5Ct58RP99N38s1hx6VZxY/db2Hd2zVpI0jGEUKPRRQB11tdQ3Ue+F9y+uCP51PWRoRzDKP9qtegAqveW/2uzntw7J5sbJuXquRjNWKq3sby2M8ccohdo2CyH+A44P4UAWhRUMM8M8XmQypIn95WyPzoinhn3eTNHJtODsYHB98UATUVClzBI7ok0bMn3gGBK/WkFzA05hE8ZlHJj3DcPw60ATGoLSD7NbpCXL7c/M3U80rXMCzCAzRiZhlULDcfwrmdV8a+HvCsUdtrGt2wvM7fKD5kJJ4yB90e5wOOvFAHGftBahPH4S03TIGKrf3qiRh0IUZAP8AwIqf+A123iHULLwP8P7maHbHFYWXlWyDuwXagH44/nXM/EFvBnjzw8LBvGOiWlxDKJreY3sLBWAIwRu6EE9D6HtWX5Wk61o1xb+K/iXod/cm1e3tTDcQLHAzKVMpG4F3wepxgFsYzmgDU+A+mfYfhnBckfPf3Ms5P0Plj/0DP416d1wff868n8BXmn+FdPt7HUPiVoN1Z2iskFpDPbquCScs5YsevAGMd811afEbwedVOnnxHp/nModXE6tEwORxIPlzx0Jz7YxQB01vB5Mtw+9m86TzMN/D8qrge3y5/GrNUrGRZRPPHdpcQSyb4mRgyqu1RjI9wT+NTxXEE+7yZo5NpwdjA4NAE1FQpcQyOyJKjOn3lDAkfWgXMBmMAmjMoGTHuG78qAJqri3/ANNNwJG/1YTZ26k5/Wla4gSZYWmjWVhkIWAJH0qCSRYdQVpLtESRAiRMwBZsnkevUUAXqKhmuYbdQ080cQJwC7Bcn8aWWaGCPzJpUjT+87AD8zQBLSE84qMzRCLzTIgjxneWGMeuaRJopIhIjq0ZGQ4ORj60mB8o+P5fK8e+I49qt5twy5P8OGVuPyxXuPwV/wCSbWn/AF3m/wDQzXh3j6RB458QkpvE058p88D5gcj8Aw/GvcPgwDH8O7WN/lcTSkqeCAW44r7bO/8AkV0v+3fyOan/ABGeiUVClxBJI0aTRs6/eUMCR9aPtEBmMPnR+aBkpuG78q+KOkmqvd2/2q3aLeybiPmXqMHNKbmBJlhaaNZWGVQsAx/CodQkXyfJFykEshAQs2CeR0oAuClqGaeC3QNNNHGpOAXYAE/jSyzwwR+ZNKkaf3nYAfnQA+kJA700zRCLzTIgjxnfuGMeua5zxtc3x8EapNormS58g+U0RycfxFcd9uce9OEOeSj3Ym7am7JdWyko1xGrdCN4BFQ2s9pbWkMP22J/LjVN7SDLYGMmvjeZJopibiORZPvMJVIbPqc89jTr2Nhcu4t3gjkYtEjLjC54A9a+wjwjFtL234f8E53iPI+zft1p/wA/UP8A32KPt1p/z9Q/99ivixoZEjWRonVG+6xXAP40eRL5Pm+U/l/39vH51p/qhD/n9+H/AARfWH2PtP7daf8APzD/AN9ikN9af8/MP/fYr4tWGR4jIsTsg6sF4FLHDNKH8qJ3CDLbVztHqcdKT4Ril/G/8l/4I1iH2Psy0a3TzFS5WVnkaTG8HGTnA9qvLyOK+LVZ5Zoms4pFkiRcmLO7I/iyOnavq/wdqcl54H0m/wBQlAle2QyySHGWxjJ+teJmuTPARjPn5r6bWt+LNadXnOloqLz4vJ87zU8rGd+4bceuaEniliEscqNGRnerAj868Y0OG+Mrunwp11kZlOyJcr1wZkBH0IrzfxJ4JtvDGkaFqtuIlNxrWntasi4eJTD84J93QH8BXpvxQtX1z4Y65babi6lMSuFiO4nY6uw46nC9OteMt4q1Pxpe6NoAs7wvJqVjcW6smFjjih2yY9sncT7UAfTw6UtIpyKWgAooooAKKKKACiiigApD1paQ0mBkeKIvO8KavF132Uy/mhr42sX8oxSD+Bg35GvtXUo/O0u7ixkPC6/mpr4mtj+659f8K+r4Xf7ycfJ/kYV+h9wKA6Kfoa5vxZZeGU06XUNfs7UwqyqZmUK+ScAbuCOSO9b2ny+bp1tJnO+JG/MCuU+KGhXfiPwNeWVnNDDIpWZmnbYhVPmILdB06nivmIRi6ijJ2Vza+mh5b4htfB8bsdO1CazfP+ruZVcD8M7v1rjpL2xWXZHeRy89VVgP1Arb8PfCTxD4m0631SG406C1uYxKjNMWOD2woOCPQnI6GuxsvgBbKQ2o69JJ6pBAF/Uk/wAq+lqYbJYR1rS5vK7/AEaMlKq3ojzhWSQZRgw9jkVYt765tvmguHT6HP6Vx0U772KjyihC/IT+dfRmk/DfQtd8JaRekXFrdTWUEryRybgzGNSSVbI/LFebmWWrCQjVhPmjJ6XVn+ZUKnNo9zzq38VXkZxOkcv47T+da1v4nsZcCUSQMeu4ZH6Vp6p8H9Yttzadd294nZHzG5/MkfrXEapoep6NMI9RsZrZiCV8xeGAxnB6HGR09R615JodzDdW9wMwzI/0NS15mCUbK8N6jj+VaFvrmo2wAW5Z1/uyfMPzoA7zI9aK5i38WY4ubb8Ym/oa1rbXdOucBZ1Rj/C42/8A1qANGikUh1yhDD1HNLQAUUUUAFFFFABRRRQAUU5I3kOERmPoozVuPSryUAiLYD3c4/TrRcClRWzFoLdZZwPZAT+p/wAKtxaRZx9VZz/tt/hgUAc3ViOxupsbIH55BYYB/E11EcEUJ/dRKh/2VGf5U449fzNAGDHodw4HmSIg7gHNW4tCt05kdmPsABWskUkhARGY/wCyM1bj0m7l/wCWYQern+lAGVFY2sX3IFz6kZP5k1YHHT6cH/CtiPQv+ek/4IP61S8T6JdTeFdUh0UuupPbOLZ/Mwd+OMHoCcYz79RQBVVWdgqgsfQcmrMWm3cuCsLDP97j+dc18MbzV/Et5e+KdSsvstvNCLS0XIw6pNKxIUdMBlXPfaetemigDEj0KQ/62VR7KKtx6Pap95TJ/vGtGigCOOGOFdsaBR6CpKKKACqt4LhrSdbVlW4MZ8ssOA2DjP41aqtePNHZzvbIJJ1jYxoT95gOB+dAEsaLGm1EVVHQAYFIkSxg7EVcnJ28ZqQUtAESxxo5ZURWbqQME/40BIwxkCqGPVscn8ayvEniGx8L6LPq2ozbLaAZwBlnbsqjuT/9foDXIReJPHV74em8SR2Gi6dYLC1zHaXnmvO8SgtlnUgISOQMGgDs9evxpGi32qJbGea2gZ4kRNzSNg7VGOeTgfjXkvw98OaF8SvBsd/4h0gNq9vO6m9RTG843bg5Iwr8krzn7prt/BHiu78beDrvWrmxjs1eWWOCNJC/yKo5LYHO7dyB2FU/geP+LT6UR/fn/wDRz0AbI+Gngojnwxpv/fgUv/Cs/BX/AELOm/8AfkV1YooA5M/DPwUf+ZZ03/vyKp/8Kn8FjVv7RbQ7dmVQEg2gQrjP8AwGJz/Fmu4pD1FAFKwtjaJLAsUMVuj4gjiUKqptXjA6c7qtJEsYOxFXJydoxmooGnaW4EqBVWTERH8S7VOT+JYfhVmgCJIkR2dY1Vm+8QME/WlESBy4Rd54LYGTUlFAEZiQyByilh0bHNQNFI99vYIYVQbcgEh88n8sVbquGn+2lNg+z+WDvzzuyePyxQA94kkADorAcgMM0rIJFKuoIPUEZFSCigCPy12bNq7MY244pBGqKEVQEAxtA4qWkPWkwPkzx95S+O/ESSKdwnIhC9FO4dvTG7869w+DDF/hzasTk+dKM59GPevD/H6Qt4+8SF3KutwTGP7zblBH5En8K9x+Cv8AyTa0/wCu83/oZr7bO0v7Kpf9u/kc1L+IzvhGiMzqihm6kADP1NKI0EhfYu89Tjn86kor4o6SMxIzhyilh0YgZFQXkLyQ5gCecrAqzKDjkZ/SrdV7x547Zmt0DyjGFPfmgB7RrIAHRWHUBhnFK6B0KsoIPUEZFPFLQBH5a7Nm1dmMbccY+lIIlVBGqKExjAGBj0xUtIRzSaA8e8c+HtO1j4teE9GntY1sp4bieZI1CeYyqSNxHX7oH0qDwh4cs9K+L2saJJbxTWh0uK58iUeYscmUDbd3QZLfnjtUvxP1lPC3xJ8N69Ov7qHT70RkjhpBG21fxLKPxFM+H+uReKPi/qur2x8yFdGihllVcKZNyE/TOD+RrT2s7WUn+IrLseor4c0XaB/Y9hgdB9nTj9KP+Ec0TG3+x7DHp9mT/CtUUVHM+4WRljw7ogXb/ZFhj0+zp/hTT4d0QAgaPYAdT/oyf4Vq0j9OaOeXdjsj44114YtevVs98SrK6tg453HI+n+FfTvw6RX+HOiKyqym1XIPSvmHxEkKeIL7yXLAzOW9m3HIr6h+G/8AyTzQ/wDr1WvteJbfUaLXfrvsc1H4mdNsXZs2DZjG3HGPpQqKiBFUKo4wAAKkor4o6TO1O/stC0q51C6ZYLS2jaWRgOgA7AdTXiHw5+IXh4eP9Vd7W4tn1y6C2skiDbEOqIcH5dxPbjOO3I9F+MeR8KNdI/55xf8Ao1K838W+E7XRNE0vU7eMAX+paUwIwAm2F1KjHIHQ/wDAqAPoJeR7dqWkX7tLQAUUUUAFFFFABRRRQAUUUUARyAMjKehBBr4giQpvVuCHK/lX3C3Q18UXqeVqt/D02XMg/wDHsf0r6fhV/wC1NeRhW2PsPw3J5vhrSpM532cLfmgqDxdZzX/hHVrW3hM80lq4SIdZDj7vPr0pngmTzPA+hPnJNhBn6+Wuam8UtdR+E9ZaxaRbpbCcwtHncHEZ27ffOK+brK1SS83+ZutjF+GSxt4U8+209rCynuHltbZv+WcZAGPXqG6/XvXZt0rhfhfJYf2FqMGk3EtxpMF+Y7KSRi2U8mJmwT1HmNJ+td01QB8RuoS6vF7LOR+GTX134Ebf4D0A+mnwj8kAr5LvVCanqajot2w/DLV9XfDxt3w90I/9OcY/Svrc81y6g/P9Dnp/GzpzXmfxca1jg0r7Rf3VoJmlt7g28e8mzfZ55PoAAnPPXpXpteb/ABTWULpoiv7K1+3rNpEn2p9uI7jZudfddg9vmr5I6DodU8BeHNXDGbTIopT1lt/3bZ9Tjg/iDXF6p8GTy+k6p9I7pf8A2Zf8K9aXpS0AfOGqeAvEukbmm0yWWMf8tLf96Mevy8j8RXOMpVmRhyOCp6g/SvrAgk54rL1Lw9pOsxkahpttcEjG90G7/vocj8DQB8zw3U9ucxTNGfRWx+latv4nvoQPNEcwH99cH8xXqOqfB/SbkFtOu7iyY9Fb96g/AnP6muL1T4V+I9PJe3ihvoxzmBvmx/utj8hmgCC38U2kgAnjkhPr94f41q299a3IBhnjfPYHB/KuCu7C80+Ux3lrPbyH+GWMqT+BqAZRsjgpzkcEfWgD1KO1uJcbIJGBOM7TVyPRLtvv7Ix7tk/pXQ/TkdsUDk4HJ9qAMmLQYgf3szt/ujFXI9NtIfuwAnuW5zWjHZXMx+SBz9RgVcj0S4bl3RP1NAGYoCrhQABwAOKOKofEaabwv4Fv9VsZf9MjMSxl1DKC0ig8d+CetfPF34s1/VUJvdWuZFbgqrFFI/3VwK9bK8qq4+T5ZcqM51FA+mooJZseXGzD1A4q5Ho93J94LGP9o5/QUeBkMfgXQgepsYWP1KAn+ddAp4ryqicZyi3ezsaLVXMqPQox/rJWb2UYq7FptrF92FSfVuat0UgGBAowqgD24p9FFABXJfEC7vIPDsdvY3Ulpc397b2SXERw8YklVWKns2M4rra4f4p26y+Brq7+3pZT6ewvbeRyAGkjyVTnu3Qd8kYoAo/Cex1HRNP1Xw/fXf2kaZcRxo27cEZ4UkkUHuA7mvRR0rifhfo0uk+DYJ7m9S9udR2XkksfK8xoqqD3wqLz3Oa7cUAFFFFABRRRQAVWvZ3trOaaOJpXjjZ1RerEDpVmqt7cLaWk1y6syxIXIUcnHOB70AWhRSDpS0AeLfFxzrnxG8GeFJifsUs63Nwh6SAvj9FVx/wKul+MeuRaL8NNQiDBJ71RaQoOMhvvcem0N+lHxB8B6n4h1jR9f0C9trTWdMf5Dcg+XIudwBIBPBzxg5yelZ/ij4b6/wCMPDVyNW1SyfXHKeQsSMlrAgOWRerfMfmLHJJVR0FAHQ+ANNGkfCnR7QDBNh5zD0aQGQ/qxrN+B3/JJtJ/35//AEa9a/h/T/Emn6BLF4gv7Gd47ZYo4bKFgqbVIyXY5Zm4zwBxwOayPgeQPhPpQ/25/wD0c9AHotFFFABSHrS0h60AV4JmkkuEaIoIpNik/wAY2qcj8yPwqzVa3uVnedApBgk8tsjAJ2q2R7fNVmgAooooAKr+c/20weU2wRh/M7ZyeP0qxVb7Qn2z7NtO8IHzjjGSPz4oAsjpRSDpS0AFIaWkNAHyb4/jV/H/AIjZnCmO5LAH+I7gMfkSfwr3D4Lc/Daz/wCu0v8A6Ea8P8fQGTx/4jdSMRXJchu+WUcfnXuHwW/5JtZ/9dpf/QjX2udv/hKpa/y/kc1L+Iz0OiiivijpCq15M9vbtLHEZXXGEHfnH9as1Xu7lbS3ad1ZlXGQo55IH9aAJxS0gpaACiiigDz/AOL58PL4Cvhrv2fzGjcWHmAlxcbTtKY5znGe2OvFV/g//wAI9D4SFro0tvLdQuUv3jBDPICQGOc8EDjB29QKxPifo0fif4leGdEuTmGbT74qDyEfymw34Mqn/gIql8MdFTw58T5tOhbh/DtvPMF4V5cxgsB+f5n1oA9vHSlpBS0AFNc4HTNOprnAP0oA+NvEUSxa9fbZA++Z3JHYljxX1D8N/wDkneh/9eq18veIoGt/EN8GK5kneQbe2WJxX1D8N/8Aknmh/wDXqtfbcSu+AotPr+hy0fjZ1VFFFfEnUcr8RdFufEPgHV9Ms1DXEsIaNc43MrBwPx24/GvBtJl8ReMtWt9HaCYO2pWkl1C4I+wrbRCNiyn7u7dnHcpjrX0b4i1u18O6De6xeBjBaRGRgvVj0Cj3JIH414P4F8fXFh47v9X1PTvItPEl5FA+1jm2bGY85HIYP168E+xAPo0dKWkXpS0AFFFFABRRRQAUUUUAFJ3paTvQAHpXxh4giMPi3XY+gS/mX/yI3+FfZxr488Yp5XjzxKmMZ1KVgPq7H+tfRcMStjDGv8J9N/DqTzfh7oTeloq/lx/StvVJnttKvbiEAyxQPImRn5lBI/WuY+FMnm/DXRmznCOv5SMP6V18xVYJC43KFJK+ox0rxMWrYmovN/max2RxHwvlnj0S7sJdQiv0t7ktFNGoACyASFTjjIZmz+XpXe9q85+Ewe30W7tZdLt7AzSf2hGsDFgYpyzRgn1AGB7Ad816Kc4rAZ8YaumzXtbUdFv5B/489fUnw0bf8OtDP/TuB+RIr5h8RIE8VeIV7Lqko/8AH3r6Y+Fb7/hpox9I2H5O1fW5zrllF+f6HPT/AIjOzrzb4pWdzO2nCDTPtxure502LlR5M8/l+W5z0A8tue3Fek15d8XDb/aNJF01yP3F0bHyc/8AH9mHyM47/fx364r5I6D1BTkUtNTG3inUAFFFFABSGlooAr3Nrb3kRiubeKeM9UlQMD+B61yOqfC/w1qOWitXspeoa2bAH/ATkD8AK7aigDNj0a2QDfvlI7s3WrkdtDFwkSL9BU1FABiiig0AeZ/HSXy/hncLn/WXMK/+PZ/pXzRDxEtfRf7QEuz4f2qZ/wBZqMY/8ckP9K+dY/8AVLX3HCqtTlL1OavufZfhqLyfC+kx4xss4Vx9EFaw6VVsYvJ0+3hxjZGq4+gFWcgCviJu8m+7OlbDqKM1Uu7+1sU33U8cS46u2M/T1pJN6IC1RXJXXj7S7d/lSaSMffkwFAH41s6LrNjrunre6dMJYGYqGHqOo9PyrSeHq0480otL0FdGrXm3xQttP1W/8PaTq1x5Gnzm7kmckfLiBlVhnuGcEV6TXkfxzu9FOj6dY3sV1JqRuElt2tQd8Me9VkbPuDtA7sR6VmM6j4YQxweCkWAbbf7deeSg6IguJAAPQcV2lY/hm30u18M6dFogA0zyFa2xnlGGQeecnOefWtigAooooAKKKKACq91PHbW0s8xxFGhdzjPygc8VYqvdCE2swuNvkFD5mTxtxzn8KAJx05pc1Xt7dLaLyot+zJ+85Y/mTmkgtY7YMI9/zNuO52bn8ScUAWaM1WhtY4ZJJF8zfIfm3SMw/IkgfhQtpGty9wDJ5jDBzIxH/fOcfpQBS8Qx30vh/UF0tlW/8hjb7lyGfGQp9ieD9a4T4FRajF8OIGvTi3M0n2SMJjEe45Y9yS5f8AK9Ha0ja6S5Jk8xBgYkYL3/AIc4PWoYbO0aCA26BIoiTGsDFEBzzwCARnNAF8YHFGRx71Xns4riNUk34U5GxymD/wABIp09ulzCYZd+w9drlT+YOaAJ6Q9ahe3V4TCd2zG3hyD+fX9aRLdYoBCm/YBjlyx/MnP60ALDPFK8yoctE+yTjGG2g/yIqfNUrKC3t0lityeH/e5csd20dSSTnG3vUlvbR2wbyt+XOTudm/mTigCzmjNVYbaOKWSUb90nXdIzD8iSB+FC2sQuWuP3m9hg5kbb/wB85x+lAFrNQefH9qMAP70IHxj+HOOtNNpE1ylwfM8xBgYkYL/3znH6VFPa2095Gzk+fGAw2yMpxnvgjI4PXNAF3NGRVee0iuYwkm/CnI2uU5/4CRSz26XMJil37D1CuVP5gg0AWKQmoWt1aLyju2bdvDkHH16/rSJbrFbiJd+0DHLkn8yc/rSYHyn4/hlk8f8AiJkBKx3JZzntkAfXkivcPgsc/Daz/wCu0v8A6Ea8O8feYvjrXkjDeXHOQ3f5cjG49+SOua9x+DbGX4e20rfeaWUccDhsdOgr7bO3L+yqV7fZ/I5qX8RnomeKM1WjtY4ppJVD7pPvbpGI/InA/CgWkYuTc/vPNIx/rGx/3znFfFHSWc1Bczx28JklOEBAPGepwP1Ipr2kUlwk7b/MUYXEjAfkDior22tplR7vO2NgQDIyrnIxkA4POOuaALoNGRVee0iuY1STfhTkbXKYP/ASKWeBLiExSB9jYztcqfzBzQBYzSZxUJt0MPk/NsC7eHOcfXr+tEdusMAhXfsAxkuSfzJz+tAHkHxf1G68M+MPDviaOF3igtby3jdRkLM8TBAfxYH6K3pVf4Wajf8AiD4k6jq93E7Pa6RFp91OQMNcKybunGSVbp6e4z0/xV1rRPDfgS9069V5ZdShlgs4DmRjKV4f5jwFJU57cY5qv8HNf03UfDb6ZEskWsWRxfxSjaWcsfnAzg57+/XrkgHpwPHelzVWO2iimknTzN79d0jEcexOBSi0jF0bj955mMf6xtuP93OP0oAsZpGPpUD2sUs6Tvv8xPu4kYD8gcGmz2sc5R38zMZJULIy8++CM9O9AHx74hhkh1+/8wY3Tu45z8pY4r6i+HGB8PND/wCvVa+Y9auLm28R37n7xmkA8xQ/ylyRjdkYr6X8AwrcfDfRo5N21rVc7GKH8xjFfacSOTwVG/lt6HNR+JnYZpM1B5CfZ/I+bZt243nOPr1/GiK3WC3WFC+0DA3OWP5k5/WvizpOO+MXPwo17/rnH/6NSvP/ABvpekWnhLSruzGb+5v9Ke8XdnbtgZEGO3yj9c9xXqHi3wv/AG54K1XRLV2jkuoj5Zkdm+cEMASSeCVGfxrwnw5oXjPxT4lOgajAIrWxvrWW/diuIzAhQYIPzFlbtkfd6AUAfTw6UtIvKjFLQAUUUUAFFFFABRRRQAUlLRQAlfInxDiMfxM8QqB/y8l/zwf619dmvlH4ox+X8U/ES9MiNh+KRn+te5w7LlxqMq3wnt/wak3/AAz05c52STL/AORGP9a7xhk+2OnrXnPwRk3fDxFz9y7lX+R/rXo7EetcGZx5cZVX95/mXD4Uea/CZbKJdZgtob9AJI5Lc3mCTZnf5G3H+6/Xn1r0uvM/ho8P9t+JLddYjvjp7w2EMaxFSkEe4oSe/LuvHdfcV6Z2zXEUfHXipdnjPxKvpq03/ox6+jfhE2/4Y6QfTzR+UrivnfxmgTx14mH/AFE5T+bOa+g/g2+74Y6YPR5x/wCRWP8AWvrs21yei/P9GYQ/iM7+vN/ifeXNvd6UINT+w/ZobnUYxtU+dND5QROe2JXyO9ekV5x8TWma/wBC8mwsrkWDS6pKbldx2Q7F2L7sZB68qDg4r5E3PRV4z9adSL046UtABRRRQAUUUUAFFFFABRRRQAUGiigDxv8AaHl2+E9Khz96+3flGw/rXhFhF511axYzvkVcfUgV7X+0VL/xLdBiz96aZsfQKP615B4bj87xHpEWM77yFcfVxX3HDfu4Wc/JnNW+JH2Ygwij2rnPEvjDTvDM1rb3Tj7RdKzRKzBQQuMkk8DqK6ReFrwP9oG1uZNZ0GURM1uYpEUg5JbcCwx16YNfI4GjCviIwnszeTajoaOufF9V3JHdqn/TO0G4/wDfR/oRXnuo/EC/unZraMRk5zJKfMY/n0/Wqmg+AvEviSJJ9M012t2JAnkIjj4ODgnGcEEcZ6V2U3wUutM8O6hq2q6vEslpayziG2QtkohbBdsY6elfbxWT4D3XJOXbf8v1OX95I8yvNRvb9913cyykcgOeB9B0FfSvwaj2fDPTj/fkmb/yIw/pXzDFIJrdzsVCGUDbn0Oep+lfVXwri8r4baMvrG7fm7H+tc3EtWE8DTdNWTl+j6FUU1LU7TNePfEjX9N0Hx3JJqsW9ZdECWpI4WUSyPuHuDGn4kV7Aeorxf4leJL1PGViY9HgvdO8NzJc3Ty8szPGTgcYGFII9W2+lfDnUem+ELR7DwZodnImySCwgjdSOQwjUH9a3KavTpj2p1ABRRRQAUUUUAFV7mKKe2linAMLoVcE4GCOf0qxUF1bpd2k1vKSI5UKNj0IwaAJhS0g6UtABRRRQAh6YNRW0UUECxwACMdMHNSt0OahtrdLW3WGPOxc4yffNAE9FFFABSHqKWkNAEEMUMbzNEFDSPukx3bAGT+AFcDbeNdc8W6xf2vhC309NP09/Jl1LURI6Sy/3Y0Qg8epPceoz3DW0UUV4Q5TzyXkYt935QufbAANeM/DHUNY8K+GNQ0qx8NXesN9tkezv7VkW1uchVB8xmHy5UcjI7dRQBo6Xr/jrxxqF/YWWpWGj3ehXaQX8McBdLjLsCwZskDCHC9+7YPHSfE7xjqXg2w0m402O2ke7vlt3E6FsKQTxgjBqb4b+Drnwtpt7c6nNHNrOq3Bur10+6rEkhB64LMfqTXM/Hv/AJBnhoeurJ/I0AevCoTFD9qM21TNsC577cn/ABNTioBbp9sNzz5mwJ14xkn+tAE9FFFABSGlpDQB8lfEF3Tx94iVGIWS5ZXA9NwPP44r3L4Kf8k2tP8ArvN/6Ga8O+IE7x+PvEaLjbLcMrZ9Awb+YFe5fBX/AJJtaf8AXeb/ANDNfa53/wAiql/27+RzU/4jPQ6KKK+KOkKguYop4THOAYzjIPTrU9QXVul1A0UmdrYzj2OaAJx0opB0paACiiigDyX4haXBrfxZ8JaZdDMNzZX8Z4zjMLjI9xwfwqDwhpEWh/G66sUl85h4dRpZwoXzn3xhnIHTPWmfGf8AtXRdT0XxZYW0k0VlDdW0jqP9S0sZRXPoPmPPTI9xVL4Nzat4m8WXXim8t2itIdKj05JCMLK4ZSSPXGw/TIoA9wFLSDkUtABTW6U6mv0oA+NPEMksviC/MpJKzuq57AMcV9R/Dj/knmh/9eq18u+Ip3n8QXxfHyTugwOwY19RfDj/AJJ5of8A16rX2/EumAoLz/Q5qPxs6qiiiviDpMPxVrqeGvDGoa1JH5otIS4QfxN0A+hJFeA+FPHviXRfGdzqmqWiNZand263yhMCJp03RlOcj5RnB7DB5Oa9i+L/APySrX/+uKf+jFrgfHD6Q3gfTRZSxNqAu9KN8iHkHyT5ZP1T9BQB7qoIHJzS0gORS0AFFFFABRRRQAUUUUAFBoooASvlj4woY/irqeBzLDCx/CNf/ia+pz2r5n+M8QT4oux6vYK/5Iw/pXrZHLlxkTOr8J3nwQ1C1tfAl2bq4ihRL+QZkYDjy4z/AFrsb/x5o9mDseS4IHVFwv5nH6Zr5dstav8ATrZ7a0lEaOxYnaCc9P6CtXTfC/ivxWwa0sL26jJyJZTtjH0ZsD8vyr6PGcP0ZYieJxFRRjJ+n5mMasuW0UeqfD3xVYS+Lhp7pDFPLDJFE0Ugl8873k3EqPlwmB83JxXsQP8AOvG/APwi1Pw94gs9b1K/txJb7ittAC2SyFeW4x97sDXsgGB+NfJ5jTw1Oty4WXNG2/mbwcmvePkXx2oT4g+I19b9j/Mmvevgq2fhvaD+7PMP/HzXhPxGXb8SfEIHe6B/Na9w+B7bvh4g/u3Uo/UV9DmSvktJ+ZnD+Iz0mvMviktm+qeHftFjd3PkySz3LQPtC2g2iUNzyCTHx3AIyM8+m5rzP4nm3Gt+HI5NVkszdySWlwiQmTfbPtLk4+6AyoMn+9n+GvkTc9LXpS01BgdT1706gAooooAKKKKACiiigAooooAKKKKAPA/2jZM3Xh2L+6lw35mP/CvN/A8fneONAX0v4D+Tg/0rvf2iJc+ItGi/u2jt+b4/pXH/AA1i834h6GmM4uQ35An+lfb5MlHLakv7rOar8aPrYdK82+I/iCLwt4k8Ma1eQu1pELqJmGQodxGFBOPTefcKa9JFeW/Fu81e/wDsfhrRrKC4klCXtw0oJwizxqoGO25gWPZQa+H0e50nR/DSN1+H+lu8ToZzLcYkGDiSV3Bx7hgfxq149fZ8P/EJ6Z06cfnGR/Wr3hrVDrvhjTNWaLymvLaOYoOillBIHtWV8TH8v4ca+fW0Zfz4/rV0l+9jfuKWx8jWpIVx2NfX/wAPovK+H2gr62Ubfmuf618iQAfZA3q7D9BX2N4Qj8rwZoceMFbCAH/v2tfW8Q6YGjHzf5GFL42bZ614l4oi1+Xx9q/hm00/zLbX2huTcDBCxR+QpY+gXZKMdyy4r2xuuPavE0fX5PiLa+LDqZNpNrUmiRW+MqYRK6lQO3EW/Pr9K+QOg9tXpS0i9KWgAooooAKKKKACq95B9qtJrfeyebGyb16rkYzViq15HJLZzxQP5czxsqP/AHSQcH86ALA6UtIDx0pc0AFFJketLmgBDUFrb/ZbZId7Ptz8zdTzmpiew61DaxyQ2yJNJ5jjOW9ec0AWKKM0UAFIeopaQ0AcJ4x1m3tpn8KQ28+oan4iSRI7ZZfKWKIx7GZnIO1QFY8Ang8VyVj4C+KXh7SYbfRvGVqywRgR2sseVAH8KlkPHYZx+Fdf4j8DXmq+JLXxJpmsfYNXs2KwO0IljaEqAY2XI4yXOQf4vXBDbnRfiBqdu1ndeI9JsYXBV5rCxczEd8F3IUn1HTPFAD/hZ4vvPGfhE3+owpHeQXL20pQYVyqq24DtwwB9wa5r4882XhdfXVk/lXofhnw5p3hTQrfSdNjZYIcks7ZZ2PVmPcn/AOsOK87+O2DB4UXudWXj8KAPX6ri3/003Ikb/VhNnbqTn9anFVzHKL0y+Z+68sL5f+1k8/qKALNFJketLQAUh60tNJFAHyZ4/m8rx74jTaG8y5Zcn+HDK3H5Yr3L4K/8k2tP+u83/oZrw7x+8a+PfEavHuZ7giNs/dO5Tn8sj8a9x+C3/JN7TP8Az3m4/wCBGvtc7/5FVL/t38jmp/xGeh0UZor4o6Qqvd2/2q3aLeybiPmXqMHNWM1Xu45Zbdkhk8uQkYb05oAnHSlpARilzQAUUmR1pc0Aeb/F/wAZweG/DEumfZnurzV7ee3ijBwETZh3b2AYcd+emDVD4OeOLfXtLbQntGtb2yQzKvVZInbIK8cAFgMemD6gSeOLO31H4w+DLK6QPBPaX8cinuphYGqnhfTrbSvjc9lZiMQxeGIwrR8q37yMbh60AeuilpB0paACmt0NOzTX6ZoA+NfEU/n+IL35FXZM6fL3wx5r6i+HH/JPND/69Vr5e8RSRSeIL0xR7Nszq3uQxGf5V9Q/Dj/knmh/9eq19txLpgKCtbX9Dmo/EzqqKTIxnPFLmviTpMPxToUXiXw5f6PLKYxdwmMOP4W6qcexAP514L4T8Fa5rXjK58OareQG30W7gnv3VifP2IFhVeOyqw5xwx717r4212Tw14N1TWIVVpraAtGG6biQq59skV8/6Dr3ifwx4hbXbqXzZZby0GqlwP8ASI7qISRj0BQK2COhYDpkUAfT6nj6dadTVGF4p1ABRRRQAUUUUAFFFFABRRRQAlcl4o+Hmg+LbpLzUIZVvEj8pZ4pSrBeeMcqep7V1tHFOFSVOXNF2YHJaL8OvC2hbWtNIgeZf+W1wPNfPqC2cfhiuqCjGcYpce1L0FFStVqy5qsm33buCSWwooNGRSEjtUgfJnxPGz4oa+vrMjf+Q1/xr2b4FNnwDKM/dvZB/wCOof61478V1x8VddA6ZiP5xIa7v4VeL7Pw74Iuo7lMn7c7b3cJGAUTGWPfivtcVSnWySmoK7ujnTtVdz3SvPfiDYahc6xoYso7V471pNNlM5IMe8eZuX8Im/l3OOU1r40KN0dpICeQBbR5x9Wb+a1wGp/EbWL66juIWaCSJt8UrSNJJG2CuQcgdGI6d68ijw7jZxc5Ll9S3WitEfVqjFLVe1kMltG56soP6VYrwmrOxqFFFFABRRRQAUUUUAFFFFABSE4paQ0MD5t/aCkLePNPiB4XTkP4mST/AAFZHwki834m6PxwplY/hE1W/jtL5nxJVc/6uziX9WP9aX4KxeZ8RbZsf6uCVv0x/WvtsCuXJ6r/ALpzT/iI+na8n+Js+vaN4o0zVtHtBdLfW39lBVZQwkeUOF+bpuCkZ7bT0r1fmvG/idZ6vrXiC+ltNVltLfw1p6akqI2P3uy4YOOOWBjQfQtXxCOk9O8L6bLo3hXSdMnKma0s4oJCpyCyoAce2Qawfiy/l/DDXG9YkX85FH9a6nS5ZbjSbOecDzZYEd8DHzFQT+tcb8Z22fCrWMfxGBf/ACMla0FerFeaE9j5cgP+iqPRm/kK+0tFj8nQ9PixjZbRr+Sivi2BCVUDqzcD8cf0r7cgUR28SDoqgfpX0/Ecv3GHj5NmNHdkh6//AF68X8L+H7qb4q6lZDWYJtJ0W6W9S3Q5cySGdgvHGVMzhj/uivYL+4+y2Fzcd4YWk/IZ/pXi/wAO9E06w8T+F73T7lnvL3TZp9Rw+cMYbchW9TmTf9Wr5Q3PcR/WlpBnHNLQAUUUUAFFFFABVa9FwbOcWpAuPLbyiegbHH61ZqtevLFZzyW8fmTLGxRM/eYDgUAEEUscW2WdpnyfnKgfoBii3hmiDCW4ack5BZVXA9OBVgUtAFWKGZJJGkuWlRvuoVUbPyHNKsMwuGkNwzREcQlRgfjjNWaKAKrRTfaUkFwwjA+aHaME885xmoY4L14oDLc+W6kmVUVSHGeByOKvnrUFm80lqjzx+XKc7l9OaAEuIJpVURXDQkHJKqDuHpzS3EUskBSKdoXPSRVUkfgRirFFAEDxSNblFmZZNuBIFGc+uOlCRypAEaVncDBkwASfXHSp6Q9RQBSso7uITLdz+b+8/dPtAO3aOoA653VLBBNEHEtw02TkblUYHpwKW3kmeS4EsYRVk2xn+8u1Tn8yR+FWKAK0cUySyPJcNIjfdQoo2fj3ryT44RyibwqWnJjbVUCxbRhenevZK8g+OPM3g0Dp/ay/zWgD1VoZmuUkW4ZYwMNFtUhvfOM1FLDdyX6Mlx5VsqDIVQSzZ6cjpjFXh0qDfN9tMez9x5YIf/ayePyxQA24hmnjCw3LW7ZyWVVbI9Oc06eKWWEpFM0LdpAoJH4EYqwKKAIWjkMBQTFZNuPMwM59cdKSKOVLcI8rPIBgyFQCT64HFT0hoA+TPHvkjxzr6y5aUTFVcD7z7hkkfTIr3D4ObX+Htq6qFXzZQEHIU7jkg9eeteH+P0ibx74kLuVdbgmMf3m3KCPyJP4V7h8F8f8ACtrT/rvN/wChGvtM7S/sulv9n8jmpfxGd0kMyyyO9w0kbfdjKqAv44pRBMLoyG4YxYwItq4B9c4zVmivizpKzwzNcJItyyxgYaIKpDfiRmob+K9kjVrO48uRTkqVBDjPQ56cVfqvePNHbO8EfmSjGF9eaAG3MM0ybYbhrd853qqtn25H+cU+eKWSBlimaFz0cAEj8DxU4ooAgMUht9gmIk24Eu0Zz646URRSpbCN5mkkAwZCoBJ9cdKnooA8f+Luha7FFp/ibTHku5NMiuY7n5VDJDJHtZ1Ax90bvfnPQVX+D+lX97q0vieW2a205LAabp5diWmiVwQ3PQDYByOc1s/GPxbdaNosWhafbefeaxDPGzEEiKFU/eMMEfNg8duDms34NeKpZnm8H3EAEdjCbiwnUYM1uX6t2zlh0x6Y4NAHq8cM4md2uGeNvuxlVAT8cZNKIZvtPmfaG8rGBFtXA/HGasAYFLQBWeGZrhJFuHSMD5ogqkN+JGabcQzSOhjuGiA++AqnePTkcd+lW6a2O9AHx3rktpH4jv2Fv5q+a+5WYj59xzivpbwDG8vw30RY5jC5tkw6gNjn0bP0r5k8RpEniC+8mTeDM5b2bJyK+ofhx/yTzQ/+vVa+04jS+pUWr/P0Oaj8TOj8uT7Ps81vMC48zaM59cdKIYpY7cJJM0sgGDIVAJPrjpU9FfFnScD8UopIvhT4gSW4advJU7mVRgb14wAPSvOvF+tWt54ItNOjuRLNZz6SzqUCkF4WcAMPvfLjr0r3DW9Ktte0a80m8BNvdwtE5U4YA9x79x9K8I8H/C+3n+IWoabe6xLcxaJcRSyw7cC4CqpgDDsACwPXgYGM5oA+iVIYcHNLTV6fjTqACiiigAooooAKKKTIoAWikyPWopZ4beMyTSpGg6s7YH5mha7ASUfjXO3njHSbUEJK9ww7RLkfmcD8q43Wvi1b2pZI5IIGzjr5rg+mBwD9a66GX4mu7QgyXOMd2ep5A6msq98Q6VYnEt3GXH8Efzn9OlfP2sfFa8vwyxrPKD3nfCg/7i8H8xXNHWfEevzGCz+0yMTkQ2MRyP8AvnJx9TXuYfhirbnryUUZOv2PetY+J9jp6HYqRnGQ079R6hRyR9K4DWPjHcTMyW0s8i56R4hXH1xurH0j4M+LNWKyXUMOnxHkvcyAv/3yuTn6kV6Bo/wJ0S02vqt7c37jqifuYz+WT+oro9nkmC+OXtJLsr/8D8RXqz8jwzVdSl1zUzdvbxpcScHytxZ+wzknJ7Zrb0b4beLNaKtb6RLDEcfvbrEQA9fm5P4A19MaR4Y0TQU/4lel21s2MF0T5z9WPJ/E1r7T9Kzq8VOEeTCUlFeev5f5sFQv8TPEdG+AJIV9b1j6w2aZ/wDH2/8Aia9B0j4aeFNF2tb6RDLKo/1tz+9b/wAeyB+AFdeBQRXh4nNcZidKlR27LRfcjWNOKBRgYxinUlLXnpFhRRRTAKKKKACiiigAooooAKQ0tIaAPlT40S+Z8VNQXP8Aq0hX/wAhqf61t/AiPd47uGI+5p7n83jH9a5r4rSef8VtbbOcSRr/AN8xIP6V2PwCjz4o1OXHK2YX83H+Ffa0/cyWp6I5n/ER9BnpmvGfiToZ1D4iaTY22vx2B1xDb3UTYLBUjlUMOf4lldAD3Ir2Ynt+VeDeOdP0q/8AEXiy/u5sapa3NrHYoWIbaEtwxB7YaXP/AAKviTpPdYY0hhSJF2ogCqPQDgV598cH2fDC9X+/NCP/AB8H+leijpXmPx5k2fDkr/fvIl/9CP8ASujCK9ePqJ7HzzpUImv9MixnzJUXH1fFfaSfdX6V8b+FE87xPoUXXdewJj6yD/GvskdK+h4nsvYL+6zKh1KmqXNraaZd3N+VWzigd52bkCMDLZH0zXkvwUtfDzahr93p63YvI7h44Uus5jtCwEeM+8eD3+QDtXc/E6Rk+G+ulM82pVsDOFJAJI9MZrB+H2oaXrvjHXdV0aAQ2UdtDABjhpGmnkc/U7g3/AhXy5semLwKWgUUAFFFFABRRRQAVWvbhra0mnSNpWjjZwi9WI7VZqveXC2tpNcMpZYo2chRycDPFAE44FLSDpS0AFFFFACGoLSdri3WV42jZs5RuowcVOagtLhbu2SZAwVs8N14OP6UAWKKKKACkPUUtIeDmgCvBM0slwhiKCKTYpP8Y2qcj8yPwqzVa3uFnkuI1UgwSeW2RgE7Vbj2+arNADSOa+a/i142u28VWuj6jpyrNouofaUmjkwLiI4ZOCPlO3GTkjOeK+lSMkV4X8cvBE2seIfDl9Yp++vpl02VgOhJyjH8C+T7CgD03wL4hvfFPhuLWryzS0S6kc20CsWIiB2gsT1JIJyABgiugE7fbTb+WdojD7+2ckY/SmabYQaZplrYWy7be2iWGNfRVAA/lTxcp9tNtht/lh89sZI/pQBYHSigdKKACkNLSHrQB8m+Polfx94jcuFMVyWCn+IllGPyJP4V7h8Fv+Sa2f8A12l/9DNeH+PoTL4/8RyAjENyWYHvllXj869w+C3/ACTaz/67S/8AoRr7XO/+RVS1/l/I56X8RnodFFFfFHQFVruc21u0qRNIy4wi9Tzj+tWar3dwtpbtO4YquOF68nH9aAJxS0CigAooooA8v8bCE/GHwQLkIYPs995gY8FfJbOfbFUfC62K/Gi3/s2OOOx/4RWLyEjfcqr5iYAPfjv3q58ZPCmoatpUGv6TcLFd6RDO0iscb4WX58H1AB47gnvisv4M+DdT0+abxFqtyjsbY6dZxRtnESSYY+3zJx9TnrQB7KOlLSCloAKY/T8KfTX/AKUAfG3iOEQ+IL7EgffM7nHYljxX1D8N/wDknmh/9eq18veI7drfxBfByuXndxt7Asa+ofhx/wAk70P/AK9Vr7biVp4Gg07/APDHLR+NnVUUUV8SdRzHj7V7nQvA2salZnbPBbny2xnaxIUN74znHtXz7ZaP4g8G3Vv4tXUp2m+1WXnbmP8ApCTxiRtxP3hklfbGevT3X4sc/C/XwASfsw6f7wrzLxd4ntNV+HGmaXDt3Ws2mpG4fd5rGEO2B/s5A/MdqAPoBfugZzS0gpaACiiigAoopD1oAo3uq2NhzdXMUWBnDNz+Vc5qHj7TrRHaGOSYKMl2OxQPXJ/wrgPjNH4l07xBa65pkE0mmpZiK4KrvjVg7nLL1Xgj5uPrxXB/25o3iuKKHVN1jeICI5C2U59Ce3sfzr2svy6hWSnNvzsZzm1seg6x8X1i3JHeIMcbLRN5I/3jx+RFcDqfxFvbxyYYuTkGS4cux98cY+mTXReGfhZouoTD+09fkU5+WGKIR7h2+ckjn0xXrWjfDvwroWx7TSLdplxiacea2fUFuh+mK9epi8qwD5YQc5ell/X3mSVSe7Pna00zxj4ubFta393G45IXy4T+Jwtdlo3wH1i6xJq2oW9ineOJfNf8eQB+Zr6BChRgDj0oxgVwVuJ8U1y0IqC8ld/5fgWqEep59o/wc8J6VtaW1k1CZf47t8j/AL5XA/MGu5s7C10+3FvZ20VvCOkcSBV/IVaIyKQADoK8Kviq9d3rTcvVmqhFbIUcUoopaxSsMKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0hoA+PviDL5vxM19yel3In5cf0r0n9n2PdqGuy4+7FCv5lz/SvK/GEnneP9ffOc6lcY+nmNivYP2fY8Wuuy4+88K5+gf/ABr7XEe5ksvPlOZfxD2s9a8R12bwnefHiwjuILlnUiK4kUMIXuwY/KDeuPkB7E7M9K9t57da8I/tWxm8YTeHxbE6u3isXBfb8whE6uR9NsStn6V8UjqPeB0ryn9oF9vgG0X+/qUY/wDIch/pXqwwK8h/aGkx4Q0uPP3tQB/KN/8AGunA64iHqRLY8f8AAUO/xx4fTGf9Nhb8mDf0r6+FfJ3w1jEvxH0FRziRW/JCf6V9Yivc4nf7+nHtEzo7M53xprMmieHXmt7SO7urmWO0t7eU4R5JWCAN7ckn6VzPwZnK+CFsJNPWyubKRUmCgfvS6JKHbgYbbIAQemKvfFSS+tPDFtq1jbG5Ol30V9LGDzsQN83uAxU49Aal+GqahNod/q+p2jW1xq1814sTjawTy40XI7Z2Zx7180bHbDpS0CigAooooAKKKKACq91NFb2s00zYijQtISM/KBk8fSrFV7sR/ZZTLsMYQ7hJ90jHf2oAnB45pc1XtjcGHNwkSyc8RsSv6gUluboh/tKRKd3y+Wxbj3yBQBYyPWjI9arQ/azLIJkiWP8A5ZlHLE/UEDH4Uqm6+0uGjh+z4+UhyXJ9xjH60AWDUNvPDPAssLZjb7vGP0pjm7+1KFSH7Pj5mLneDz0GMeneo90irCLGOBoM4YlyuBnsADnvQBezSZGM1XuPtSqDbJE7Z5ErlQB7YB5pZzcCIm3WNpPSRyq/mAaAJ8jGaTqRioWM/kkokZmxwpbC5+uM/pQnn+QrSpGJscqrErn64/pQAsM8UrTKjZaJ9knGMNtB/kRU9UrMtsl3pCs4f96ImyN20YycDnGO3pUkBuiH+0pEvPy+Wxbj3yBQBYyD3qGSGOUoXRX2NuXIzg+o/X86ji+1maQTJEsf/LMo5Yn6ggY/CnKbv7SwaOIW+PlbeS+fpjH60AWBwKhM0X2ow7v3uwNjH8OcdfrTWN19pUKkX2fHzMXIfP0xjHTvUM3mLex+THbtLt/eF32uEz2wpz39KAL3QUZGM9qr3BulRfsscLNnkSuVAHtgHmnTm4EJNusbS9hI5VfzANAE2RjOeKQn34qEmfychIzPt+6WwufrjOPwoj+0G3UypGJschWJXP1wD+lJgfKXxAieTx/4hdASiXJL89sgfjyRXuPwVI/4Vtacj/XS/wDoRrw7x95n/Cda7jcCZz5wT7o5HfuM49Oa9x+DZA+Htt5XzR+dLhjwc7ueOn619rnb/wCEukvT8jnpfxGeiZpMj1qtEbpppBMkQi42FWJJ+oI4pR9q+1EFIvs+OG3ndn6YxXxZ0FnNQXMsUEJkmOEGAeM9SAP1xTXa6FygRITBj5yzkNn2GMfrUV8ZFjT5IHg3DzfOcjAyMYwDn8aALooyPWq1x9qWMfZUids8iRioA9sA806b7QIi0CxtL2EjYX8wCaALBIHWjNQZn+z7tkZn2/d3Hbn64zj8KSM3H2cGVIxNjlVclc/XGf0oA8w+Mmv6xa21j4c0TC3GrRXBmkPJEMaZZRnoSC3PXj34yfgvrGuaffP4N1kDyo7I3tmcDMa+ZtZcjqNzE856HtitbxlcNb/FfwNPqIhjSOO+ZyjFlCCLknIHvUXh++g1H42peWyBIn8N/JGq42J5ygAjsR0I6DHWgD1sGlzVVDdGeVZUhEP/ACzKsSx+oIx+tKPtX2rBWL7Pj72878/TGKALNNY/yqB2uvOjEcUPlfxlnIYfQAEfrSXBug0YgSNlz85kcqQPYAc0AfHniGGWHxBfiUYLTuwyc8FjivqP4cf8k70P/r1WvmLWQh8Rah9uedV85yhVQxxuOOCemK+l/AHnj4b6KbdUd/sy4EjbQee+Aa+04llfB0V6emxzUfiZ2GaM1XHn+RkpH5+37u75d31xnH4URm4MAMyRibHKo5K5+uM/pXxZ0jNQsrbU7C4sbuJZbe4iaKWM/wASkYI/WvBfA/w90GP4rapA1wbmy0yVXsFeZSJZFCs2QPvbCw/r3r1Tx/fajp/w4127DpBdJbMEeFycA4XIJAweT+nNeCyeEbvwlp1h4ktrmaOSGbT7i1JYbW85CXwAc9VAII6cc9aAPqpeB0xS01M7eRinUAFFFFABSd6WigCNl3DBwRXmXjD4L6F4h8y60wDStQYliY1/dSH/AGk7fVcfjXqFGKqnUnTd4Owmkz5Ov7Lxh8OLoQ38DGz3bUYnfA4/2W/hPtwfUGu98IfFlHKW0km09Ps9y3X2R/6H8q9rurWC+tpLe6gjnhkG145VDKw9CDwa8e8YfAa0uzJeeF5ltJj8xs5smJj/ALLdV+hyPpXsU8wo11yYmOvczcGtj1DSvEmn6oqoknlTH/llJwT9PX8K2cgd6+Rhq3ibwTff2dq1rKAnSG5z06fI46jj3Fep+EvivHdKsDTeZgf6idtsgHs3f/PSs6+VtrnoO6GqnRns2aWsrTNesNUQfZ5sSd4nGGH4d/wrUzXlShKLtJWZotR1FFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKQ9KWkY4BNAHxRq7/aPE+qzZzuupXz9XP+Ne7/AACQJ4a1WU4Aa72kn2RT/wCzV8/rJ513cyk8uWb82zXU6D4s/sPRprEQySs8xk279qcqo59+PSv0GeDni8s9jT3bRyc3LO7Ppq+8U6TZBla4Esg4KRDcf8P1rhbTxLpK/Eu91vUI0s4f7Lht455QPveZIT83rjA/CvGbzxlq10SI5Ut09IlGQPqR/hWQqX2qXKxxrc3dxIcKg3O7H2HPr+tcUOFYRpt1JWt/XoV7fXQ+0InWWNZEYMjDKkdwa8a/aJf/AIkOix+t07fkn/169d05WTTLVGBBWJAQRgg4FeNftGP/AKL4ej/vSTt+QQf1r5bAxX1qMV3N5fCcP8IUMnxL0c4zsErflEwr6pFfMnwXg3fEeHj/AFUErfpj+tfTY6V63Ez/ANtiv7qM6PwnnfxSj1XWLew8L6RcGCXVkuPMIIG9I487CT0BYqD7ZHetn4dXd1e+B7GS9n8+aN5oPO27TIscrxqxHYlVFc18YYL6GLQtX0vUYLW+guhaxpM23zPOePoRzwYxnH8Jau28KaG3hvwxYaS8wnkt0PmShcB3YlmOPdia+eNjbooooAKKKKACiiigAqvdQxXFrLFOAYpEZXycfKRg/pViq93bJd2k1vISEljaNtpwcEYNAE46UtIKWgAooooAQ9DmoreKKCBY4QBGOmDUrDINQ2tslrAsUZJVc4yc9TmgCeiiigApD1paQ0ARRQxRvM0SgNI++THdsAc/gBU1VoLZIJJ3QnM8nmPk99oXj/vkVZoAKKKKACoPJi+1GbaDNsC577cn/E1PVcW6fbDdZO/ywmM8YyT/AFoAsUUUUAFIaWkNAHyV8QHkTx94iRCQr3LCQDuNwP8APFe5/BX/AJJtaf8AXebj/gZrw74gTtH498RxqFxLcMrZ9Awb+YFe4/BX/km1p/13m/8AQzX2ud/8iul/27+RzU/4jPQ6KKK+KOkKhuIYp4THMAUJGQfrU1QXVul1A0UhYK2MlTg8HNAE46UUg6UtABRRRQB5v8XvB48ReHv7Ugumtr7R4ZriJwMh025dD9Qo559Mc1j/AAU8KvDYf8Jff3rXF/qULRIpGBFGH+Ye5JUH2xU3xjudYvbnRPCukXLwHVBcPPsODIsabgnHY85Hfj3rH+D2o67Z+Kn0bU52e11LTP7XhgfP7kvIOFBPAO5jj6GgD3EdKWkHTpiloAKa3Q06mt0NAHxr4hlll8QX/mkkrcOq57AMa+ovhx/yTzQ/+vVa+XfEU7z+IL7ft+SZ4xj0DGvqL4cf8k80P/r1Wvt+JdMBQXn+hzUfjZ1VFFFfEHScb8U42k+GfiFUBY/ZCxA9AQSfyH6V4pr3je217wpbaDAiNJENKhgdCxaZhETIpHT5WO3jua+lblYnt5EuAhgZCJBJjaV759sV4P4GXwU3xc1GytntGs7WXzdF+d9pldV8zYScMQV+X8x2oA9/XkZpaQdP8KWgAooooAKKKKACiiigApCM0tFAGTrWg6Z4hsGstVsYru3P8Eg6e4PVT7gg14f4w+BN9ZFrzwvM11CDk2czASr/ALjcBvocH619C0hGe1b0MTVoO8GJpM+RdN8Y6z4fvDZ6pFM5hbayTZSaIj3POfr+BFew+FPijDfIsbzfagBho3O2ZPqD979frXbeKPBGh+L7UxatZK8oGI7iP5ZY/o39DkV4L4v+Dev+GZGvdH8zUrJDuBh4njA7lR1+q/kK9eGKw2LXLVVn/WxnaUdj6N07WLHVYi9pOrYGSnRl+orQ4x1r5K0H4h3+nSxi+DzbD8syHbIh/r+nvmvZ/DPxPg1CBTJKt0gHLrgSJ/vL2/rXLiMqnD3qWq/EpTvoz0+lqnY6la6jD5trMsi98HkfUdqt5rymmnZ7li0UZopgFFFFABRRRQAUUUUAFFFFABRRRQAVBdbvs0wjGZPLO0D1wcVPSEZPSi9tQPiefRtT0q/Nlf6fc2102QIpIiC309fwrr9C+FfivXgki2As7dv+Wt23l/8Ajv3j+VfUbRKzKzIpK8qSMkH608D2/Wvoo8TV6VFUqUEmuu/4GLoJu7PJtC+BWj2ZWTWLybUJByYk/dR/odx+uRXo+laFpehwmLS9Pt7RD1EKBS31PU/jWpSHNeNisficU71pt/l9yNFGMdkKM45614N+0Y2bjw2notyf1ir3mvn79oh863oMf92CU/my/wCFaZXG+LhcJ/CVPgagk+IN2392ykYf9/Ix/WvozIr55+A22PxNqtzIyqkdlhmY4Ay6nr/wGvX9S8Z2FmTHbBrqTkfJwufr3/CvT4gpTq5jKMFeyRnRaUNTifiNoVp4l8T6kt87m30jQReIgJ++ZJCfoSIwM9q9F8KCUeD9FE7s832CDezHJLeWuSfxrwnxx4k07VdUlu7q/uEnktxaz22nyYWaIMWCSHpjOe+eelev/DnxJP4o8L/2hPAkIEzRRxp0VFAA579682vluIw9H21SNolqpFuyOxooorhLCiiigAooooAKrXsBurOe3DtGZUZN69VyOtWar3kcstnNHBJ5crIQj/3Tjg/nQBYFFIOBS5oAKKM0UAIelQWsH2a1SEuzlc/M3U85qYk449KhtI5YbZI5pPMkGct680AWKKKKACkPUUtIeaAK9vAYZbhzIz+dJvAP8PyquB7fLn8as1Xt45UkuGlk3q8u6Mf3V2qMfmCfxqxmgAooozQAVXEH+mm4EjYMYTZ26k5/WrGar7Jftpk8z9z5YXZj+LJ5/lQBYopM0uaACkPWlpCaTA+TPH03lePvEa7ATLcsoJ/hwytkflXuPwV/5Jraf9d5v/QzXhvj54l8e+JFdNzPcMEb+6dynP5Aj8a9y+C3/JNrQ+s83/oZr7bO/wDkVUv+3fyOal/EZ6HRRmjNfFHSFV7y3+1W7RCRoyxHzL1GDmrGarXiSy27RwSeXIcYf05oAsDpS0gIxS5oAKKKM0AeWfES9h0z4n+Br66k8uCFb5mb/tmP/rD8ayvBms23iD4uadqNqXKP4VQOHOWRhKMhj6+/uPWuu+KPhPTvE/hS4muy0dxpkUl1bzJjKlUJKn/ZO0Z+grE+C/hfSrLw/wD8JPbRv9r1UOAHOfJiEjBY19sKufoKAPVRRSAjFLmgAprdDTqa/TNAHxt4jmE3iC9wipsmdPl74Y819Q/Dj/knmh/9eq18veI2jbxBfeXHs2zOre5DEZr6h+HBH/Cu9DP/AE6rX23EumAoK1tf0Oaj8bOqooor4k6TkPifNJB8NvEDRSFG+xsuVODg8EfiMivE9c8ER6B4G0/xFAkUYZ9OuLSWNv3m94l83d6fMAwx6+1e3fEq2mvPhzr8ECF5WtHYKByQvJ/QV4Lf+PX8UeGbLwnbRSSTb9OgtUCfxJGBJ/5Ez+GKAPqZRgc0tIKWgAooooAKKKKACiiigAooooAKKKKACkPNLRQBwnjD4WeH/F4e4lg+x6ieftduAGY/7Y6N/P3rwXxR8OvFHgW6+2bXmtEOUv7QnC/7w6p+PHua+sxTXQOpVlBBGCD0Irrw+Oq0dN12ZLimfKvh34lXVhKn25nDLgC5g+Vh/vL0P4fjmvafD3xIgv7dGnljmiPHnw8Ef7y9j/nFUPGHwU0TXhJc6OF0q+bnEa/uXPun8P1XH0NeG6x4d8T+AdQzdQT2hJ2pcRHMUg9Nw4P0P5V66nhccrSVn+JFpRPr21vLe9hEtvMkiHup6VPxivl/wz8T5bOZBdu9vKOPPgHyt/vL/wDWP0Fe0aF8QLW9hjN0yMjfduYDuRvqB0rzsRllSnrD3kUqieh3NLUMFxFcwrLDIsiN0ZTkGpcj1rzbNaMsWijNFMAooooAKKKKACiiigAoozRmgAoozSZFABmg9aztQ1mw0xM3VwqNjhByx+g61xWt/EVbWFnhMdpDnHnTkZJ9h0z+f0rooYStXdoITkkd7c3dvZwmW5mSJB/ExxXz58aHk8Qa3ZX+nwyTWVpAY5JQOh3E5x1xjHaqGu/EZ7qVjbiW6mPHn3BIX8FGD/L6VyUlxrHiS+S3Hn3kzn5IYkz+Srx+P5mvq8s4fnQkq9aVrd/6/OxzzrKXuon8Pa6uhNcv5JmklUKqK2Ae+SeePbH5Uy91/WNckFvufbKcLb2ykBs9sDlvxzXoPhn4H6pflJ9fuRYw9TBEQ8p9ieVX9fpXsPh3wZofhiILpVjHFJjDTsN0j/Vjz+HT2rqx2eYChUcqUfaT/BfP/ImFKUlrseH+Gfgvr2r7J9TxpdsecSDdKR7Jnj/gR/CvdvDHhqy8KaLHplgZTChJLStuZiepPQfkBW2M0Dmvk8fm+KxztVfu9lt/XqdMacY7DqKKK84oKKKKACiiigAqtemcWM5tgDcCNjHkfxY4/WrNVr2SaKynkt4/MmSNmjQ/xMBwKAC3lM8G9oZIuT8kgGaLeczhs28sO1sfvFAz7jBqwBRigCvFcNNLLGbeVAn8TgYb6YNItw7XTwGCYBRnzCBsP05zVnFGKAKz3DLcpB5ErbxnzAo2D685qGO4uYo4EuIHklkJDtEBtXnjOT6VfNQWkk0lsjzxiOQ5yuenNACXE7W4UiCWUscfugOPrk0tzMYITKsUkh4+SMDd+tT4oxQBA8rJAZfLckLnYAN3064zRHIzwCXypFJGdjAbvpwcVPQeooAo2M1xOJ5JonjXzP3SOBu27V64P97dU1vOZw/7iWLacfvFAz9MGlt3meS4WWPYqSbYzn7y7VOfzJH4VPQBXjuDJNJGbeVAnRnA2t9OaRbhmumgMEo2jPmEDYf1zVmgigCu87LcpD5ErBhnzABtX9c1BPPcw38aiF5Ld0xlADtbPJOT0xV/FV98324x+X+58sMJM/xZPH5UAJcztbxhhBJKScYiAz9eTTrmYwQGRIZJSP4IwN361OBRigCBpSsBlEbkhc7ABu+nXGaI5mkgEnlyISudjAbv8KnpGGSOKTuB8m+PTCfHGvvICrvMWjXurbhkN+G7867/AMBfEzQPCHhG20u/a5lnV3cmCMMAGOcckc1X8f8Awt1298U6jqml25u4bwiWNUdVKyEqGVskcY3HP4Vx3/CqvG3X+wZf+/0X/wAVX6BF5djsHTpVqySSWl0ne3mcnvxk2kexP8b/AAkkavi+OewhGf8A0Kj/AIXf4S8nzMX3P8PlDP8A6FXjv/Cq/GwP/IBl/CaL/wCKo/4VV42/6AMn/f6L/wCKrm/sXJP+f6/8CiV7Sr2PY1+N/hNoWk234wehiXP/AKFUUnxs8MzW0v2c3kcoAIMsIx1/3q8h/wCFVeNv+gBL/wB/ov8A4qpIPhT4xaZRcaHKkfdhLGcfgGoeTZKk37f/AMmiHtKvY9eh+N3hOViMX64GfmhUf+zUkfxx8JSSbNt+M9zCuP8A0KvHv+FVeNyOdAlz/wBdov8A4qj/AIVV43/6AMn/AH+i/wDiqP7FyV/8v/8AyaP+Qe0q9j2L/hePhLzfL26hnOM+SuP/AEKhvjh4SSXYRfnnGRCuP/Qq8d/4VV42/wCgDL/3+i/+Ko/4VT414/4kUn/f6P8A+Kp/2Lkv/QR/5NEPaVex6p4g+MXhW90W/wBPj+3b7m1kiVhCpALKRz83vVPwb8TfCnhjwxp+iSSXQEJkHmCPeqK0jMMnOejDtXnA+FXjXIzoMuO+Jov/AIqpj8J/GLXbxwaO/leYQkjzRr8uThj82elRLJ8l+H2//k0Q9pV7H0tY6jFqESy26u9u6h45hjZIpGQQc1OJybkw+RL0/wBbgbf55rK8IaK/h3wtp+lSyiWS3iCu46Fupx7ZJx7Yrdxx/wDXr4ucYxk1F3Seh0rYgkuGS4SL7PK28f6xQNq/XmkuJzCyAQSybzgmMA7frk1Z70jcD8KAPjvXIYJvEl+kEqRDzXLmQkAtuOcYr6W8AuYPhtoziN5itsuFjwSfpmvmTxGkSeIb0RSbwZnZvYljkV9QfDjn4eaJ/wBeq19pxGrYKjby/I5qPxM6QSnyPN8p/u7tmBu+nXrSQzNNbCQxSISM7Hxu/wAKn5oxXxZ0lE30SWU15cK1rBCGeQzYGFUZLcE8f4V4j4Q8SeBovive31qsMSaowSyf7OFSFtqDH+wXbzPrnnFem/E8sPhn4gZTg/Y2Gc9jjNeNeJfBllpHw5g8QxRlZLu30l4yAAEcR7XIPqep+tAH0oOnWloFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhqre2Ntf20lreW8VxbyLteOVQysPcHrVuij0A8P8Y/Ae3ufMvPC832eXkmymbMZ9kbqv0OR7ivH5F1/wZqr288VxY3I+9FIvyuPX0YcdR+dfZ2MVla14f0vxFZG01eyhuof4RIOUPqp6qfcGvSw2Z1Kfu1PeX4kSgnseAeF/ih9nmRZ3axmPBdeYX+oOcfjkD1Fex6N47s72JBd7YiwyJkO6Nvf2/l715R4y+BN/YeZeeGpje2/JNpKQJV/3T0f9D9a80s9Y1jw3ePCnmwOjfvbadCBn/aU8g+/Br0pUsLjVdb/iR70T7PjkSaNZI3V0YZDKcg/Q1JkGvnfwr8U0ikCGf7FMescxDQyfjxj9Pqa9g0nxlY3u2K6xbzEDknKN757fjXkYjL6tLWPvI0U0zqqKYHUqGDAgjIIp2RXEULRRmjNABRSZFMeVIkZ3YKqjJJ4AFG4DycUma5nUvGdhagx2u66mHaPhR9T/AIV5t4l+Jq/PDPegnobW05P0J/xP4V3YXLMTiHaMSJVFE9V1LxNpumllabzZRx5cfJz7noK4DxH8SjAGRriOyUrxGh3SsPw5H16e9eQan401G9LR2wFnCT/B80mP94/0xVXQ/DOu+KLorptjPdHd88p4RT/tM3H9a+qw3DtDDR9ripWXnb/hvzMHWcnaJsar4+ubhmWxQxBus0/zufw5A/8AHqwrLTta8U6j5dpb3N/dN1Iy2B7t0UfkK9j8M/Ay0tjHceIrv7XKOTbW5Kxg+hf7x/DbXq+naXZaTaLaadaRW0C9EiUKPr71NfiDB4RcmDhzPu9v83+A1SlLWR4x4Z+BUsmy48R3YRev2W1bJPsz/wCGfrXrmjeG9I8PW3kaXYQWyEYYovzP/vE8t+JrXC4PtSmvlcbmWKxrvXlp2WiN4wjEBS0YNKK4rFBRRRTAKKKKACiiigAooooAKrXtw1taTTpG0jRxs4RerEdqs1Xu7hbW0muHBKRRs5C9TgZ4oAnHApaQdKWgAooooAQ9KgtLg3NukrRtGWzlW6jBxU5OKhtbhbmBZUDBWzgN14OKAJ6KKKACkP8AKlpD1BoArwTmSW4Qxsgik2An+MbVOR/31j8Ks1XguFmeeNQQYJBG3pnarce2GFWKACiiigAquJyb024jbaIw+/tnJGP0qxUAuU+2G2wd/lh89sZI/pQBOOlFAooAKKKKAK005int4xGzCVypYfw4UnJ/ID8asCq81wsM0ERBzM5RSOxCk8/lVgUAGKMUtFIBMVXvJjbW7TLG0hXHyr1POP61ZqvdXCW0DTOGKrjhevXFAEwFLigUtACYoxS0UAMbgEkZwOlRWkxuLSGdkaNpEVyjdVyM4qZzgE+nNQ2k63VpDcIGCyxq6huoBGefemBYooooAKa/SnU1+lAHxt4jhEPiC+xIH3zO/HbLHivqH4cf8k70M/8ATqtfLviKBrfxBfByvzzvIMehY19RfDj/AJJ5on/XqtfbcTO+AotP+rHLR+NnVUUUV8SdRzXjzTbnWfAutafaJvuJrR1jQdXYDIA+pGK+dhrmteKtMtvCsMU0klw9nZR2hHNqLaMLI7DtuZsknptOa+otT1C30rTLrULt9ltbRNNK2M4VRk8V4D4Y+I1lD8UNR8S3ljJb6frrpaRsTloSixhWfjowIPHTnrjkA+iQc0tAooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAaRmuZ8U+BNA8XwFNUs1MwGI7mL5ZU+jdx7HI9q6f8KKIycXeLsG58u+MPg5rvhzzLmwB1TThzvhXEqL/tJ3+q5+grkNH8TaloxEcMpltx1glyVHrj+7+H419n4NcJ4y+FOgeLhJP5X2DUW5+1W6j5j/tr0b9D717OHzZ6Rr6+ZnKn2OA8JfFBCyxRXP2dyQPs1wcox9Fb3/A+1es6R4usNQ2xSn7NOTjZIeCfY96+ZvFvw28Q+EGeS6tfPsM/LeQDcn/Au6/jx7mqei+MtS0kLC5+1W3Ty5ThgP8AZbqPxyBXXVwlDFLnja/dEqTWh9jBgRkHioLm7t7OIy3MyRRj+J2wP/114noPxQjaxcQ6iIQiZaK6xuQdPlPf8CfpXNa58R2uJWNt5l3N0E9wSFH+6vB/l9K5sPkOIrT5VsN1kj2fU/HlvCjixi8zaOZZTtQD19fzxXlviH4mxzyFTPLfOD/q4jsiU/XB/QHPrXmuo6xqGqvuvLl5Fz8qcBAfZRx/Wul8M/DHxL4l2Sx2ptLQ8/aLrKAj1UfeP4DHvX0lLJ8FgI+0xMkvn/T+5GLqTnpExNT8TanqgaOSfyoDz5MI2j8T1P41b8OeBvEHihlOnWDC2J5uZfkiH4n730GTXufhn4PeHdCVJruP+1Lted9wo8sH1Ccj8816EqbFCqoCgYAHauLF8T06UfZ4GHzen4fqy40G9ZM8u8MfBHR9MCXGtSHU7gc+URthU/Tq34/lXpttZwWkCQW0KQxRjakcY2qB9BU+OKXoK+UxWMr4qXPWk2/66G8YqOwopaKK5xhRRRTAKKKKACiiigAooooAKKKKACiikyBQAVBczRQWss0xAijQs5Iz8oGTx34qO81Ky0+NXvbuC2VjhTNIEBP41RbxH4enUxNrGnOH+UqblDnPbrTSla6Qro2R0orIPifQlwG1ixUnoGuFB/nS/wDCTaGv3tYsF9N1woz+Zo5ZdgujWorJbxNoajLavYqPVrhQP50f8JNoYGTq9iB6mdcfnmnyS7BdGsahtpYp4FkhIMbZwQMd6zj4m0M8jWLEj1+0Lj884oTxBoMKBE1WwVV7LOuB9eeKXLLsF0a9FZI8S6E/3dZsW/3bhT/I0DxLoROBrNgx9FuEJ/Q0csuwXRrUh61lf8JNoX/QZ08n0FymfyzR/wAJNoWcHWNPyOxuUBH60csuwXRoRTRSvMsZBaN9kns20H+RFTVjDxDoETE/2vp6NIdxzcICxxjPX2H5U/8A4SXQl+9rFiv+9cKM/maOWXYLo1qKyT4m0ILk6xYAepuFA/nR/wAJLoYXJ1exA9TcLj880csuwXRrVD50RuTACPO2BiO+3JH9DWePE2hlcjV7Ej1FwuPzzTR4h0AuZl1bT2bG0utwhwOuM596OWXYLo2B0orJHibQm+7rFi3+7cKf5GgeJtCJIXWLFiOoW4Un8s0+SXYLo1qKyf8AhJtC/wCgzp5PoLlM/lmj/hJ9Czj+2dPB9Dcpn8s0uWXYLovzSxRywJJw8jFY+M5O0k/TgGpxWO3iDQGZWfVbDMZ3KWuFBHbPJ98U4+JtDUfNrFivu1woz+tHLLsF0a1FZJ8TaGFydYsAvqbhQPzzR/wkuh7c/wBr2O3+99oXH55o5ZdgujWqG5miggaSY4jGM5Ge9Z48S6GRkaxYEeouFI/PNNbxFoM6FDqthIueQJ1IH154o5ZdgujYFFZI8TaE3C6xYMfRbhT/ACNA8TaESQNYsCR2FwpP5Zo5ZdgujWorJ/4SbQs4/tnT8+n2lM/lmj/hJtCDYOsWIb+6bhQfyzRyy7BdGq3AyePeoraaKe1imhOYpEDIcYypGRx9Kzm8S6Ecq2sWAyOjXCDP5mkXxDoNvGqf2tYRIo2qGnVQAPTJo5ZdgujYorJbxNoarltYsVX1NwoH55o/4SXQ9uf7Xsdv977QuPzzRyy7BdGtSNWUPE2hkZGsWJHqLhSPzzR/wkuhMPl1ixb/AHbhTj9aOWXYLo+SfEMMkPiC/EgI3Tuy85+UscfpX1F8OP8Akneh+v2Va+YdWgur7X77ykknzK7IV5ym44I9ua+jfh/ruj23gPRrebVLNJ47ZQ8bTruU+4zkV9pxI+bBUY9fL0OelpJ3O7orJ/4SfQc4/tnT8/3ftKZ/LNH/AAk2hbsHWLEN/dNwoP5Zr4vll2Oi6Mj4n/8AJMvEPOP9DevI/Fvh7S7T4SW2sQ5N7d2OkmVCPljxHtDD3YDB+ler+ML/AEjXfCWq6TFrWnR3F3avHF5lyq5Yjjv0zXjN3ruq+JvC2ieCLnSk094mhhudSmmURGGEYB3HjgHPU5PSnyS7BdH0wOlFZC+KNBxzrWnf+BSf41ow3MFzCs0M0ckTfddWBB+hqXFrdDuT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEciLKhR1DKwwVIyCK8r8Y/BLRta8y70QrpV6ckxqv7iQ+6/wAP1HHsa9X/AApDnsKulWqUnzQdhNJnxxrHhHXPC181pqmnyxGT5YnUb0lOR90jgn26+wrq/C/wh8Ra9snu4v7Ms2/5aXA/eEeydfzxX0vJAkpUuitsO5dwzg+oqQLgYr3YcSYmlh1SpJJ9/wDgGXsU3dnE+Gfhf4c8NBJY7b7Xer/y83QDMD7DoPw5967YDA6UuKWvBrV6teXPVk2/PU1UUthaKKKkYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNYfWnUhHPSgD5h+L8Gpx+Prua+WQ20ioLRiPk2bRkL/wLd79/SuDhmaCeOaNtskbbgcZwR0619rPGsgw6qy+hpgtIMY8iP/vkV9Vg+KPYYeNF0b8qtva/4GEqF3e58UE0Z45r7X+y2/8Azwj/AO+RR9kt/wDnhH/3yK6lxil/y5/8m/4BP1d9z4nyKK+2PssH/PCP/vgUfZYP+eEf/fIp/wCuX/Tn/wAm/wCAH1fzPijPp+VPmmeaVpJGy7dT0r7U+y2//PCP/vkUfZbf/nhH/wB8il/rgr39j/5N/wAAPq77nxPn3/WjIr7Y+ywf88I/++RR9lg/54R/98in/rl/05/8m/4AfV33PifNLnJzX2v9kt/+eEf/AHyKPstv/wA8I/8AvkUnxjfej/5N/wAAPq77nxZJM8qxK7ZESbEGBwuSce/U1Fx3r7Y+y2//ADwj/wC+RR9kt/8AnhH/AN8ikuMFHaj/AOTf8APq77nxPkf5NGRX2x9lg/54R/8AfAo+ywf88I/++BVf65f9Of8Ayb/gB9X8z4nyMf8A16k8+T7P5G793u3Y9/8AIr7U+ywf88I/++RR9lg/54R/98ipfGCe9H/yb/gB9Xfc+J8//XozX2x9lg/54R/98ij7Lb/88I/++RVf65f9Of8Ayb/gB9Xfc+J80Zz/APrr7Y+yW/8Azwj/AO+RR9lg/wCeMf8A3yKP9cv+nP8A5N/wA+rvufFcczxpIithZFCv3yMg/wAwKj49a+2Pstv/AM8I/wDvkUfZLf8A54R/98ikuMEtfY/+Tf8AAD6u+58T5H+TRkV9sfZYP+eEf/fAo+ywf88I/wDvkUf65f8ATn/yb/gB9X8z4nz/AJzUkMzwSCSJirjvjNfan2WD/nhH/wB8ij7LB/zwj/75FD4xT0dH/wAm/wCAH1d9z4ozSZr7Y+ywf88I/wDvkUfZIP8AnjH/AN8ihcZf9Of/ACb/AIAfV33PifP+c0ZzX2x9kt/+eEf/AHyKPstv/wA8I/8AvkU/9cv+nP8A5N/wA+rvufFAPQ9wfrTppmmmeWQ5kdizHpkk5r7V+y2//PCP/vkUfZLf/nhH/wB8il/rgr39j/5N/wAAPq77nxPx/k0ZFfbH2WD/AJ4R/wDfAo+ywf8APCP/AL5FH+uP/Tn/AMm/4AfV/M+J8/5zRx619sfZYP8AnhH/AN8ij7LB/wA8I/8AvkUf65f9Of8Ayb/gB9Xfc+K5ZnmKGRtxRAg+g6CmZGa+1/skH/PCP/vgUfZYP+eEf/fIpLjBLaj/AOTf8APq/mfE+ff9aM19sfZYP+eEf/fIo+ywf88I/wDvkVX+uX/Tn/yb/gB9Xfc+KM+9PMzmFIS2Y0ZmVcDgnGfr0Ffan2WD/njH/wB8ij7LB/zwj/75FS+ME96P/k3/AAA+rvufFHXtXu/wIh1SLStUkm3rYSSR/Z/N4UsAd5X8Nntx7GvX/ssH/PCP/vkVMFA4HSuDM+Ivr1D2PsuXzvf9EXTpckr3H0UUV82bBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z None. +4 EuPhO_2025_3_2 Now consider two infinite, straight, thin wires (wires $X$ and $Y$), each carrying a current $I$ as shown in the figure. The $x$-axis coincides with wire $X$, while wire $Y$ is parallel to the $y$-axis and passes through the point $(0, 0, -a)$. Let $P$ be the point $(3a, 0, r)$. Assuming $r \ll a$, calculate $d$, the distance of closest approach of the magnetic field line that passes through $P$ to the wire $X$. "[[""Award 0.4 pt if the answer correctly states that the magnetic field around an infinite, straight, thin wire carrying a current $I$ has magnitude $\\frac{\\mu_0 I}{2 \\pi \\rho}$, where $\\rho$ is the perpendicular distance to the wire. Partial points: award 0.2 pt if the direction is unclear. Otherwise, award 0 pt."", ""Award 0.2 pt if the answer states that the magnetic field line is locally nearly circular. Otherwise, award 0 pt."", ""Award 0.2 pt if the answer describes that the field line resembles helix tightly wound around wire. Otherwise, award 0 pt."", ""Award 0.3 pt if the answer mentions that the radius of the helix is changing. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer introduces the idea of considering the funnel surface $S$. Otherwise, award 0 pt."", ""Award 1.0 pt if the answer relizes and justifies that the $\\vec{B}_Y$ flux is conserved along the funnel. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer correctly argues or shows that the radius of the flux tube is smallest at $x = 0$. Otherwise, award 0 pt."", ""Award 0.4 pt if the answer approximates $\\vec{B}_Y$ as uniform across the flux tube cross-sections. Otherwise, award 0 pt."", ""Award 0.5 pt for correctly determining flux at $x = 3a$. Partial points: award 0.3 pt for correct projection; award 0.2 pt for correct area. Otherwise, award 0 pt."", ""Award 0.3 pt if the answer determines the flux at $x = 0$ using $\\rho$. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer correctly calculates the final result for $d$: $d = r/\\sqrt{10}$. Otherwise, award 0 pt."", ""Award 0.2 pt if the answer checks the validity of approximations used in the considered region. Otherwise, award 0 pt.""]]" "[""\\boxed{$d = r/\\sqrt{10}$}""]" "[""Expression""]" [null] [5.0] text+variable figure Electromagnetism EuPhO_2025 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGEAtQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5I/E7wSDg+JdPz/wBdKAOtorD0jxf4d16cwaVrVjdzAZ8uKYF8eu3ritygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9K8mHH7SzZwP+JL9QORXrNeMato9jrn7Q72V/HI8P9kK5Ec7xHIPHzIQf1oAPjokFtH4dudNCL4k/tBRamPAldcHPuRv8sfia9lXOBn9a5rSvAXhnRb8X9lpca3oGFnmkeZ1/wB0yFsfhXTAYoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBNwrGbxX4dTUv7ObXdOW93bPIN0gfd/dxnr7dawfixqd7pHw11e7093juNiR+Yn3lVnVWI9DtJ57V8eFssOpOenrQB99ZBBwa4L/AIVZp/8AbH9r/wBveIRqPl+V9oF6A2z+7nb09qZ8G9UvtW+GmmTX7PJJGzwpK5yXjViFP4Y2/wDAa9BoAhji8qJE3M20AbmOScdz6mpqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijNABRSZFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFS+sbbUbCeyvIVmtZ0Mcsb9GUjBFeTP8As8eG21MzrqWoCzLbvs3yfkGx0/D8a9jPQ1yEniS9j+K8PhkLCbCTSDelip8zf5pXGc9MDpigDoNN0u10ewt7DT4FgtLdBHHGvRVH9fU98knJrQopMj/IoAWikyDS0AFFFFABRRRQAUUUUAFFGaTIoAWijNJkHvQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZozQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmenvS1i3fiCzs/E2naHI3+k38M0sXPTy9pxj3DEj/AHTQBtHpXG6l4+tNPvtStl0fWbxNOOLq5tbdWhQ7Q5G4uOQGBPpXYkjGK8t11z4+8TS+ENKIg0Gzl83XLuEbfOkzkW6kdSSMsfb2wwB2vhXxNbeLdGXVrK2u4LV3Kx/aUCM4GMsACeM5H4Gt6s3SZLCTTYV0toTZRZgiEI+RRGShUewKkcf/AF60qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rAfwxaP4yj8Umaf7bHYmxEeR5ezeXzjGd2Tjrj2rfrk5PE9wnxOh8Li2jNtJpf24z5O8N5hTb6YwKAOqYZUgHBx19K8m0LWfFms+LvE3hq38QNIlhJHGmovZxZgGDvwoABcthRnIAVjjNesuwRCzdAMnjNec/B6xnTw3qGs3kEkV3rOoz3jrIu1gC2ACOvUMfxoA6nwpDr8Hh60j8STQXGqgN58kIAU/MdvAAGduM4A/Gt+ijNABRSZFQXN1b2kDz3M8UMKfeklcKo+pNAFjNJkVyVx8Q/D0ZZbOebVJF7afA0y59PM+4PxYVl3HjPxDeZGn6Na2EZ/5aahOZHx/1yj4/8iUAeg5HrWfqWt6Xo0PmapqNpZoehuJlTP0yea85mXWtRP8AxM/EV+6n/ljZEWsf0+T58f8AA6ZZ6Lp1jKZrayiWc/emK7pG+rnLH8TQB08/xF05gRpdhqepns8VuYo/++5SoI91zWXceKPFV9xBDpmkxn1LXUv/ALIoP/fVRY745pCQoyxwPU0AUpbTUbpjNd+I9ZluByrx3PkKh9o49qH/AIEDXbeDtauNZ0Um9Km/tJ2tLtkGAzrghwO25WRsdt2O1cI/iDTRcNb287XlyvWGyja4cfUIDj8a7DwJp13Z2Oo3l7bvbSajemdYJPvIgjSNd3+0dmfxFAHX0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVlnXNNXWzo0l3HHqJjEiW8h2tIhzymfvDg5xnGOa0wQelAC0HpRQelAHKeKPHel+EJIE1SC/wBlwQsc0FsXRnOfkzn73HSt7Tb4ahYx3Qtri2D/APLK4j2OPqO1ed/EA/2x8TPAvh8cqlw+ozKemIxlc/8AfLj8a9QAx2oAWiiigAooooAKKKKACiikyDQAtFJkHvS0AFFFFABRRRQAUUUUAFFFFAAelfLHjb4gt/wuqLW7Ry9to8q28e0/fRSRIAf9os4z6V9TEZGDXn9/4Q8NL430OAeHNJWKW0vGeMWUe1mUw4JGMEjJwfegDs4poNW0xJraYm3uod0c0bYO1l4IPY81yNl8K9I023e20/U9etLd2LtFBqckasx+8SB3OBz7V2VraQWVtHbW0EcFvEAscUSBVQDoABwBVqgDM0fSbbQ9JttMskZba2TYgZiT65JPUkk5+tadFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgAoozRmgArm38Lo/j2LxWbphLHp/2D7Ps4I3l927r36Yq5qvifQ9EYR6jq1pbzEfLC0gMjfRB8x/AVxVx8WVfxLHo+k6Fc3nmWn2hZp5GtQfmI+66btuMHd15+7QB6ZkEeopmQgycADqTx+Nec3Gv+LdQyPtVhpUZ6LawmeQf8Dkwv8A45WVNokN+c6rdXmqMTnF7cM8efaMEIP++aAO6v8Ax34asJWgbVYp7heDBZhriQH0Kxgkfjisefx7qFwdul+Hpgp6TajOsAPuFXex+hC/hWXb28FrCI7aGOKIdFjQKo/KpfUdD6d6AI7i/wDE+of8feuraRnrFptssf5vJvY/Ubao/wDCP6e863FzA99cL0nvZGuHH0Lk/pirV3f2enxebeXUNvH/AHpZAo/WoIL+fUeNJ0jUdRz0kjg8uI/9tJdqn8CaAL2AAMABRwMcY9qX8OtPh8MeLL8gzS6bpEZHq11MB6Y+RR+BatW3+HNg2Dq1/qOpt3SSfyYvwSLaCPZs0Acxd61ptlKIbi9hE7fdgVt8jfRBlj+Aqa3/ALa1H/kG+Hr6RD0mvALVP/H/AJ8fRK9E03RNM0aIxabp1pZoeot4VTP1x1q9+XX0xQBwFv4L8Q3g/wCJhrFpYIesdhB5r/hJJx/45Wpb/Dnw+jCS9hn1SUdWv5jKp/7Z8R/+O11uR60ZGcUAQWtnb2VutvawRQQqMLHEgRR9AKnwc0tFABRRRQAUUUUAFFFFABRRRQAUUUUAFIc4OOtLRQB5b8bfC51jwd/bFqCuoaOfPR1OG8rjeM+2A3/AT61yXwX8WeNNe1j7Bc6pDc6Zbx75DejfMV9IzkMxyRkkkL+IB93uLeK6tpbeeISRSo0boejKRgg/WsO58I6edIs7HT1Gmvp/NhPbjDW7Y5P+0D/EDw2TnnmgDotwOOevT3qOaRYYZJXyAiljtUscD2HJ+grD0PW5Lq5k0zVYVtdatl3SxKfkmTp5sRPVCe3VTwfU9BuB6Hr096APING1RdX+Olzq81jqUdiunrZ2E0thMqu5IJJyvy9X5OK9hpoHSnUAFFFFABRRRQAUUUUAQXCSPbSrDJ5UjIQj7d2044OO+PSuI8A+JNW1LVvEmg69NFLf6TdBVlSIRiSJwdp2/wDASf8AgQrvSR0zivIPF0moeF/i1a6no1qbi58Qaa9kkQHBuUI2u3+yo2Z/2VagDrPAGs6vq6a6mrTRT/YdWms4JY49gZE28Y74Jxn9TXaVjeG9Ci8OeH7TS4XMhhXMkrdZZCcu592JJ/GtK4aRLaVoIvNlVCUTdt3NjgZ7Z9aAJ80Vyfhrx5oHinMVleeTfIxWWxuQI542HUbT1+q5H411eRQAtFFFABRRRQAUUUUAFc3qf/JQfD3/AF5X384K6Sub1P8A5KD4e/68r7+cFAHSUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSZFGRgnPAoAWjNQzTxW8TSzSpFGvV3O0D8TXM3fxC8OQs0drePqUq8FdOia4H0LqNi/iwoA6zNGa8/uPG+uXZxp2hw2aH7supTgsP+2cec/99isy4l1/Us/2h4huVQ9YbBRbKP8AgQzJ/wCPUAei6hq2naTbm41K+trOH/npcSqg/MmuZuPiPpJ+XTLXUNVbs1rbFI/+/khVSPoTXL2+h6bbT/aUtEe5J5uJsySk/wDXRssfzrQH6UATz+K/FN6CLa103S0PRpWa6kx9BsUH8WrLuLS+1E51XXNTvAesYm8iP/viMLkfUmruRgkngdfas2XXtMS4NslyLi5/597VGnk/74QE/pQBYs9NsdNUrZWcFsG6+VHtyff1+tZz6G7+NIteFwvlpY/ZDFj5j8xbOenfGK1be08Saic2Ph+SBD0m1KZYF/75UO/5qK04vAmr3fOp+IDChHMOmwBCPbzJN5P4BfwoAz5ZY4IzJLIkaDqzsAB+JrPi1y1vHMemRXOqMOMWELSqD7uBtH4kV21l8P8Aw1ZyiZ9OF7cD/ltfu1y+fUbyQv4AV0qoEQKigKBgAcAD2FAHm9vovizUCCmnWemp/fvpxK4/7Zx5H/j4rTt/h88wzq+vX1yO8NoBaxn1GVzJ/wCP13FLQBhaZ4Q0DSJRNZaTax3A/wCXhk8yY/WRssfzrcAxS0UAFFFFAAelYXiXTdS1LRJ4dJ1K40+/VS8MsW05cKcK24EbSTzjBrdrK1nXLLQdLkvrwttUhEijXdJNIeFjRe7E8Af05oA8y8H+L7u5+HNxcX+qalc+I5rmSwS3HliUXIztWMbMAYKli2QME9q7vwjo2taXpiNr+uXGqX8qqZd6oscR5yqAKDjnkk87RwOlebeGra48L/GkTa3Y2ttJ4lt5J4BH8wtpi25owx6sQPmOBksMcV7cCKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUUAYmt6FFrEMeyVrW9tm8y0vIwN8D/1UjgqeCOPpBoetyXVzJpmqwra61bLuliU/JMnTzYieqE9uqng+p6I9KxNb0KLWIY9krWt7bN5lpeRgb4H/qpHBU8EcfQA2dwOOevT3p1c9oWsyXdzLpmqxJba1bruliUkpMnTzYieqE9uqng88noMjOO9AC0UUUAFFFFABSHkGlooAwNa1DxBZ3CR6PoMOoIy5Mkl8sARueCCpJHQ8etUPD/hzUE1R/EHiO5hudZkTyoY7cEQWcROSkYPJJIyzHk9OAK66igApDyCKWigD5p+MXge9X4kWc+hW0jy61lkSHg+euN546cbWJPqTXr3wzhuLfwnFFf6xealfxuReC8Yl7aUAZiwcn5fXJznI4Ix2RiUyLIVXeowG28gdxn0rA1rRLoXf9taL5cWqooWSJjtjvIx/A/oR/C/VfoSKAOlzRWPomsW+tWf2iHdHKjGO4t5F2yQSDqjDsRxz0PBHBrYzQAUUUUAFFFFABXN6n/yUHw9/wBeV9/OCukrm9T/AOSg+Hv+vK+/nBQB0lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGaKwX8V6RF4pj8OSXEkeqSqXjieCRVkAXcSrldrYHoexHUVLb+JdMvNeudFtppZr21x54SBykZIBw0m3YDg9M5oA2aKKKACiiigAooooAKKM0ZoAKKTIzjPNZWqeI9G0TA1PVLS1cj5Y5JQHb6L1P4CgDVyKXNcRP8AEO3fI0rR9Svz2laL7NGfxlIYj3Cms248Q+LNQPyy6bpUZ6CCM3Mo/wCBvtX/AMcNAHpGQBknA96wNR8beHNLmNvc6tbtdD/l2tyZpv8AvhAW/SuCn0oahzq2oX+p56pc3B8s/wDbJNsf/jv41btbS3sofJtYIoIh/BEgUfkKANa58f3dzldJ8PXLr0E2oSrbp9do3OfoVFZk2qeKr/P2nWobGM/8stOtwG/GSQt+gWn5yM5BHr/9eoLq8tbCHzru5it4h/HK4UfmaAKZ0CwmmWe9jk1GZeRNfyvcEH23kgfgB7VpIoRVVVCovAAGAv0qhBqb6gQNJ0zUNSz0e3tyIj/21fah/Bq07fw14svuXXTdJjPeR2upR/wFdqg/RzQAznrznvVG91nTdPYJd3sEUh6RlwXb6L1NdLD8OrNxnVtV1LUO7R+d9ni/75i2nH1JroNK8PaRoikaZplpa5HzNFEAzfVup/GgDz22l1XU8HS/D9/Op6TXKi1jP4yYcj6Ka1IPB3iW85vdUsdOQ9Y7OIzv+Ej7QP8Avg16Dn8qXIoA5G3+HWhLhtR+16s45P2+4Lof+2Ywn/jtdJZWNnp9uLeztYLaBekcKBFH4DinvdW8c6QPPGssmdkbMNzYGTgdTxXzF8QvEvi3wT8SdWtdP16/ht5JftMMbyF4wsg3cK2RgEsOnagD6jwMg96XIr5m8J+Ovi14tvRa6ReC4CkCWeW0hWKP/ebZx9OvoK+gdBstXstMRNb1UajenBd0gSJF9lAHT3P6UAbNFFFABRRRQAUUUUAFFFFACHkEVxl34Kvr7xhZeILjxFcOtlIWgszbx+UitkMB74ON3Wu0ooA4bxj4Al8X6rYXsmt3Fn/Z7+barDAhMb5U7tx5PKg46V2FrDLDaxRzzGeVVAeUqFLnucDgZqzRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFFAGJregx6xBFtka1vbZvMtLyIfPA/t6qRwVPBHH0u2puI7GA3rQ/aFjHnGLIj3Ac7c8gZ5+lXj0rzrxtdPqmup4fdtthFbrdXag488szKkZ/wBkeW7MO/yj6gHTWXjLw7qN+LG01m1nuGJCCN8q5HZW6MfYE1vAg9DXld5p1ve2f2SaL93wV2/KVYdCpHQg4II6dq3PC/ieY3cWh67KDfEf6JdkALeKBnBHRZAOSvfG4ccAA7mikBB6GloAKKKKACiiigAooooAKKKKAOb1nRbtbsa1orJFqiKFljJ2x3kY/wCWb+hH8L9V57Eirmiaxb61Z/aId0cqMY7i3kXbJBIOqMOxHHPQ8EcGtiub1nRbtbsa1orJFqiKFljJ2x3kY/5Zv6Efwv1XnsSKAOkzRWPomsW+tWf2iHdHKjGO4t5F2yQSDqjDsRxz0PBHBrYzQAUUUUAFc3qf/JQfD3/XlffzgrpK5vU/+Sg+Hv8Aryvv5wUAdJRRRQAUUUUAFFFFABRRRQAUUUUAFNb7p6dO9OqKZGeFkSQxuVIVwASp9eaAPKfjPctbRaTe6SXPiDSpGv4xGu7y7ZRiRn9EztHvyPWu48HWenWfhmxfS2aS3uYxdNO/L3DyDc0jnuxJ59OnQDEeleDrSxTVmvLm41K51UFbq4utu5k27RGoUAKgBOAP7xp/g/wx/wAIjpC6VFqN3d2kZPkrcBMxAkkgFVGRk9+nbigDpKKM1HJLHFG0kjqiKMlmOAPxoAkzRmuVvPiD4bt5Hhg1D7fMvBj0+Nrgg+hKAqv/AAIismbxzrN2CNN0BbdSOJdSuAGHv5ce7P4sv4UAegZFVL7ULLTbc3F9dwWsA6yTyBFH4nivOLi58RaiT9u8QSwoesWnQrbr/wB9HdJ+TiqkOg6ZDcfaTapNdd7i5Jmk/wC+33GgDrLj4i6JkppyXmqyA8CytyUP/bR9qf8Aj1Zlz4v8TXoIs9OsNMQ8CS6ka4kx/uJtUH/gZquOgA7dBnH6UUAUri21LUcnVvEGpXKnrFDILaIfhHgkezMaWy0rTtNybOyggJ6skY3H6t1P41FNrumQXH2b7Wktz/z724M0p/4AgLfpVu3g8Q6iR/Z/h6dEPSbUJBbJ9dvzSf8AjgoAmA54/Skd1jQu7qqjqScAVeg8D63d86nrsdsp6xabbjI/7aS7s/ggrVtvh94dhcSXFidRmHJk1GVrjn1CvlR+AFAHEjX7GeRorAT6lKvBj0+BrjH1KgqPxIrSt9K8V6iR5OjwafF/z01G5BbHqI4935Fh+FekRwxwQrHFGqRoMKqjAA9vSpBxQBw9v8P7mf5tX8RXcxPWOyQWyH2J+aT8nFbWm+DPDukSi4tNJtxcrz9qmHmzf9/Hy361v5FZeva/pvhvSZdT1WcwWcWA7hGc5JwBhQT1oA0xwBS5FcP4f+IH/CTa1Fbab4d1hdOcMW1K4g8qIYGRjP3snj15rofEOnX+q6NNZ6bqkmmXUhXbdxxCRkGckAEjqMjOeM0Aa5YdM81k6/rUHh3R59TuILmeKIqGjto/MkYkhRgfU1zugfDWx0XWINautW1fVtUhDBJ766LBcqVOFHbBPBzXblQRgjigDidA8Y674g1mBE8F6hYaO24ve38ixOPlJXER5OTgZBPWuh8Q6Q+uaNNp0d/d6eZSv+kWcnlyoAwJwffGPxrVwc9qdQBxfh74Z+HPDmpJqkEN1c6omSL28uWkk5GD3C9CR0rF8f8AwsXxz4s0nUJJxBZwQtFebPvuobcqr253NyelenUUAZuk6PYaFp0dhpdqltbRcLGn8yepJ9Tk1pUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr4p8LNq7R6lp0iwazaoUhkc4SZM5MUgHVSe/VTyO4PVUHpQB5RY3yXglR4mtruBvLubWX78T9fm/o3Qgg0+9sYdQtWt7hGKMcgg7WVgchlI5BBwcj3PtXVeKPCzaqU1HTXS21m3XEcjfcmT/AJ5SY5KnseqnkdweSsb5LwSo8TW13A3l3NrL9+J+vzf0boQQaAN7wv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHA7gEHoa8svbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/0S7IAW8UDOCOiyAcle+Nw44AB3NFICD0NLQAUUUUAFFFFABRRRQAUUUUAc3rOi3a3Y1rRWSLVEULLGTtjvIx/wAs39CP4X6rz2JFXNE1i31qz+0Q7o5UYx3FvIu2SCQdUYdiOOeh4I4NbFc3rOi3a3Y1rRWSLVEULLGTtjvIx/yzf0I/hfqvPYkUAdJmisfRNYt9as/tEO6OVGMdxbyLtkgkHVGHYjjnoeCODWxmgArm9T/5KD4e/wCvK+/nBXSVzep/8lB8Pf8AXlffzgoA6SiiigAooooAKKKTIxntQAtFGRRmgAozWZqmv6TokYfU9TtbMH7omlVS30BOT+Fc5N8RrF+NK0vU9SJ6SLB5EX13Slcj3ANAHa5HrS5rzafxL4rvjiP+zdKjP91WupR9GbYo/wC+TXmet+PLW11u80zxO2t37QvtIa4HlOpwVJiXYnQ9waAPeNS8Y+HdJlaG71e2FwvW3ibzZv8Av2mW/SsK4+IM0xI0nQbycdprx1toz+B3P/46K8/8LeK9F1WT7HomkXkUa8uUtlSOP/eIbGf1rrs575980ANn1jxZf/63VLXToz/BYW4Z8em+XcPxCis2TQLO6lE2om41OQHPmX8zTD8FbKj8AKvXN1b2cJmup4oIl6vK4QD8TVS31dNQIGk2V9qeejWcBMef+urYQf8AfVAF+OJIUWONFRFGFVRgD6D/AAp3J45P1p0Hh7xbfAZg07Soz1NxK1xJ/wB+49q/+PmtSD4dwSAHV9Z1G/8AWKNxbRfgI8N+bGgDnb3VdP04A3l7BBnoHkAJ+g7miC51DUcf2VoOpXinkSPF9niPvul2k/VQa9A0zwzomikvpulWttKRgypEPMb6v94/ia1h70Aedw+EfFV6Abu/07TIz1S3RrmT/vptqg/8Bb8a1YPhxo+AdSmvtVbqReXB8v8A79ptT81NdhkVUv8AULLTLRrq/u4LWBfvSzyBEH1J4oASx0yy0u2FvYWdvaQj/lnBGEH6CrfGR0zXJ6X8RfDGua+mi6TqP2y7ZWcmKJjGoAzy5GPyrW8QLrjaTIPDzWS6iWUI17uMYXPzH5e+KANfI9az9X1jTtC02S/1S7S1tI8BpZM4BPAHHOa5rw/4Z8V22qxan4g8XSXpVWH2G2t1ig5GOe7Y65IzXWXljbahAYLu3iuISQTHKgdcg5Bwe9AHJaF8TNE8Ta4mm6LDqF5G27derastumBnBZsEE+4roPENtrF3o8sGh6glhfsyhLiWISBBuG75TwTjOK00jWJFRFVVXgKowAKkoA4jw/4F1DTdWh1bV/FmravdxhgInYR23zKQf3Qzzz1zXZMgfhgGHB59QcjipaKAEAx0ApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rlfFHhZtVKajprpbazbriORvuTJ/zykxyVPY9VPI7g9VQelAHlFjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDT72xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1dV4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwO4BB6GvLL2xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1bfhfxPMbuLQ9dlBviP8ARLsgBbxQM4I6LIByV743DjgAHc0UgIPQ0tABRRRQAUUUUAFFFFABRRRQBzes6LdrdjWtFZItURQssZO2O8jH/LN/Qj+F+q89iRVzRNYt9as/tEO6OVGMdxbyLtkgkHVGHYjjnoeCODWxXN61ot0t2Na0Vki1RFCyxk7Y7yMf8s39CP4X6rz2JFAHSZrm9T/5KD4e/wCvK+/nBV7RtYt9ZtftECujqxjngkXa8Mg6ow9enPQjBGQc1Q1Ig/EDw8f+nK+/nBQB0tFNZlRSzMAo6knpXN3njzw3ZyNCuqR3VwvBhsVa5dT6ERhsfjigDps0mQehrgLjx3qtz8ul+HWjUjiXU7gRfiETeSPqRWbPe+JtRz9t8QG2jPWHTbdYV/F3Lv8AiCtAHpN3e2thbtPd3MNtCvWSZwij8TxXM3PxF0FWKWDXWqyDjGnwF1/7+nEf/j1eeTv4XtL7dO632oj/AJ6Fry5B/Hew/QVbGr6ndALYaHMi9BJfSLAoHso3P+BUUAdLceMvEV4SLHSbPT06CS9mMz/9+48D/wAfrJuzqt3G0ur+JL1ov4kt3FpCPUZTDY+rGqX9n63dsPtmri2UjmKxh2nHoXfcfyAqjNa+FrK7Vb6VL6+z8q3EjXcxP+yh3H/vkUALbX/hqylc6VbLeXH8T2UBnZj/ALUgBGf95qu/bNdu+LbTILNP797PuYfSOPI/8eB+laFpHrl+irpnh27WLosl6wtYwPocyY/4BWpb+CNeu8HUtat7NO8Wnwb2H0klyP8AyGKAOZbSLy4UvqOuXJQDJjswtsg/EZf8d1cTqXhDQtU8XRPZzvc20cKie109ZLmaSQE9Su4gEYyWPb349ytvh74ejZZLy2k1OUfx6jM04/BG+Qfgoro4LeG0gWG3ijhjUYWONQqj6AYoA8w0vQNe+yRWmleHLfTLRB8pv51Tj18uMOc/Uqa24PAN9dHOreI7gr/zy0+FYF+hZi7/AJFa7r6mlyBQBzdh4G8N6ZKtzDpUM1yvIubom4lB9Q8hJH4EV0YXHSs5PEGkTakNMh1Szkvypb7MkytJgdTtBzUHiK+1TTNLa50jSDqt5vVFthOsWQT94swxxQBs5FRyTRwxtJK6oijLMxwB9TXH+HP+FgXeqpdeIU0ix03awNlbFpJSSOCznI49jW/rvh7S/E2mHT9Ythc2hdXMZdl5ByOVINAFKy8beGtR1pdHsdZtbq/dWYRW7+YML1+YZUH2zVnxFNrdvpEj6BZW13qG5QkdzJsTBPJP064zUWl6R4a8OzLa6baadYTN/BEqJI/Tr/E3UfnW9kUAcV4e0zx7/bCX/iTXNNFqoYHTrC3yhJHBMjYbI/Gun1TSdP1qyay1Kzhu7ZmDGKZQykjkEir2RRkHpQBUstOstOtxb2Fnb2sIORHBGqKPwAxVyiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rlfFHhZtVKajprpbazbriORvuTJ/zykxyVPY9VPI7g9VQelAHlFjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDT72xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1dV4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwO4BB6GvLL2xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1bfhfxPMbuLQ9dlBviP9EuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AFFGaKACijNZ+pazpmjxCXU9RtbJD0a4mWPP0yeaANDNJketcZN8RdLORptnqOpnoHhtzHGf8AgcpVSP8AdJrMufFPiq+GLe303SYz3YtdSf8Asiqf++qAPR81iap4s8P6M5iv9XtYp+0AffKfpGuWP4CvPrjT7rUiTq+s6nfg9Y2n8mL/AL4i2qfxBqez06y0+Py7K1gt17rDGF/PHX8aAHat4ka41ePV/DOj3xvVxHPLcoLeC8h/uMrEOSP4W28c9iQcFvFWveI/EmlXAvLfSpUguY2jtod80BzEWRzJkE/dwdo9eQRXSjrjGT6HJz+FcH4lgtD8RdFFxJ5ME1rMLh0mMO9VBIDMpBwDzjP1oA3dTTRYnVvEGqSXshOQmo3Zkyf9mLIX8lp0Osfu1h0jRLyVAPlYwi2jx7b8HHuFNN02bR4WK+HtKe8kPDNploXBPvLjbn/eat6DQvF1/wDdsLDSoyeWvJvOkHvsi+X/AMfoAxhF4huwd9zY6fF/dgQzuP8AgTYUf98mq17pmjWiCTXtTluc9Bf3W1G9hGNqn8jXcQfD0THdq+t6heHvFAwtY/w2fP8Am9bul+FtC0V/M07SbSCY9ZxGDI31c5Y/iaAPOdPZngEHh/w5ezw9jFai3gPvuk2KfqM1tQeFPFN4M3FxpulRn+FA11J/7IoP/fX416L3oyMZzxQBxtv8OdLIzqd3qOpnqUnuPLiz/wBc4tqn8Qa6PTdG03R4TDp1ha2ceeVt4VjB+uOtXiy5255I6VjeI/EEfhvSvt01jfXvziNYbKHzZCx6YHFAGz3GcUuRXG+HfFHiPXdVH2jwjcaVpBRiLm8nUSlv4R5XUZ/GtnxHoX/CRaU2ntqOoWCs4ZprCbypCB/DuweDnkYoA0Te2wuxaG4hFyyllh3jeQO+3ris3xJrFxoWkPd2ukXeqTbwi21quWOe59B6ms3w18OvDfhW7+26dZP9vKlWu55mkkbPXJJxz7AV1eDjH9aAOL8Oat451bVxJq/h6x0jSCh+Rrnzbgt2+6doHqCM1u+I/Dlh4o0ltM1HzjbO4dlilKFsdiR2rYAx/wDWpaAOc0HwL4Z8MuJdI0e2t5gMCYgvLg9fnbLc/Wuixz0paKACmOCUYBtpxwfSn1FNMkEEk0h2pGpZjjOABk0AeSan4N8N+Ffh3qVprDWuo69cJM63TQhrq4nYt5WzkvkHb0PYk8ZruPBceoaZ4B0weIJNl5Bag3DSvyijJG4+oXGfcGszWLPwb4v8KSeIrqG0ML2plTUtojlhABx+8HzKQf4c9exrg7/W9dn/AGZ2vL+Sd7uUCFp5Cd7wmYLls9cr8ue4Oe+aAO4PxDu7nRL7xFp+hCbQLQM/2q4u/JlnRfvNFHsOR6bmXNdN4a1c6/4esdXNs1sLuITJEzbiqnpk+4wa81+KOqWmi/Ci28P6Y6SG4t7aEGNhiODjDn0Dbdoz1yx7GvVtMtYNP022sYCPLtYkhXB6BVAA/LFAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AB6Vyvijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdwepyMZzxSMQFJOMYoA8qsb5LwSxvE1vdwN5dzay/fifrhv6MOoINOvbGDUbVredGZGOQQdrKQflYEcgg4wR+vSrXjXUPDs0ourLWLdfEFsNqJbhrgyr/wA8pUjDHaT0JGVPPqDhR6trF7EhtdCeAsOWvp1jVc9gF3MQPcCgDr/C/imZrqLQ9dlBvSP9FvCAFvFAzg9llA5K98bhxwOyubq3s4GnuZ44IlGWklcKo+pNeN3Oi6nq0arqeqrFGGDiOxgClWByp3uWOQe42nrzVz/hH9OeYXF1C99OvImvpGuGH0MmcfhQB2Nz8RPDiO0dlcTapKv8OnwmYf8Afz7g/FhWXP408QXZIsNFtrFD0kv5/McD/rlHx/5EqoFVBtAVQvAA7f59qXn069cc0AV7htc1H/kI+Ib0of8AljZAWyD8V/ef+PmoLXRNNspTPBZRCdvvTsN8jfVz8x/Olu9Z02xkEVzfQJK33Yd4MjfRByfwFSW7axqOP7L8PX0y9proC1j/APH8OR9FNAFvnPf+tISACT0HWrFv4K8RXmDf6vZafGfvR2EHmv8A9/JOB/3xWrbfDnQI8Nfpc6tIOc6hMZU/798Rj/vmgDkG17TjO1vbzm8uF6w2cbXDj6qgOPxq9BYeJtSIFpoRtoyMiXU7hYx9QiB2/Ahfwr0i1tLeyt1t7WCK3hUYVIkCKPoBU4FAHBweAtSuR/xNPEDIh6w6bbrEPoWfeT+G2r1t8OPDEGp22otYPc3VuG2SXc8k+cjBJDkg+3p2rrj0Oa4HxX42bwz450WyvLu2tdHuLWea6eVedyqduD1644AJNAHdIFRQqABQMADp+ArBt/GGi3Xi1/DNvdrLqUMLTSqnKpggFN3975s4HQDnFeI+PPjvdakkum+Flks7Y5Vr5uJnHfYB9we+c/SvNvB2o31l4x06Sx1M6dczTC3N55Yk8sSHazFW4Iwe/wBetAH2zkdO/wBKxfEviXTPCulf2jqs0kduZBEpSNnLOc4AAB9D14rH8NeBptE1Q6pqHiXVtYvmiMR+1S/uQCRnbHzjp612BUnGcEjuRQBx/hvxtdeJ9VWO38M6vaaZ5bOL++jESsRjAVeSQeec1r+JdGvNb0r7HY6xc6VIXBa5tgN5XnKj0znrW3jFLQBxfhr4caV4b1X+1VvNSv8AUyhQ3V9dGRsHGQAMD8wa7Pn0paKAG7eQcc+tOoooAKKKKACiiigAooooAKDyKKKAOUPw48Itdm4bw/Z7zJ5hUKfLLeuzO39K3rnTrS8099PuLaOWzePyngZQUKdMY9P8Ku0UAcungLwvFosujJoloNPmYPJCF++w6MW+9keuf51s6bpVjo9lHZ6dZw2lsnIihQKv/wBc+9X6KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopMilzQAUUUUAFFFFABRRRmgAopMiloAKQEHoQap6hqlhpVuZ9Qvrazh/wCelxKsa/mSK5q4+ImjsCumW9/qrdM21uVjP/bSTahH0JoA7KjIrzqfxb4ovMi0stO0yPs07tcyf98rsUH/AIE1ZlxbahqJ/wCJpr2p3Y/55pL9nj+m2ILkf7xNAHoGq+JdD0QY1PVbW2c9I5JBvb6J1P4CueuPiLHLldI0TUb49pZlFrEfxkw+PcIawbLS7DTs/Y7KC3LdTHGFJ+p6n8at8/5FACza/wCLb/8A5e7DS4z0W1iM8o/4HJ8v/jlZs+jRX5zq13e6oSclby4Z48/9cxhB/wB81ekljhjMkkixoOrMwAH41Qj16zu3ZNNW41JwcEWELTAfV1G0fiRQBet7aC1iEVtAkUY4CxJtUfTFSe+fxpsGjeK9Q5j0u005D1e/uAz4/wCucW4fm4rUt/h7LNhtX8QX0+P+WNkBaRn2yMyf+P0AYt3qFnp8fmXt3BbJ/elkCD9azf8AhIorjjTrC/v2PRooNif99ybVP4E10+q/DTTFhiutAtYbTVLYl45ZcyCb1SQtliD2bOV6jPIOPYXy3iSxyRtb3cDCO5tpuHhbGSG/QhuhBoAo2FxrGq65Hpc72eiNOm63eXdcmbrlFwVAYAbsHOQcjIBrsLf4d2Eg3arqOo6mSMlHn8mL8Ei25H1JrAvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/0S7IAW8UDOCOiyAcle+Nw44AB02m6DpejIU0zTbSzB+95EKoW+pHJ/HNaWD+tAIPQ0tABRRRQAUUUUAIehxWHeeGrK98T6d4geSYXmnxyRQhWAQhxg7hjJP4itw9DmuR1PxPe2HxE0Hw6kULW2o288ssjA+YpQEjByBj6igDqngikGHjRuP4hmsPUvBPhrVcm70HT5JOvmeQqvn/eAzXQ0UANAOfxp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFRySpFG0kjBUQFmJ7Ad6APJ/DMWq6v8AFDxHYjxHq76PozRBIzMPnkYAlWOOVyrjHpivWwMV5h8FY3uvDuq+IJlxLrOqT3Iz3XOB+R316hQAUUUmaAFzSZFcp4l8Uz6NcwWFhYLe38sTTFJZ/JSNAcbmba3UnAAHY8gc1yVt4l8SeIYJJJNUXSwkjRTWtpbKJYmBwVZ5C4PUEFQuQQRQB6pLNFBE0srokajLO5wAPc1zN18QvDdu7R218dQlH/LPT42uPzZQVH4kVxbaBYzyrNfibUZl5Et/K1xg+oDkhf8AgIFaSKkaBECoo4AAwB+VAFy58ba5dkjS9ChtVPSbUrgFh/2zjz+risyeXxBqOf7Q8RXKxnrBp6C2Qf8AAuZP/H/wqxz7/jVK81fTtPYLd3sETnpGzjefovU0AMt9D022uPtKWcbXJPNxL+8lP/bRst+taAK44P5VUgn1PUT/AMSzw/qFwDwJp0FrGQfeTDEfRTWpB4P8TXnN7qVjpyHrHaxtcSfg77VH/fB/GgCtWZN4g0uK4+yrdLcXX/PtbKZpT/wBAW/Suvg+HOiAZ1Br3VW6/wCnXBZP+/S7Y/8Ax2ulstOs9Mthb2Fnb2sI6RwRhF/ICgDzi2tfEmpc2Hh+WBD0m1KVbdf++AGf81FacPgXV7rnVNfEKEcw6bbhce3mSbyfwVfwrvgMfWloA5e08AeG7WRZZNOF9OMHzdQka5YH1G8kKf8AdArpEjWNAiKFVRgKowBUlFACc0tFFAAelcr4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHqqD0oA8osb5LwSo8TW13A3l3NrL9+J+vzf0boQQafe2MOoWrW9wjFGOQQdrKwOQykcgg4OR7n2rqvFHhZtVKajprpbazbriORvuTJ/wA8pMclT2PVTyO4PJWN8l4JUeJra7gby7m1l+/E/X5v6N0IINAG94X8TzG7i0PXZQb4j/RLsgBbxQM4I6LIByV743DjgdwCD0NeWXtjDqFq1vcIxRjkEHaysDkMpHIIODke59q2/C/ieY3cWh67KDfEf6JdkALeKBnBHRZAOSvfG4ccAA7mikBB6GloAKKKKAA9K5++8MW9/wCMNK8RPcSpPp0UsSQgDawcEEmugrltR8USWHjzQ/DgtVZNShmlMxcgx+WucY75xQB1NJkUtcJceINT17xfdeG/D80dpBpyqdR1ExCRkduViiU/Lu45JyB6ZoA7oEHvS15/4M17WdT8Y+I9Ku76K8sNHaOFJ1gETySNkndg4+XaV4x7ivQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr3FxDa28k9xLHFDGpZ5JGCqqjqSTwBQBOSORWN4g0abXdMksU1S6sI5lZJjbqhZ0IwR86nH1GKxPDXxJ0LxPqGsQ2s4jttM2Zup2CJKG3ZIzjABXv61fPjXSJmK6Z9q1dwcf8S63aZAfQy/6sfiwoAPCHhUeD9HTS4NTury0jOYluAg8rJLNgqoJyW75rps1zH23xZfn/AETSLHS4z/y11CfzpB/2yi4/8iUp8M6jenOr+JL+ZT1gssWkX5rmT/x+gDW1HWNN0iHzdSv7a0jxwZ5VTP0yeap6Z4ks9ZuTHYx3kkQUt9qa1kjhJ6YDMBu45yMj3p+neFtC0qXzrPSrZLjqbhk3yk+8jZY/ia2MHv1oA888ZR/Y/GNjfyHEF7amy3nosqMXRT7sHfH+7XMC8ttP8V6o89xDbwtawSTPK4ULJukXknjdtC/gq163f6baarZS2d/bR3FtIMPG44Pp9Mf/AF6zNM8EeHNHma4stItxdE7vtEwM0oOMcO5LD6AigDhbfVTqBA0jTtQ1PdwHtoD5X/f19qf+PVpW/hzxff7S8enaRGevmyNcy4/3U2rn/gZr0oD2paAOKt/h1ZuA2q6rqWoHvH532eLPssQU/mTXQaX4f0jRFI0zTLW0yOWiiCs31bqfxrVooATmloooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juD1VB6UAeUWN8l4JUeJra7gby7m1l+/E/X5v6N0IINPvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7V1Xijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdweSsb5LwSo8TW13A3l3NrL9+J+vzf0boQQaAN7wv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHA7gEHoa8svbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/wBEuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AB6VzGoeFft3jjRvEn2zy/7Nimi+z+XnzfMXGd2Rtx9DmunrnL/AMTx2PjPSPDhtnaTUYpZVmD4VBGM4I98UAdGeleM+BdZTw7rXi7SLq2nl8RXWryzwW6wsTOj8o27GAnUkkjANezUzb7DHvQB5L8Gr+If8JBaXzSvrc2rTzXI8h8AALgs2Nq87sZOea9dpuDmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpXlfjf4b+KPGjslz4sihsAcx2MNoyRjHTcd53H3I+gHSvVKKAPEfAvwa1Lwp4uS81IaRqem+U0eWQs8bcEOEZcA5GMgk8+nFe1KgUKFACgYAA6fSpKKAEAxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpXK+KPCzaqU1HTXS21m3XEcjfcmT/AJ5SY5KnseqnkdweqoPSgDyixvkvBKjxNbXcDeXc2sv34n6/N/RuhBBp97Yw6hatb3CMUY5BB2srA5DKRyCDg5Hufauq8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juDyVjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDQBveF/E8xu4tD12UG+I/wBEuyAFvFAzgjosgHJXvjcOOB3AIPQ15Ze2MOoWrW9wjFGOQQdrKwOQykcgg4OR7n2rb8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwADuT0rk9T8MXF/8QtC8RpcRLBp0M8UkRB3OXUgY7cV1W4EZB7VhXvia0sfFmmeH5IbhrzUYpZYnUDYqoMndk5HTsKAN+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/ADykxyVPY9VPI7g9VQelAHlFjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDT72xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1dV4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8MeKZvtUWia7KDfEf6JdkALeKBnB7LIByR3xuHHAn1Tw3fXvxJ8P+IImh+xafbzxTKWIfLqQuBjBHPc1zt7Yw39q1vcRs0ZORg7WUg5BUjoQecj6+1afhzxq8Wr2nhjXXZ9SmDG0vFUbLpFBOW/uvxg44JxjGcAA9BopAQehpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juD1VB6UAeUWN8l2JUeJra7gby7m1l+/E/X5v6N0IINc/r/hyfV/GGkXTwF7GCGVZZA+1kcj5CvIOQwU5HTGa9N8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juDyVjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDQBveF/E8xu4tD12UG+I/0S7IAW8UDOCOiyAcle+Nw44HcAg9DXll7Yw6hatb3CMUY5BB2srA5DKRyCDg5Hufatvwv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHAAO5opAQehpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juD1VB6UAeUWN8l4JUeJra7gby7m1l+/E/X5v6N0IINPvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7V1Xijws2qlNR010ttZt1xHI33Jk/wCeUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwO4BB6GvLL2xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1bfhfxPMbuLQ9dlBviP9EuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelcr4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHqqD0oA8osb5LwSo8TW13A3l3NrL9+J+vzf0boQQafe2MOoWrW9wjFGOQQdrKwOQykcgg4OR7n2rqvFHhZtVKajprpbazbriORvuTJ/wA8pMclT2PVTyO4PJWN8l4JUeJra7gby7m1l+/E/X5v6N0IINAG94X8TzG7i0PXZQb4j/RLsgBbxQM4I6LIByV743DjgdwCD0NeWXtjDqFq1vcIxRjkEHaysDkMpHIIODke59q2/C/ieY3cWh67KDfEf6JdkALeKBnBHRZAOSvfG4ccAA7mikBB6GloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKjkljiQvI6oq9SxwBUcV3bTkiK4ikIGSEcHj8KALB6Vyvijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdweijvbSaTZHcwu/TargmrB6UAeUWN8l4JUeJra7gby7m1l+/E/X5v6N0IINPvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7V1Xijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdweSsb5LwSo8TW13A3l3NrL9+J+vzf0boQQaAN7wv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHA7gEHoa8svbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/wBEuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR2oooAz9R0uz1awmsb+3juLSYFXikXII+nrnnPWvJPhldaZ4N0fxTpmp20RvdHvTC0iQgy3cchxEo7sWYHA9xXtWeK8k0Oys9c+PfiS/8pJItNggXrkG42gB8f3lAdQfxoA6LwT4Hs9CabWLnTbS31m+kM0qwou20U9IY8DgAEAkfeOT6Y7qkApaAA9K5XxR4WbVSmo6a6W2s264jkb7kyf88pMclT2PVTyO4PVUHpQB5RY3yXglR4mtruBvLubWX78T9fm/o3Qgg0+9sYdQtWt7hGKMcgg7WVgchlI5BBwcj3PtXVeKPCzaqU1HTXS21m3XEcjfcmT/AJ5SY5KnseqnkdweSsb5LwSxvE1vdwN5dzay/fifrhv6MOoINAG94X8TzG7i0PXZQb4j/RLsgBbxQM4I6LIByV743DjgdwCD0NeV31lBqFq1vcKShIIIbaysD8pUjkMDggjnv7VueF/FE32uPQ9dlze4P2W8wAt4oGcHHCyjqVHXGRxwADuaKTIziloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK93aRXlrJb3Cb4pF2uuSMj8KwtM8CeGdHv1vdP0e3trpckSpu3fic89a6WigAooooAKKKKAA9K5TxR4WbVNmo6dIlvrFuuI5G+5Mn/PKT1X0PUHkdwerooA8Yu9dkjtfJhtWj1hpxafYrg4McxBPz46qFBbI4K9Caz9Y0Gxh0ae4vJJ7/UyuIZ2ciQznhBEo4TLEYCj0z616Z4l8F23iC6tdShl+w6xa/6q7RN+VIIKOuRuXDNjkEZOCMkGPRfBa2OoR6lqd6+pX0WTCWQRxQEjBKIM/Mem5ixx0I5yAdLZrOtnAtywa4EaiQju2Bn8M1apoFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k= None. +5 EuPhO_2025_3_3 Now consider two infinite, straight, thin wires (wires $X$ and $Y$), each carrying a current $I$ as shown in the figure. The $x$-axis coincides with wire $X$, while wire $Y$ is parallel to the $y$-axis and passes through the point $(0, 0, -a)$. Let $P$ be the point $(3a, 0, r)$. Assuming $r \ll a$, calculate $d$, the distance of closest approach of the magnetic field line that passes through $P$ to the wire $X$. Let $L$ be the length of this field line between $P$ and its point of closest approach to wire $X$. Using values $a = 10 cm$ and $r = 1.0 mm$, calculate $L$ to within 20% relative error (express the unit in $m$). "[[""Award 0.2 pt if the answer states or implicitly assumes that $L$ is much larger than $a$ and $r$. Otherwise, award 0 pt."", ""Award 0.4 pt if the answer correctly equates $\\mathrm{d}x$ with $\\mathrm{d}L$ using $B$-field components or an angle. Otherwise, award 0 pt."", ""Award 0.3 pt if the answer identifies that $B_{\\prep}$ is dominated by wire $X$. Otherwise, award 0 pt."", ""Award 0.4 pt if the answer derives a correct integral expression for $L$: $L = \\int_Q^P \\mathrm{d}L = \\int_0^{3a} \\frac{a^2+x^2}{a \\rho} \\mathrm{d}x$. Otherwise, award 0 pt."", ""Award 0.5 pt if the answer provides an expression for $\\rho$ as a function of $a$, $r$, and $x$: $\\rho^2 = \\frac{r^2 (a^2 + x^2)}{10 a^2}$. Otherwise, award 0 pt."", ""Award 1.2 pt if the answer carries out reasonable numerical approximation ($L = \\int_0^{3a} \\frac{\\sqrt{10}}{r} \\sqrt{a^2 + x^2} \\mathrm{d}x = \\frac{\\sqrt{10} a^2}{r} \\int_0^3 \\sqrt{1+u^2} \\mathrm{d}u$) or rigorous calculation of integral ($\\int_0^3 \\sqrt{1+u^2} \\mathrm{d}u \\approx 6.24$). Otherwise, award 0 pt."", ""Award 1.0 pt if the final result of $L$ within the range of $140 m \\leq L \\leq 215 m$. Partial points: award 0.8 pt if the answer is within the correct range but has only 1 significant figure or more than 3. Otherwise, award 0 pt.""]]" "[""\\boxed{[140, 215]}""]" "[""Numerical Value""]" "[""m""]" [4.0] text+variable figure Electromagnetism EuPhO_2025 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAGEAtQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5I/E7wSDg+JdPz/wBdKAOtorD0jxf4d16cwaVrVjdzAZ8uKYF8eu3ritygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAA9K8mHH7SzZwP+JL9QORXrNeMato9jrn7Q72V/HI8P9kK5Ec7xHIPHzIQf1oAPjokFtH4dudNCL4k/tBRamPAldcHPuRv8sfia9lXOBn9a5rSvAXhnRb8X9lpca3oGFnmkeZ1/wB0yFsfhXTAYoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBNwrGbxX4dTUv7ObXdOW93bPIN0gfd/dxnr7dawfixqd7pHw11e7093juNiR+Yn3lVnVWI9DtJ57V8eFssOpOenrQB99ZBBwa4L/AIVZp/8AbH9r/wBveIRqPl+V9oF6A2z+7nb09qZ8G9UvtW+GmmTX7PJJGzwpK5yXjViFP4Y2/wDAa9BoAhji8qJE3M20AbmOScdz6mpqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiijNABRSZFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFS+sbbUbCeyvIVmtZ0Mcsb9GUjBFeTP8As8eG21MzrqWoCzLbvs3yfkGx0/D8a9jPQ1yEniS9j+K8PhkLCbCTSDelip8zf5pXGc9MDpigDoNN0u10ewt7DT4FgtLdBHHGvRVH9fU98knJrQopMj/IoAWikyDS0AFFFFABRRRQAUUUUAFFGaTIoAWijNJkHvQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUZozQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUmenvS1i3fiCzs/E2naHI3+k38M0sXPTy9pxj3DEj/AHTQBtHpXG6l4+tNPvtStl0fWbxNOOLq5tbdWhQ7Q5G4uOQGBPpXYkjGK8t11z4+8TS+ENKIg0Gzl83XLuEbfOkzkW6kdSSMsfb2wwB2vhXxNbeLdGXVrK2u4LV3Kx/aUCM4GMsACeM5H4Gt6s3SZLCTTYV0toTZRZgiEI+RRGShUewKkcf/AF60qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rAfwxaP4yj8Umaf7bHYmxEeR5ezeXzjGd2Tjrj2rfrk5PE9wnxOh8Li2jNtJpf24z5O8N5hTb6YwKAOqYZUgHBx19K8m0LWfFms+LvE3hq38QNIlhJHGmovZxZgGDvwoABcthRnIAVjjNesuwRCzdAMnjNec/B6xnTw3qGs3kEkV3rOoz3jrIu1gC2ACOvUMfxoA6nwpDr8Hh60j8STQXGqgN58kIAU/MdvAAGduM4A/Gt+ijNABRSZFQXN1b2kDz3M8UMKfeklcKo+pNAFjNJkVyVx8Q/D0ZZbOebVJF7afA0y59PM+4PxYVl3HjPxDeZGn6Na2EZ/5aahOZHx/1yj4/8iUAeg5HrWfqWt6Xo0PmapqNpZoehuJlTP0yea85mXWtRP8AxM/EV+6n/ljZEWsf0+T58f8AA6ZZ6Lp1jKZrayiWc/emK7pG+rnLH8TQB08/xF05gRpdhqepns8VuYo/++5SoI91zWXceKPFV9xBDpmkxn1LXUv/ALIoP/fVRY745pCQoyxwPU0AUpbTUbpjNd+I9ZluByrx3PkKh9o49qH/AIEDXbeDtauNZ0Um9Km/tJ2tLtkGAzrghwO25WRsdt2O1cI/iDTRcNb287XlyvWGyja4cfUIDj8a7DwJp13Z2Oo3l7bvbSajemdYJPvIgjSNd3+0dmfxFAHX0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVlnXNNXWzo0l3HHqJjEiW8h2tIhzymfvDg5xnGOa0wQelAC0HpRQelAHKeKPHel+EJIE1SC/wBlwQsc0FsXRnOfkzn73HSt7Tb4ahYx3Qtri2D/APLK4j2OPqO1ed/EA/2x8TPAvh8cqlw+ozKemIxlc/8AfLj8a9QAx2oAWiiigAooooAKKKKACiikyDQAtFJkHvS0AFFFFABRRRQAUUUUAFFFFAAelfLHjb4gt/wuqLW7Ry9to8q28e0/fRSRIAf9os4z6V9TEZGDXn9/4Q8NL430OAeHNJWKW0vGeMWUe1mUw4JGMEjJwfegDs4poNW0xJraYm3uod0c0bYO1l4IPY81yNl8K9I023e20/U9etLd2LtFBqckasx+8SB3OBz7V2VraQWVtHbW0EcFvEAscUSBVQDoABwBVqgDM0fSbbQ9JttMskZba2TYgZiT65JPUkk5+tadFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRmgAoozRmgArm38Lo/j2LxWbphLHp/2D7Ps4I3l927r36Yq5qvifQ9EYR6jq1pbzEfLC0gMjfRB8x/AVxVx8WVfxLHo+k6Fc3nmWn2hZp5GtQfmI+66btuMHd15+7QB6ZkEeopmQgycADqTx+Nec3Gv+LdQyPtVhpUZ6LawmeQf8Dkwv8A45WVNokN+c6rdXmqMTnF7cM8efaMEIP++aAO6v8Ax34asJWgbVYp7heDBZhriQH0Kxgkfjisefx7qFwdul+Hpgp6TajOsAPuFXex+hC/hWXb28FrCI7aGOKIdFjQKo/KpfUdD6d6AI7i/wDE+of8feuraRnrFptssf5vJvY/Ubao/wDCP6e863FzA99cL0nvZGuHH0Lk/pirV3f2enxebeXUNvH/AHpZAo/WoIL+fUeNJ0jUdRz0kjg8uI/9tJdqn8CaAL2AAMABRwMcY9qX8OtPh8MeLL8gzS6bpEZHq11MB6Y+RR+BatW3+HNg2Dq1/qOpt3SSfyYvwSLaCPZs0Acxd61ptlKIbi9hE7fdgVt8jfRBlj+Aqa3/ALa1H/kG+Hr6RD0mvALVP/H/AJ8fRK9E03RNM0aIxabp1pZoeot4VTP1x1q9+XX0xQBwFv4L8Q3g/wCJhrFpYIesdhB5r/hJJx/45Wpb/Dnw+jCS9hn1SUdWv5jKp/7Z8R/+O11uR60ZGcUAQWtnb2VutvawRQQqMLHEgRR9AKnwc0tFABRRRQAUUUUAFFFFABRRRQAUUUUAFIc4OOtLRQB5b8bfC51jwd/bFqCuoaOfPR1OG8rjeM+2A3/AT61yXwX8WeNNe1j7Bc6pDc6Zbx75DejfMV9IzkMxyRkkkL+IB93uLeK6tpbeeISRSo0boejKRgg/WsO58I6edIs7HT1Gmvp/NhPbjDW7Y5P+0D/EDw2TnnmgDotwOOevT3qOaRYYZJXyAiljtUscD2HJ+grD0PW5Lq5k0zVYVtdatl3SxKfkmTp5sRPVCe3VTwfU9BuB6Hr096APING1RdX+Olzq81jqUdiunrZ2E0thMqu5IJJyvy9X5OK9hpoHSnUAFFFFABRRRQAUUUUAQXCSPbSrDJ5UjIQj7d2044OO+PSuI8A+JNW1LVvEmg69NFLf6TdBVlSIRiSJwdp2/wDASf8AgQrvSR0zivIPF0moeF/i1a6no1qbi58Qaa9kkQHBuUI2u3+yo2Z/2VagDrPAGs6vq6a6mrTRT/YdWms4JY49gZE28Y74Jxn9TXaVjeG9Ci8OeH7TS4XMhhXMkrdZZCcu592JJ/GtK4aRLaVoIvNlVCUTdt3NjgZ7Z9aAJ80Vyfhrx5oHinMVleeTfIxWWxuQI542HUbT1+q5H411eRQAtFFFABRRRQAUUUUAFc3qf/JQfD3/AF5X384K6Sub1P8A5KD4e/68r7+cFAHSUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSZFGRgnPAoAWjNQzTxW8TSzSpFGvV3O0D8TXM3fxC8OQs0drePqUq8FdOia4H0LqNi/iwoA6zNGa8/uPG+uXZxp2hw2aH7supTgsP+2cec/99isy4l1/Us/2h4huVQ9YbBRbKP8AgQzJ/wCPUAei6hq2naTbm41K+trOH/npcSqg/MmuZuPiPpJ+XTLXUNVbs1rbFI/+/khVSPoTXL2+h6bbT/aUtEe5J5uJsySk/wDXRssfzrQH6UATz+K/FN6CLa103S0PRpWa6kx9BsUH8WrLuLS+1E51XXNTvAesYm8iP/viMLkfUmruRgkngdfas2XXtMS4NslyLi5/597VGnk/74QE/pQBYs9NsdNUrZWcFsG6+VHtyff1+tZz6G7+NIteFwvlpY/ZDFj5j8xbOenfGK1be08Saic2Ph+SBD0m1KZYF/75UO/5qK04vAmr3fOp+IDChHMOmwBCPbzJN5P4BfwoAz5ZY4IzJLIkaDqzsAB+JrPi1y1vHMemRXOqMOMWELSqD7uBtH4kV21l8P8Aw1ZyiZ9OF7cD/ltfu1y+fUbyQv4AV0qoEQKigKBgAcAD2FAHm9vovizUCCmnWemp/fvpxK4/7Zx5H/j4rTt/h88wzq+vX1yO8NoBaxn1GVzJ/wCP13FLQBhaZ4Q0DSJRNZaTax3A/wCXhk8yY/WRssfzrcAxS0UAFFFFAAelYXiXTdS1LRJ4dJ1K40+/VS8MsW05cKcK24EbSTzjBrdrK1nXLLQdLkvrwttUhEijXdJNIeFjRe7E8Af05oA8y8H+L7u5+HNxcX+qalc+I5rmSwS3HliUXIztWMbMAYKli2QME9q7vwjo2taXpiNr+uXGqX8qqZd6oscR5yqAKDjnkk87RwOlebeGra48L/GkTa3Y2ttJ4lt5J4BH8wtpi25owx6sQPmOBksMcV7cCKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFB6UUUAYmt6FFrEMeyVrW9tm8y0vIwN8D/1UjgqeCOPpBoetyXVzJpmqwra61bLuliU/JMnTzYieqE9uqng+p6I9KxNb0KLWIY9krWt7bN5lpeRgb4H/qpHBU8EcfQA2dwOOevT3p1c9oWsyXdzLpmqxJba1bruliUkpMnTzYieqE9uqng88noMjOO9AC0UUUAFFFFABSHkGlooAwNa1DxBZ3CR6PoMOoIy5Mkl8sARueCCpJHQ8etUPD/hzUE1R/EHiO5hudZkTyoY7cEQWcROSkYPJJIyzHk9OAK66igApDyCKWigD5p+MXge9X4kWc+hW0jy61lkSHg+euN546cbWJPqTXr3wzhuLfwnFFf6xealfxuReC8Yl7aUAZiwcn5fXJznI4Ix2RiUyLIVXeowG28gdxn0rA1rRLoXf9taL5cWqooWSJjtjvIx/A/oR/C/VfoSKAOlzRWPomsW+tWf2iHdHKjGO4t5F2yQSDqjDsRxz0PBHBrYzQAUUUUAFFFFABXN6n/yUHw9/wBeV9/OCukrm9T/AOSg+Hv+vK+/nBQB0lFFFABRRRQAUUUUAFFFFABRRRQAUUUUAGaKwX8V6RF4pj8OSXEkeqSqXjieCRVkAXcSrldrYHoexHUVLb+JdMvNeudFtppZr21x54SBykZIBw0m3YDg9M5oA2aKKKACiiigAooooAKKM0ZoAKKTIzjPNZWqeI9G0TA1PVLS1cj5Y5JQHb6L1P4CgDVyKXNcRP8AEO3fI0rR9Svz2laL7NGfxlIYj3Cms248Q+LNQPyy6bpUZ6CCM3Mo/wCBvtX/AMcNAHpGQBknA96wNR8beHNLmNvc6tbtdD/l2tyZpv8AvhAW/SuCn0oahzq2oX+p56pc3B8s/wDbJNsf/jv41btbS3sofJtYIoIh/BEgUfkKANa58f3dzldJ8PXLr0E2oSrbp9do3OfoVFZk2qeKr/P2nWobGM/8stOtwG/GSQt+gWn5yM5BHr/9eoLq8tbCHzru5it4h/HK4UfmaAKZ0CwmmWe9jk1GZeRNfyvcEH23kgfgB7VpIoRVVVCovAAGAv0qhBqb6gQNJ0zUNSz0e3tyIj/21fah/Bq07fw14svuXXTdJjPeR2upR/wFdqg/RzQAznrznvVG91nTdPYJd3sEUh6RlwXb6L1NdLD8OrNxnVtV1LUO7R+d9ni/75i2nH1JroNK8PaRoikaZplpa5HzNFEAzfVup/GgDz22l1XU8HS/D9/Op6TXKi1jP4yYcj6Ka1IPB3iW85vdUsdOQ9Y7OIzv+Ej7QP8Avg16Dn8qXIoA5G3+HWhLhtR+16s45P2+4Lof+2Ywn/jtdJZWNnp9uLeztYLaBekcKBFH4DinvdW8c6QPPGssmdkbMNzYGTgdTxXzF8QvEvi3wT8SdWtdP16/ht5JftMMbyF4wsg3cK2RgEsOnagD6jwMg96XIr5m8J+Ovi14tvRa6ReC4CkCWeW0hWKP/ebZx9OvoK+gdBstXstMRNb1UajenBd0gSJF9lAHT3P6UAbNFFFABRRRQAUUUUAFFFFACHkEVxl34Kvr7xhZeILjxFcOtlIWgszbx+UitkMB74ON3Wu0ooA4bxj4Al8X6rYXsmt3Fn/Z7+barDAhMb5U7tx5PKg46V2FrDLDaxRzzGeVVAeUqFLnucDgZqzRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFFAGJregx6xBFtka1vbZvMtLyIfPA/t6qRwVPBHH0u2puI7GA3rQ/aFjHnGLIj3Ac7c8gZ5+lXj0rzrxtdPqmup4fdtthFbrdXag488szKkZ/wBkeW7MO/yj6gHTWXjLw7qN+LG01m1nuGJCCN8q5HZW6MfYE1vAg9DXld5p1ve2f2SaL93wV2/KVYdCpHQg4II6dq3PC/ieY3cWh67KDfEf6JdkALeKBnBHRZAOSvfG4ccAA7mikBB6GloAKKKKACiiigAooooAKKKKAOb1nRbtbsa1orJFqiKFljJ2x3kY/wCWb+hH8L9V57Eirmiaxb61Z/aId0cqMY7i3kXbJBIOqMOxHHPQ8EcGtiub1nRbtbsa1orJFqiKFljJ2x3kY/5Zv6Efwv1XnsSKAOkzRWPomsW+tWf2iHdHKjGO4t5F2yQSDqjDsRxz0PBHBrYzQAUUUUAFc3qf/JQfD3/XlffzgrpK5vU/+Sg+Hv8Aryvv5wUAdJRRRQAUUUUAFFFFABRRRQAUUUUAFNb7p6dO9OqKZGeFkSQxuVIVwASp9eaAPKfjPctbRaTe6SXPiDSpGv4xGu7y7ZRiRn9EztHvyPWu48HWenWfhmxfS2aS3uYxdNO/L3DyDc0jnuxJ59OnQDEeleDrSxTVmvLm41K51UFbq4utu5k27RGoUAKgBOAP7xp/g/wx/wAIjpC6VFqN3d2kZPkrcBMxAkkgFVGRk9+nbigDpKKM1HJLHFG0kjqiKMlmOAPxoAkzRmuVvPiD4bt5Hhg1D7fMvBj0+Nrgg+hKAqv/AAIismbxzrN2CNN0BbdSOJdSuAGHv5ce7P4sv4UAegZFVL7ULLTbc3F9dwWsA6yTyBFH4nivOLi58RaiT9u8QSwoesWnQrbr/wB9HdJ+TiqkOg6ZDcfaTapNdd7i5Jmk/wC+33GgDrLj4i6JkppyXmqyA8CytyUP/bR9qf8Aj1Zlz4v8TXoIs9OsNMQ8CS6ka4kx/uJtUH/gZquOgA7dBnH6UUAUri21LUcnVvEGpXKnrFDILaIfhHgkezMaWy0rTtNybOyggJ6skY3H6t1P41FNrumQXH2b7Wktz/z724M0p/4AgLfpVu3g8Q6iR/Z/h6dEPSbUJBbJ9dvzSf8AjgoAmA54/Skd1jQu7qqjqScAVeg8D63d86nrsdsp6xabbjI/7aS7s/ggrVtvh94dhcSXFidRmHJk1GVrjn1CvlR+AFAHEjX7GeRorAT6lKvBj0+BrjH1KgqPxIrSt9K8V6iR5OjwafF/z01G5BbHqI4935Fh+FekRwxwQrHFGqRoMKqjAA9vSpBxQBw9v8P7mf5tX8RXcxPWOyQWyH2J+aT8nFbWm+DPDukSi4tNJtxcrz9qmHmzf9/Hy361v5FZeva/pvhvSZdT1WcwWcWA7hGc5JwBhQT1oA0xwBS5FcP4f+IH/CTa1Fbab4d1hdOcMW1K4g8qIYGRjP3snj15rofEOnX+q6NNZ6bqkmmXUhXbdxxCRkGckAEjqMjOeM0Aa5YdM81k6/rUHh3R59TuILmeKIqGjto/MkYkhRgfU1zugfDWx0XWINautW1fVtUhDBJ766LBcqVOFHbBPBzXblQRgjigDidA8Y674g1mBE8F6hYaO24ve38ixOPlJXER5OTgZBPWuh8Q6Q+uaNNp0d/d6eZSv+kWcnlyoAwJwffGPxrVwc9qdQBxfh74Z+HPDmpJqkEN1c6omSL28uWkk5GD3C9CR0rF8f8AwsXxz4s0nUJJxBZwQtFebPvuobcqr253NyelenUUAZuk6PYaFp0dhpdqltbRcLGn8yepJ9Tk1pUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcr4p8LNq7R6lp0iwazaoUhkc4SZM5MUgHVSe/VTyO4PVUHpQB5RY3yXglR4mtruBvLubWX78T9fm/o3Qgg0+9sYdQtWt7hGKMcgg7WVgchlI5BBwcj3PtXVeKPCzaqU1HTXS21m3XEcjfcmT/AJ5SY5KnseqnkdweSsb5LwSo8TW13A3l3NrL9+J+vzf0boQQaAN7wv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHA7gEHoa8svbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/0S7IAW8UDOCOiyAcle+Nw44AB3NFICD0NLQAUUUUAFFFFABRRRQAUUUUAc3rOi3a3Y1rRWSLVEULLGTtjvIx/wAs39CP4X6rz2JFXNE1i31qz+0Q7o5UYx3FvIu2SCQdUYdiOOeh4I4NbFc3rOi3a3Y1rRWSLVEULLGTtjvIx/yzf0I/hfqvPYkUAdJmisfRNYt9as/tEO6OVGMdxbyLtkgkHVGHYjjnoeCODWxmgArm9T/5KD4e/wCvK+/nBXSVzep/8lB8Pf8AXlffzgoA6SiiigAooooAKKKTIxntQAtFGRRmgAozWZqmv6TokYfU9TtbMH7omlVS30BOT+Fc5N8RrF+NK0vU9SJ6SLB5EX13Slcj3ANAHa5HrS5rzafxL4rvjiP+zdKjP91WupR9GbYo/wC+TXmet+PLW11u80zxO2t37QvtIa4HlOpwVJiXYnQ9waAPeNS8Y+HdJlaG71e2FwvW3ibzZv8Av2mW/SsK4+IM0xI0nQbycdprx1toz+B3P/46K8/8LeK9F1WT7HomkXkUa8uUtlSOP/eIbGf1rrs575980ANn1jxZf/63VLXToz/BYW4Z8em+XcPxCis2TQLO6lE2om41OQHPmX8zTD8FbKj8AKvXN1b2cJmup4oIl6vK4QD8TVS31dNQIGk2V9qeejWcBMef+urYQf8AfVAF+OJIUWONFRFGFVRgD6D/AAp3J45P1p0Hh7xbfAZg07Soz1NxK1xJ/wB+49q/+PmtSD4dwSAHV9Z1G/8AWKNxbRfgI8N+bGgDnb3VdP04A3l7BBnoHkAJ+g7miC51DUcf2VoOpXinkSPF9niPvul2k/VQa9A0zwzomikvpulWttKRgypEPMb6v94/ia1h70Aedw+EfFV6Abu/07TIz1S3RrmT/vptqg/8Bb8a1YPhxo+AdSmvtVbqReXB8v8A79ptT81NdhkVUv8AULLTLRrq/u4LWBfvSzyBEH1J4oASx0yy0u2FvYWdvaQj/lnBGEH6CrfGR0zXJ6X8RfDGua+mi6TqP2y7ZWcmKJjGoAzy5GPyrW8QLrjaTIPDzWS6iWUI17uMYXPzH5e+KANfI9az9X1jTtC02S/1S7S1tI8BpZM4BPAHHOa5rw/4Z8V22qxan4g8XSXpVWH2G2t1ig5GOe7Y65IzXWXljbahAYLu3iuISQTHKgdcg5Bwe9AHJaF8TNE8Ta4mm6LDqF5G27derastumBnBZsEE+4roPENtrF3o8sGh6glhfsyhLiWISBBuG75TwTjOK00jWJFRFVVXgKowAKkoA4jw/4F1DTdWh1bV/FmravdxhgInYR23zKQf3Qzzz1zXZMgfhgGHB59QcjipaKAEAx0ApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rlfFHhZtVKajprpbazbriORvuTJ/zykxyVPY9VPI7g9VQelAHlFjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDT72xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1dV4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwO4BB6GvLL2xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1bfhfxPMbuLQ9dlBviP8ARLsgBbxQM4I6LIByV743DjgAHc0UgIPQ0tABRRRQAUUUUAFFFFABRRRQBzes6LdrdjWtFZItURQssZO2O8jH/LN/Qj+F+q89iRVzRNYt9as/tEO6OVGMdxbyLtkgkHVGHYjjnoeCODWxXN61ot0t2Na0Vki1RFCyxk7Y7yMf8s39CP4X6rz2JFAHSZrm9T/5KD4e/wCvK+/nBV7RtYt9ZtftECujqxjngkXa8Mg6ow9enPQjBGQc1Q1Ig/EDw8f+nK+/nBQB0tFNZlRSzMAo6knpXN3njzw3ZyNCuqR3VwvBhsVa5dT6ERhsfjigDps0mQehrgLjx3qtz8ul+HWjUjiXU7gRfiETeSPqRWbPe+JtRz9t8QG2jPWHTbdYV/F3Lv8AiCtAHpN3e2thbtPd3MNtCvWSZwij8TxXM3PxF0FWKWDXWqyDjGnwF1/7+nEf/j1eeTv4XtL7dO632oj/AJ6Fry5B/Hew/QVbGr6ndALYaHMi9BJfSLAoHso3P+BUUAdLceMvEV4SLHSbPT06CS9mMz/9+48D/wAfrJuzqt3G0ur+JL1ov4kt3FpCPUZTDY+rGqX9n63dsPtmri2UjmKxh2nHoXfcfyAqjNa+FrK7Vb6VL6+z8q3EjXcxP+yh3H/vkUALbX/hqylc6VbLeXH8T2UBnZj/ALUgBGf95qu/bNdu+LbTILNP797PuYfSOPI/8eB+laFpHrl+irpnh27WLosl6wtYwPocyY/4BWpb+CNeu8HUtat7NO8Wnwb2H0klyP8AyGKAOZbSLy4UvqOuXJQDJjswtsg/EZf8d1cTqXhDQtU8XRPZzvc20cKie109ZLmaSQE9Su4gEYyWPb349ytvh74ejZZLy2k1OUfx6jM04/BG+Qfgoro4LeG0gWG3ijhjUYWONQqj6AYoA8w0vQNe+yRWmleHLfTLRB8pv51Tj18uMOc/Uqa24PAN9dHOreI7gr/zy0+FYF+hZi7/AJFa7r6mlyBQBzdh4G8N6ZKtzDpUM1yvIubom4lB9Q8hJH4EV0YXHSs5PEGkTakNMh1Szkvypb7MkytJgdTtBzUHiK+1TTNLa50jSDqt5vVFthOsWQT94swxxQBs5FRyTRwxtJK6oijLMxwB9TXH+HP+FgXeqpdeIU0ix03awNlbFpJSSOCznI49jW/rvh7S/E2mHT9Ythc2hdXMZdl5ByOVINAFKy8beGtR1pdHsdZtbq/dWYRW7+YML1+YZUH2zVnxFNrdvpEj6BZW13qG5QkdzJsTBPJP064zUWl6R4a8OzLa6baadYTN/BEqJI/Tr/E3UfnW9kUAcV4e0zx7/bCX/iTXNNFqoYHTrC3yhJHBMjYbI/Gun1TSdP1qyay1Kzhu7ZmDGKZQykjkEir2RRkHpQBUstOstOtxb2Fnb2sIORHBGqKPwAxVyiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAD0rlfFHhZtVKajprpbazbriORvuTJ/zykxyVPY9VPI7g9VQelAHlFjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDT72xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1dV4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwO4BB6GvLL2xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1bfhfxPMbuLQ9dlBviP9EuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AFFGaKACijNZ+pazpmjxCXU9RtbJD0a4mWPP0yeaANDNJketcZN8RdLORptnqOpnoHhtzHGf8AgcpVSP8AdJrMufFPiq+GLe303SYz3YtdSf8Asiqf++qAPR81iap4s8P6M5iv9XtYp+0AffKfpGuWP4CvPrjT7rUiTq+s6nfg9Y2n8mL/AL4i2qfxBqez06y0+Py7K1gt17rDGF/PHX8aAHat4ka41ePV/DOj3xvVxHPLcoLeC8h/uMrEOSP4W28c9iQcFvFWveI/EmlXAvLfSpUguY2jtod80BzEWRzJkE/dwdo9eQRXSjrjGT6HJz+FcH4lgtD8RdFFxJ5ME1rMLh0mMO9VBIDMpBwDzjP1oA3dTTRYnVvEGqSXshOQmo3Zkyf9mLIX8lp0Osfu1h0jRLyVAPlYwi2jx7b8HHuFNN02bR4WK+HtKe8kPDNploXBPvLjbn/eat6DQvF1/wDdsLDSoyeWvJvOkHvsi+X/AMfoAxhF4huwd9zY6fF/dgQzuP8AgTYUf98mq17pmjWiCTXtTluc9Bf3W1G9hGNqn8jXcQfD0THdq+t6heHvFAwtY/w2fP8Am9bul+FtC0V/M07SbSCY9ZxGDI31c5Y/iaAPOdPZngEHh/w5ezw9jFai3gPvuk2KfqM1tQeFPFN4M3FxpulRn+FA11J/7IoP/fX416L3oyMZzxQBxtv8OdLIzqd3qOpnqUnuPLiz/wBc4tqn8Qa6PTdG03R4TDp1ha2ceeVt4VjB+uOtXiy5255I6VjeI/EEfhvSvt01jfXvziNYbKHzZCx6YHFAGz3GcUuRXG+HfFHiPXdVH2jwjcaVpBRiLm8nUSlv4R5XUZ/GtnxHoX/CRaU2ntqOoWCs4ZprCbypCB/DuweDnkYoA0Te2wuxaG4hFyyllh3jeQO+3ris3xJrFxoWkPd2ukXeqTbwi21quWOe59B6ms3w18OvDfhW7+26dZP9vKlWu55mkkbPXJJxz7AV1eDjH9aAOL8Oat451bVxJq/h6x0jSCh+Rrnzbgt2+6doHqCM1u+I/Dlh4o0ltM1HzjbO4dlilKFsdiR2rYAx/wDWpaAOc0HwL4Z8MuJdI0e2t5gMCYgvLg9fnbLc/Wuixz0paKACmOCUYBtpxwfSn1FNMkEEk0h2pGpZjjOABk0AeSan4N8N+Ffh3qVprDWuo69cJM63TQhrq4nYt5WzkvkHb0PYk8ZruPBceoaZ4B0weIJNl5Bag3DSvyijJG4+oXGfcGszWLPwb4v8KSeIrqG0ML2plTUtojlhABx+8HzKQf4c9exrg7/W9dn/AGZ2vL+Sd7uUCFp5Cd7wmYLls9cr8ue4Oe+aAO4PxDu7nRL7xFp+hCbQLQM/2q4u/JlnRfvNFHsOR6bmXNdN4a1c6/4esdXNs1sLuITJEzbiqnpk+4wa81+KOqWmi/Ci28P6Y6SG4t7aEGNhiODjDn0Dbdoz1yx7GvVtMtYNP022sYCPLtYkhXB6BVAA/LFAF2iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKM0AB6Vyvijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdwepyMZzxSMQFJOMYoA8qsb5LwSxvE1vdwN5dzay/fifrhv6MOoINOvbGDUbVredGZGOQQdrKQflYEcgg4wR+vSrXjXUPDs0ourLWLdfEFsNqJbhrgyr/wA8pUjDHaT0JGVPPqDhR6trF7EhtdCeAsOWvp1jVc9gF3MQPcCgDr/C/imZrqLQ9dlBvSP9FvCAFvFAzg9llA5K98bhxwOyubq3s4GnuZ44IlGWklcKo+pNeN3Oi6nq0arqeqrFGGDiOxgClWByp3uWOQe42nrzVz/hH9OeYXF1C99OvImvpGuGH0MmcfhQB2Nz8RPDiO0dlcTapKv8OnwmYf8Afz7g/FhWXP408QXZIsNFtrFD0kv5/McD/rlHx/5EqoFVBtAVQvAA7f59qXn069cc0AV7htc1H/kI+Ib0of8AljZAWyD8V/ef+PmoLXRNNspTPBZRCdvvTsN8jfVz8x/Olu9Z02xkEVzfQJK33Yd4MjfRByfwFSW7axqOP7L8PX0y9proC1j/APH8OR9FNAFvnPf+tISACT0HWrFv4K8RXmDf6vZafGfvR2EHmv8A9/JOB/3xWrbfDnQI8Nfpc6tIOc6hMZU/798Rj/vmgDkG17TjO1vbzm8uF6w2cbXDj6qgOPxq9BYeJtSIFpoRtoyMiXU7hYx9QiB2/Ahfwr0i1tLeyt1t7WCK3hUYVIkCKPoBU4FAHBweAtSuR/xNPEDIh6w6bbrEPoWfeT+G2r1t8OPDEGp22otYPc3VuG2SXc8k+cjBJDkg+3p2rrj0Oa4HxX42bwz450WyvLu2tdHuLWea6eVedyqduD1644AJNAHdIFRQqABQMADp+ArBt/GGi3Xi1/DNvdrLqUMLTSqnKpggFN3975s4HQDnFeI+PPjvdakkum+Flks7Y5Vr5uJnHfYB9we+c/SvNvB2o31l4x06Sx1M6dczTC3N55Yk8sSHazFW4Iwe/wBetAH2zkdO/wBKxfEviXTPCulf2jqs0kduZBEpSNnLOc4AAB9D14rH8NeBptE1Q6pqHiXVtYvmiMR+1S/uQCRnbHzjp612BUnGcEjuRQBx/hvxtdeJ9VWO38M6vaaZ5bOL++jESsRjAVeSQeec1r+JdGvNb0r7HY6xc6VIXBa5tgN5XnKj0znrW3jFLQBxfhr4caV4b1X+1VvNSv8AUyhQ3V9dGRsHGQAMD8wa7Pn0paKAG7eQcc+tOoooAKKKKACiiigAooooAKDyKKKAOUPw48Itdm4bw/Z7zJ5hUKfLLeuzO39K3rnTrS8099PuLaOWzePyngZQUKdMY9P8Ku0UAcungLwvFosujJoloNPmYPJCF++w6MW+9keuf51s6bpVjo9lHZ6dZw2lsnIihQKv/wBc+9X6KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAopMilzQAUUUUAFFFFABRRRmgAopMiloAKQEHoQap6hqlhpVuZ9Qvrazh/wCelxKsa/mSK5q4+ImjsCumW9/qrdM21uVjP/bSTahH0JoA7KjIrzqfxb4ovMi0stO0yPs07tcyf98rsUH/AIE1ZlxbahqJ/wCJpr2p3Y/55pL9nj+m2ILkf7xNAHoGq+JdD0QY1PVbW2c9I5JBvb6J1P4CueuPiLHLldI0TUb49pZlFrEfxkw+PcIawbLS7DTs/Y7KC3LdTHGFJ+p6n8at8/5FACza/wCLb/8A5e7DS4z0W1iM8o/4HJ8v/jlZs+jRX5zq13e6oSclby4Z48/9cxhB/wB81ekljhjMkkixoOrMwAH41Qj16zu3ZNNW41JwcEWELTAfV1G0fiRQBet7aC1iEVtAkUY4CxJtUfTFSe+fxpsGjeK9Q5j0u005D1e/uAz4/wCucW4fm4rUt/h7LNhtX8QX0+P+WNkBaRn2yMyf+P0AYt3qFnp8fmXt3BbJ/elkCD9azf8AhIorjjTrC/v2PRooNif99ybVP4E10+q/DTTFhiutAtYbTVLYl45ZcyCb1SQtliD2bOV6jPIOPYXy3iSxyRtb3cDCO5tpuHhbGSG/QhuhBoAo2FxrGq65Hpc72eiNOm63eXdcmbrlFwVAYAbsHOQcjIBrsLf4d2Eg3arqOo6mSMlHn8mL8Ei25H1JrAvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/0S7IAW8UDOCOiyAcle+Nw44AB02m6DpejIU0zTbSzB+95EKoW+pHJ/HNaWD+tAIPQ0tABRRRQAUUUUAIehxWHeeGrK98T6d4geSYXmnxyRQhWAQhxg7hjJP4itw9DmuR1PxPe2HxE0Hw6kULW2o288ssjA+YpQEjByBj6igDqngikGHjRuP4hmsPUvBPhrVcm70HT5JOvmeQqvn/eAzXQ0UANAOfxp1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQelFRySpFG0kjBUQFmJ7Ad6APJ/DMWq6v8AFDxHYjxHq76PozRBIzMPnkYAlWOOVyrjHpivWwMV5h8FY3uvDuq+IJlxLrOqT3Iz3XOB+R316hQAUUUmaAFzSZFcp4l8Uz6NcwWFhYLe38sTTFJZ/JSNAcbmba3UnAAHY8gc1yVt4l8SeIYJJJNUXSwkjRTWtpbKJYmBwVZ5C4PUEFQuQQRQB6pLNFBE0srokajLO5wAPc1zN18QvDdu7R218dQlH/LPT42uPzZQVH4kVxbaBYzyrNfibUZl5Et/K1xg+oDkhf8AgIFaSKkaBECoo4AAwB+VAFy58ba5dkjS9ChtVPSbUrgFh/2zjz+risyeXxBqOf7Q8RXKxnrBp6C2Qf8AAuZP/H/wqxz7/jVK81fTtPYLd3sETnpGzjefovU0AMt9D022uPtKWcbXJPNxL+8lP/bRst+taAK44P5VUgn1PUT/AMSzw/qFwDwJp0FrGQfeTDEfRTWpB4P8TXnN7qVjpyHrHaxtcSfg77VH/fB/GgCtWZN4g0uK4+yrdLcXX/PtbKZpT/wBAW/Suvg+HOiAZ1Br3VW6/wCnXBZP+/S7Y/8Ax2ulstOs9Mthb2Fnb2sI6RwRhF/ICgDzi2tfEmpc2Hh+WBD0m1KVbdf++AGf81FacPgXV7rnVNfEKEcw6bbhce3mSbyfwVfwrvgMfWloA5e08AeG7WRZZNOF9OMHzdQka5YH1G8kKf8AdArpEjWNAiKFVRgKowBUlFACc0tFFAAelcr4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHqqD0oA8osb5LwSo8TW13A3l3NrL9+J+vzf0boQQafe2MOoWrW9wjFGOQQdrKwOQykcgg4OR7n2rqvFHhZtVKajprpbazbriORvuTJ/wA8pMclT2PVTyO4PJWN8l4JUeJra7gby7m1l+/E/X5v6N0IINAG94X8TzG7i0PXZQb4j/RLsgBbxQM4I6LIByV743DjgdwCD0NeWXtjDqFq1vcIxRjkEHaysDkMpHIIODke59q2/C/ieY3cWh67KDfEf6JdkALeKBnBHRZAOSvfG4ccAA7mikBB6GloAKKKKAA9K5++8MW9/wCMNK8RPcSpPp0UsSQgDawcEEmugrltR8USWHjzQ/DgtVZNShmlMxcgx+WucY75xQB1NJkUtcJceINT17xfdeG/D80dpBpyqdR1ExCRkduViiU/Lu45JyB6ZoA7oEHvS15/4M17WdT8Y+I9Ku76K8sNHaOFJ1gETySNkndg4+XaV4x7ivQKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKr3FxDa28k9xLHFDGpZ5JGCqqjqSTwBQBOSORWN4g0abXdMksU1S6sI5lZJjbqhZ0IwR86nH1GKxPDXxJ0LxPqGsQ2s4jttM2Zup2CJKG3ZIzjABXv61fPjXSJmK6Z9q1dwcf8S63aZAfQy/6sfiwoAPCHhUeD9HTS4NTury0jOYluAg8rJLNgqoJyW75rps1zH23xZfn/AETSLHS4z/y11CfzpB/2yi4/8iUp8M6jenOr+JL+ZT1gssWkX5rmT/x+gDW1HWNN0iHzdSv7a0jxwZ5VTP0yeap6Z4ks9ZuTHYx3kkQUt9qa1kjhJ6YDMBu45yMj3p+neFtC0qXzrPSrZLjqbhk3yk+8jZY/ia2MHv1oA888ZR/Y/GNjfyHEF7amy3nosqMXRT7sHfH+7XMC8ttP8V6o89xDbwtawSTPK4ULJukXknjdtC/gq163f6baarZS2d/bR3FtIMPG44Pp9Mf/AF6zNM8EeHNHma4stItxdE7vtEwM0oOMcO5LD6AigDhbfVTqBA0jTtQ1PdwHtoD5X/f19qf+PVpW/hzxff7S8enaRGevmyNcy4/3U2rn/gZr0oD2paAOKt/h1ZuA2q6rqWoHvH532eLPssQU/mTXQaX4f0jRFI0zTLW0yOWiiCs31bqfxrVooATmloooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juD1VB6UAeUWN8l4JUeJra7gby7m1l+/E/X5v6N0IINPvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7V1Xijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdweSsb5LwSo8TW13A3l3NrL9+J+vzf0boQQaAN7wv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHA7gEHoa8svbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/wBEuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AB6VzGoeFft3jjRvEn2zy/7Nimi+z+XnzfMXGd2Rtx9DmunrnL/AMTx2PjPSPDhtnaTUYpZVmD4VBGM4I98UAdGeleM+BdZTw7rXi7SLq2nl8RXWryzwW6wsTOj8o27GAnUkkjANezUzb7DHvQB5L8Gr+If8JBaXzSvrc2rTzXI8h8AALgs2Nq87sZOea9dpuDmnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpXlfjf4b+KPGjslz4sihsAcx2MNoyRjHTcd53H3I+gHSvVKKAPEfAvwa1Lwp4uS81IaRqem+U0eWQs8bcEOEZcA5GMgk8+nFe1KgUKFACgYAA6fSpKKAEAxS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAHpXK+KPCzaqU1HTXS21m3XEcjfcmT/AJ5SY5KnseqnkdweqoPSgDyixvkvBKjxNbXcDeXc2sv34n6/N/RuhBBp97Yw6hatb3CMUY5BB2srA5DKRyCDg5Hufauq8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juDyVjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDQBveF/E8xu4tD12UG+I/wBEuyAFvFAzgjosgHJXvjcOOB3AIPQ15Ze2MOoWrW9wjFGOQQdrKwOQykcgg4OR7n2rb8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwADuT0rk9T8MXF/8QtC8RpcRLBp0M8UkRB3OXUgY7cV1W4EZB7VhXvia0sfFmmeH5IbhrzUYpZYnUDYqoMndk5HTsKAN+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/ADykxyVPY9VPI7g9VQelAHlFjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDT72xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1dV4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8MeKZvtUWia7KDfEf6JdkALeKBnB7LIByR3xuHHAn1Tw3fXvxJ8P+IImh+xafbzxTKWIfLqQuBjBHPc1zt7Yw39q1vcRs0ZORg7WUg5BUjoQecj6+1afhzxq8Wr2nhjXXZ9SmDG0vFUbLpFBOW/uvxg44JxjGcAA9BopAQehpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juD1VB6UAeUWN8l2JUeJra7gby7m1l+/E/X5v6N0IINc/r/hyfV/GGkXTwF7GCGVZZA+1kcj5CvIOQwU5HTGa9N8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juDyVjfJeCVHia2u4G8u5tZfvxP1+b+jdCCDQBveF/E8xu4tD12UG+I/0S7IAW8UDOCOiyAcle+Nw44HcAg9DXll7Yw6hatb3CMUY5BB2srA5DKRyCDg5Hufatvwv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHAAO5opAQehpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAPSuV8UeFm1UpqOmultrNuuI5G+5Mn/PKTHJU9j1U8juD1VB6UAeUWN8l4JUeJra7gby7m1l+/E/X5v6N0IINPvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7V1Xijws2qlNR010ttZt1xHI33Jk/wCeUmOSp7Hqp5HcHkrG+S8EqPE1tdwN5dzay/fifr839G6EEGgDe8L+J5jdxaHrsoN8R/ol2QAt4oGcEdFkA5K98bhxwO4BB6GvLL2xh1C1a3uEYoxyCDtZWByGUjkEHByPc+1bfhfxPMbuLQ9dlBviP9EuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAelcr4o8LNqpTUdNdLbWbdcRyN9yZP+eUmOSp7Hqp5HcHqqD0oA8osb5LwSo8TW13A3l3NrL9+J+vzf0boQQafe2MOoWrW9wjFGOQQdrKwOQykcgg4OR7n2rqvFHhZtVKajprpbazbriORvuTJ/wA8pMclT2PVTyO4PJWN8l4JUeJra7gby7m1l+/E/X5v6N0IINAG94X8TzG7i0PXZQb4j/RLsgBbxQM4I6LIByV743DjgdwCD0NeWXtjDqFq1vcIxRjkEHaysDkMpHIIODke59q2/C/ieY3cWh67KDfEf6JdkALeKBnBHRZAOSvfG4ccAA7mikBB6GloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKjkljiQvI6oq9SxwBUcV3bTkiK4ikIGSEcHj8KALB6Vyvijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdweijvbSaTZHcwu/TargmrB6UAeUWN8l4JUeJra7gby7m1l+/E/X5v6N0IINPvbGHULVre4RijHIIO1lYHIZSOQQcHI9z7V1Xijws2qlNR010ttZt1xHI33Jk/55SY5KnseqnkdweSsb5LwSo8TW13A3l3NrL9+J+vzf0boQQaAN7wv4nmN3Foeuyg3xH+iXZAC3igZwR0WQDkr3xuHHA7gEHoa8svbGHULVre4RijHIIO1lYHIZSOQQcHI9z7Vt+F/E8xu4tD12UG+I/wBEuyAFvFAzgjosgHJXvjcOOAAdzRSAg9DS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR2oooAz9R0uz1awmsb+3juLSYFXikXII+nrnnPWvJPhldaZ4N0fxTpmp20RvdHvTC0iQgy3cchxEo7sWYHA9xXtWeK8k0Oys9c+PfiS/8pJItNggXrkG42gB8f3lAdQfxoA6LwT4Hs9CabWLnTbS31m+kM0qwou20U9IY8DgAEAkfeOT6Y7qkApaAA9K5XxR4WbVSmo6a6W2s264jkb7kyf88pMclT2PVTyO4PVUHpQB5RY3yXglR4mtruBvLubWX78T9fm/o3Qgg0+9sYdQtWt7hGKMcgg7WVgchlI5BBwcj3PtXVeKPCzaqU1HTXS21m3XEcjfcmT/AJ5SY5KnseqnkdweSsb5LwSxvE1vdwN5dzay/fifrhv6MOoINAG94X8TzG7i0PXZQb4j/RLsgBbxQM4I6LIByV743DjgdwCD0NeV31lBqFq1vcKShIIIbaysD8pUjkMDggjnv7VueF/FE32uPQ9dlze4P2W8wAt4oGcHHCyjqVHXGRxwADuaKTIziloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK93aRXlrJb3Cb4pF2uuSMj8KwtM8CeGdHv1vdP0e3trpckSpu3fic89a6WigAooooAKKKKAA9K5TxR4WbVNmo6dIlvrFuuI5G+5Mn/PKT1X0PUHkdwerooA8Yu9dkjtfJhtWj1hpxafYrg4McxBPz46qFBbI4K9Caz9Y0Gxh0ae4vJJ7/UyuIZ2ciQznhBEo4TLEYCj0z616Z4l8F23iC6tdShl+w6xa/6q7RN+VIIKOuRuXDNjkEZOCMkGPRfBa2OoR6lqd6+pX0WTCWQRxQEjBKIM/Mem5ixx0I5yAdLZrOtnAtywa4EaiQju2Bn8M1apoFOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9k= None.