diff --git "a/data/PanMechanics_2024.tsv" "b/data/PanMechanics_2024.tsv" new file mode 100644--- /dev/null +++ "b/data/PanMechanics_2024.tsv" @@ -0,0 +1,222 @@ +index id context question marking answer answer_type unit points modality field source image_question information +0 PanMechanics_2024_1 "由三根质量为 $M$ 、长度为 $L$ 的相同均匀杆组成一个三角形。它通过顶部的枢轴铰接在垂直平面上,如图所示。这个物理摆的小振荡周期是多少?杆子通过其质心的转动惯量为 $I_{\mathrm{CM}} = \frac{1}{12} ML^2$。 + +[figure1] + +(A) $\sqrt{\frac{3L}{2g}}$ +(B) $2\pi \sqrt{\frac{3L}{g}}$ +(C) $\pi \sqrt{\frac{3L}{g}}$ +(D) $\pi \sqrt{\frac{3ML}{g}}$ +(E) $\pi \sqrt{\frac{2\sqrt{3}L}{g}}$" "[""\\boxed{E}""]" "[""Multiple Choice""]" [null] [2.0] text+illustration figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCANgA7EDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorH8U+I7Pwn4bvdavT+7t0yqZwZHPCqPcnA/WgDyv46/EW70I2fh/Rbsw3r7bi6ljPzRqGBjUHsSQSR6AdjXo3gHxfb+NvCVrq0W1Z8eXdRD/AJZyj7w+h4I9iK+NNa1e81/WbvVb+TzLq6kMkh7c9h6ADAA9BXcfBvx1/wAIf4tW3u5dulaiVhuMniNv4JPwJwfYn0oA+uaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvlz47+Ov+Eg8RDQLGXOnaY5EhU8Sz9GP0XlR77q9m+LXjkeCvCEjW0gGqXuYbQd1OPmk/wCAg/mRXx8zFmLMSSTkk96AEooooA+rPgh46/4Sfwv/AGTey7tU0tQhLHmWHoje5H3T9Ae9ep18PeDfFF14O8U2es2uW8psTRA4EsZ+8p+o6ehAPavtbTNStdY0u21GxlEtrcxrLE47qRn8/agC3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzzxWtvLcTyLHDEheR2OAqgZJJ9MVJXiH7QHjr7BpqeE7CXFzdqJL1lPKRdk+rEZPsP9qgDx34j+M5fG/i+51HLCyj/c2cZ/hiB4OPU8k/XHauRoooAKKKKACvev2ffHXlTSeD7+X5JC01gzHo3V4/x5Ye+71rwWp7O8uNPvYLy0laK4gkWSKReqsDkEfjQB98UVzPgLxdb+NvCVpq0W1ZyPLuoh/wAs5R94fToR7EV01ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBj+KfEVn4U8N3us3p/dWyZVM4MjnhVHuTgV8T61rF5r+tXerX8nmXV1IZHPYZ6AewGAB6CvTvjv46/t/xEPD9jLnT9MciUqeJZ+hP0XlfruryKgAooooAesUjxySKjFIwC7AcLk4GaZXqugeHY5fgRr195Q+0zzecHxzsiZeP/Rn515VTasTGV7hRRRSKPR/g346/4Q/xatteS7dK1ErDcbjxG38En4E4PsT6V9cV8AV9W/BHx1/wlHhYaVey7tU0tRGxY8yw9Ef3I+6foD3oA9SooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArgviz44HgrwhI9vIBql7mCzHdTj5pP+Ag/mRXczzxW1vJcTyLHDEhd3Y4CqBkkn0xXxl8SPGcvjfxfcaiCwso/wBzZxn+GIHg49W6n647UAckzFmLMSWJySeppKKKACirFhYz6lfRWdsm6WU4HoB1JPsBkk+gqKGJ5544Yxl5GCqPUk4FAH094S0QN8I7PSiv/H3pz5B/6ahm/wDZ6+YofLW5j89WMQceYo4OM8ivsu0tks7KC1j+5DGsa/QDA/lXyR4rsf7N8XavZgYWK8lVR/s7jj9MVc1sc9GV2xvibw/deF/EN3pF3y8D/JIBxKh5Vx7EEGsmvoHx74V/4TT4Q6B4tso9+p2GnR/aNo5liC4f8VYFvpur5+qDoCt/wZ4puvB3imz1m1ywibbNEDjzYj95fy6ehAPasCigD7103UbXV9MttRspRLa3MayxOO6kZ/OrVfPX7PvjryppPB9/L8khaawZj0bq8f48sP8AgXrX0LQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZHijxFZ+FPDl7rN8f3VsmQmcGRzwqj3JwKAPKP2gPHX9n6YnhOwlxc3iiS8ZTykXZPqxHPsP9qvm6r+t6xeeINavNWv5PMurqQyOewz0A9gMAewqhQAUUV1Xw88HTeN/F1rpahltV/e3co/giB5/E8Ae5oA7bwV4V/sD4T+JPG9/HtuLmyktbAMOUST92ZB7ktgewPrXAeBLH+0fHeiW2Mg3aOw9Qp3H9FNfQfx6uIdH+FkGmWqLFDPdQ2yRJwFjQFgB7DYteQfBSx+1fEBZyOLS1klz7nCf+zmmtyZu0Wz6Qr5m+MNj9j+I164GFuY45h/3yFP6qa+ma8K+Pljs1bR78D/WwPCT/uMCP/QzWk9jlou0j1P4EX41D4V2tu+H+yTzW7A88Ft+D+DivCPiz4HPgrxfIlvGRpd7mezPZRn5o/8AgJP5EV6Z+zVqG/TNf00t/qporhR67gVP/oC16T8SPBkXjjwhcacAovYv31nIf4ZQOBn0YcH657Vkdh8XUVJPBLbXElvPG0c0TFHRhgqwOCCPXNR0AT2V5caffQXtpK0VzBIskUi9VYHIP519p+A/F1v418JWmrxbVmI8u5iH/LOUfeH06EexFfEtekfBrx1/wiHi1bW8l26VqJWGfceI3/gk/AnB9ifSgD63ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Xvjx46/t7xCPD1jLnT9MciUqeJJ+h/BeV+u6vZfiz44HgrwhJJbyAape5gsx3U4+aT/gIP5kV8esxdizElickk8k0AJRRRQAAEkADJNfX3wh8DDwZ4RRrqLbqt/ia6yOUGPlj/wCAg8+5NeM/AvwL/wAJH4l/tu9i3abpbhlDDiWfqq+4X7x/4D619T0AfPv7S2oZl8P6ardBNcOPrtVf5NWX8ArH59bv2HQRQof++i3/ALLWR+0BqH2z4myW4ORZWkUOPQnMn/s4ru/glY/ZfARuCObu7kkB9hhP5qaqO5lWdoHpFeXfHWx8/wAHWl2Blra8UE+isrA/qFr1GuS+Jtj9v+HWsxgZaOETD22MGP6A1o9jmg7SR5p+ztqH2b4gXVmx+W7sXAHqysrD9N1fUVfGXwo1D+zPij4fnzgPc+Qf+2gMf/s1fZtYncfN37QHgX+z9TTxZYRYtrxhHeKo4SXHD/RgOfcf7VeI194a3o9n4g0S80m/j32t1GY3HcehHuDgj3FfE3ijw7eeFPEd7o18P3ttJgPjAkU8qw9iMGgDIooooA+rvgj46/4SnwsNLvZd2qaYojYseZYuiP7kfdP0B716jXw/4L8U3Xg3xTZ6za5YRNtmiBx5sR+8v5dPQgHtX2tpuo2ur6ZbajZSiW1uY1licd1IyKALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHPNFbW8k88ixwxKXd2OAqgZJJ9MVJXiPx/8AHX9n6YnhSwlxc3iiS8ZTykOeE+rEc+w96APHfiT40l8ceL7jUAWFjF+5s4z/AAxg8HHqx5P1x2rkKKKACrukaVd65q9ppdhEZLq6kEUa+57n0A6k9gKpV9F/s/eBfstnJ4uv4sTXAMVirD7sfRn/ABPA9gfWgD1nwl4atPCPhmy0WzAKQJ88mMGSQ8sx+p/IYHatuiq99dpYafc3kn+rt4mlb6KCT/KgD4v+Iuof2p8RvEF0DuU3skan1VDsH6KK+ivAFj/Z3gHRLfGCbVZCPQv85/Vq+VkWbUtRVc7p7mXGfVmP+Jr7Jt4EtraKCMYSJAij2AwKuBz13okSVV1KzXUNKvLJsbbiB4jn0ZSP61aorQ5j40sLqTS9WtbtQRLazpKB3BVgf6V95RSJNEksbbkdQykdwelfD3jGx/s7xnrNoBhUvJNo/wBksSv6EV9f/D7UP7U+HmgXZO5msYkc+rKu1v1U1gegndXOlryH48eBf7e8PDxDYxZ1DTEPmhRzJB1P/fPLfTdXr1Iyq6lWAKkYII4IoGfANFd58WPA7eCfF8kdvGRpd7mezPZRn5o/+Ak/kRXB0AFe9/s++OvLlk8H38vyvumsGY9D1eP8eWH/AAL1FeCVPZXlxp19Be2krRXNvIssUi9VYHINAH3xRXNeA/F1v418J2mrw7VmI8u5iB/1co+8Pp0I9iK6WgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyPE/iKz8K+HL3Wb4/uraPcEzgyN0VR7k4FfE+t6zeeINbvNWv5N91dSGRz2HoB7AYA9hXp/x48df294hHh6xlzp+mOfNKniSfof++eV+pavIKACiigAk4AyaAOq+Hvg6fxv4utdLUMtqv727lH8EQPP4ngD3NfaFrbQWVpDa20SxQQoI441GAqgYAH4VwXwg8DDwZ4RR7qLbqt/ia6yOUGPlj/AHn3Jr0KgArj/inqH9mfDDxBcZwWtTAP8AtoRH/wCzV2FeSftD6h9l+HkForfNeX0aEeqqrMf1C0AeAfD6x/tDx/okGMgXSykeyfOf/Qa+sK+c/gjY/afHjXBHFraSSA+5IT+TGvoytIbHJXfvWCiiirMT5q+Mtj9k+IlzLjAuoIph/wB87P5oa9v+AWofbfhhDATk2V1NB9MkSf8As9eafH2x232i34H+sikhY/7pBH/oRroP2adQzbeINNZvuPDcIPqGVv8A0Faxlud1N3ij3uiiikWch8SfBcXjjwhcaeFUX0X76zkPG2QDpn0YcH657V8Zzwy208kE8bRyxMUdGGCrA4II9c199182/H/wL/Z2qJ4rsIsW14wjvFUcJN2f6MBz7j3oA8SooooA9J+DPjr/AIRDxYtreS7dK1IrFPuPEb/wSfgTg+xz2r62r4Ar6v8Agl46/wCEp8KjTL2XdqmmKsbljzLF0R/cj7p+gPegD1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuE+LHjhfBPhCWS3kA1S8zBZr3U4+Z/wDgIOfqR613E00VtBJPNIscUal3djgKoGSSfTFfGXxK8aS+OPF9xqAZhYxfubOM8bYweuPVjyfrjtQByLMzsWYlmJySTkk0lFFABXq/wM8C/wDCSeJv7bvYt2m6W4YBhxLP1VfcD7x/4D615ppOl3et6ta6ZYRGW6upBFGvue59AOpPYV9seEfDNp4Q8MWWi2YBWBP3kmMGWQ8sx+p/IYHagDbooooAK+ef2ltQ3X2gaap/1cctw49dxVV/9Bavoavk7496h9t+KNzBnIsraGAfiPM/9noA3/gFY4i1u/YdWihQ/TcW/mte0V538FbH7L8Po58YN3cyS59QCE/9kr0Sto7HFUd5sKKKKZmeZfHKx+0eCYLoD5ra8Qk+isrKf1K1yH7PWofZPiLLalvlvLKSMD1ZSrj9FavU/iRY/wBofDzW4cZKW/nD/tmQ/wD7LXgPwv1D+zPib4euM4DXawk+0gMf/s1Zz3Oug/dPtGiiioNgrP1zRrPxBol5pN/HvtbqMxuO49CPcHBHuK0KKAPhfxP4evPCviO90a+H762k2h8YEi9VYexGDWRX1B8ePAv9u+Hh4isYs6hpiHzgo5kg6n/vnlvoW9q+X6ACug8F+Krrwb4qs9ZtssIm2zRA/wCtiP3l/Lp6EA9q5+igD7103ULXVtNttQspRLa3MayxOO6kZFWq+fP2fPHWySTwffy/K26awZj0PV4/5sP+Beor6DoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisjxP4hs/Cvhy91m+P7m2j3Bc4MjdFUe5OBQB5T8f/HX9naWnhSwlxdXqiS8ZTykOeF+rEfkPevm2tDXNZvPEOt3mrX8m+6upDI57D0A9gMAewrPoAKKK6n4e+Dp/G/i610tNy2wPm3co/giB5/E8Ae5oA9h/Z98C/ZbSTxffxYmnBisVYfdToz/j0HsD617rUVrawWVpDa20SxQQoI441GAqgYAH4VLQAUUUUAFfEfj7UP7V+IGv3gbcr30oQ+qqxVf0Ar7R1S9XTdJvL98bLaB5mz6KpP8ASvhS2hl1LUoYMlpbmZUz6sxx/M0AfVngax/s7wLolsRhhaI7D0ZhuP6k10FMijSGFIkGERQqj0Ap9bnnt3dwooooEQX1qt9YXNo/3J4mib6MCP618dW802manFMBtntZg4HoynP8xX2ZXyT43sf7O8ca1bYwou5GUeisdw/QiomdFB7o+3LedLm2iuIjmOVA6n1BGRUlct8NtQ/tT4b+H7rO4/YkiY+rINh/VTXU1mdIUUUUAIyq6lWAZSMEEZBFfHnxY8Dt4J8XyxW8ZGl3mZ7NuyjPzJ/wEnH0I9a+xK4/4leC4vHHhC4sFVRfRfvrOQ8bZAOmfRhwfrntQB8YUU+aGW3nkgmjaOWNijowwVYHBBHrTKAJ7K9uNOv7e9tJWiubeRZYpF6qwOQa+1PAni238a+E7TV4dqysPLuYgf8AVSj7w+ncexFfElek/Bjx1/wiPixbS8l26VqRWKbceI3/AIJPbk4Psc9qAPraiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5f+PPjr+3fEA8O2MudP01z5xU8ST9D/wB88r9S3tXsvxX8cL4J8ISywSAapeZgs17qcfM/0UHP1I9a+PGZnYszFmY5JJySaAEooooAAMnA619efB/wN/whvhFJLqLbquoATXWRygx8sf4A8+5NeNfA3wL/AMJJ4m/tq9i3aZpbBgGHEs/VV9wPvH/gPrX1RQAUUUUAFFFFAHF/FrUP7M+FuvzA4Mlv9nHv5jBD+jGvlz4c2P8AaHxD0SHGQtwJj/2zBf8A9lr3j9orUPs3gKzslbDXd8uR6qqsT+u2vK/gdY/aPG81yR8trZuwPozFVH6Fqa3Jm7RZ9E0UUVscAUUUUAFfNvxpsfsnxClmxgXdtFN+QKf+yV9JV4j8fbHE+iX4H3llhY/QqV/m1TPY1ou0z0T9n7UPtnw0FsTzZXksIHoDiT+bmvVK8A/Zp1D/AJGDTWb/AJ43CD/vpW/9lr3+sjsCiiigAooooA+bfj/4F/s7VE8V2EWLW9YJeKo4SbHDfRgPzHvXiVfd+uaNZ+IdEvNJv499tdRmNx3HoR7g4I9xXxN4n8PXnhXxFe6NfL++tpNoYDAkXqrD2IwaAMmiiigD6w+Cfjr/AISrwqNNvZd2qaYqxuWPMsXRH9z/AAn3APevT6+IPBXiq68GeKrPWbbLLG22eIH/AFsR+8v5cj3APavtbTtQtdW0221CylEtrcxrLE47qRkUAWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApk00dvBJPNIscUal3djgKoGSSfSn14n8f8Ax1/ZulJ4UsJcXV6oe8ZTykOeF+rEfkPegDxz4leNJPHHi+4v1ZhYw/ubOM8YjB649WPJ+uO1cfRRQAVc0nS7vW9WtdMsYjLdXUgijX3Pr6DuT6VTr6J/Z98C/ZrSTxffxfvZwYrFWH3U6NJ+PQewPrQB614Q8M2nhDwxZaLZ4KwJ+8kxgyyHlmP1P5DA7VuUUUAFFFFABRRRQB86/tK6hv1fQdNB/wBVBLcMP99go/8AQDUXwCsdtnrV+R9+SOFT/ugk/wDoS1zHx21D7d8U72IHK2cENuP++d5/VzVDwd8T7/wboz6ba6dazo8zTF5CwYkgDsf9kU4uzIqJuNkfTdFeCf8AC+9Y/wCgPY/99P8A40f8L71j/oD2P/fT/wCNac6Ob2Mz3uivBP8Ahfesf9Aex/76f/Gj/hfesf8AQHsf++n/AMaOdB7GZ73XmvxvsftPgRLkDm1u0cn2IK/zYVx3/C+9Y/6A9j/30/8AjWV4k+L2peJfD93pFxpdnHFchQXUsSuGDAjn1FJyTRUKU1JMv/s+6h9j+JYtieL2zlhA9SMP/JDX1XXxT8NtQ/sv4k+H7rO0fbUiY+gc7D+jGvtaszqCiiigAooooAK8f+PPgX+3fD6+IrGLN/pqHzgo5kg6n/vnlvoW9q9gpGVXQo6hlYYIIyCKAPgGiu6+K/gdvBPi+WKCMjTLzM9m3YLn5k+qk4+hHrXC0AFe+/s+eOtjyeD7+X5W3TWDMeh6vH/Nh/wL2rwKrFje3Om39vfWcrRXNvIssUi9VYHINAH3vRXN+BfFtt418J2msQ7VlYeXcxA/6qUfeX6dx7EV0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk+JvENn4W8O3us3zfubaPcFBwXboqj3JwK+Jtd1m88Q65eavfyb7m6kMjnsPQD2AwB7CvUPjz46/tzxAvhyxlzYaa584qeJJ+h/75GR9S3tXj9ABRRQBk4FAHU/D7wfP428XWulJuW2B827lH/LOIHn8TwB7kV9oWtrBY2kNpbRLFbwIsccajAVQMAD8K4L4PeBf+EN8IpJdxbdV1ALNc5HMYx8sf4A8+5Neh0AFFFFABRRRQAUUUUAeS+IPgNpPiLxBf6xc61fpNeTNKyKiYXPYZHQDis3/hmzQv8AoO6j/wB8J/hXtlFAHif/AAzZoX/Qd1H/AL4T/Cj/AIZs0L/oO6j/AN8J/hXtlFAHif8AwzZoX/Qd1H/vhP8ACj/hmzQv+g7qP/fCf4V7ZRQB4n/wzZoX/Qd1H/vhP8KP+GbNC/6Duo/98J/hXtlFAHi9v+zno1rcxXEWvaiJInDqdicEHI7V7RRRQAUUUUAFFFFABRRRQBx/xL8Fx+OPCFxYKqi/h/fWch4xIB93Pow4P1B7V8ZzQyW88kE0bRyxsUdGGCrA4II9a+/K+bPj/wCBf7N1VPFdhFi1vW2XaqOEmxw30YD8x70AeJ0UUUAelfBjx1/wiPixbO8l26VqRWKbceIn/gf25OD7HPavrWvgCvrD4J+Ov+Eq8KjTr2XdqmmKschY8yxdEf3PGD7jPegD0+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuF+K3jhfBPhCWaBwNTvMwWa9w2OX+ig5+pA712800dvBJNM6xxRqXd2OAqgZJJ9K+NPiX40k8ceL7i/VmFhD+5s4zxiMH72PVjyfqB2oA49mZ3LuxZmOSSckmkoooAK9W+BvgX/hJfE/8AbN7Fu0zS2D4YcSzdVX3A+8fwHevNdK0y71rVbXTLGIy3V1IIo0Hcn19B3J9K+1/CHhi08IeGLPRbTBECZkkxgyyHlmP1P5DA7UAblFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZ+u6LZ+ItDvNIv499tdRmNx3HoR7g4I9xWhRQB8LeJvD954W8RXujXy/vraTbuAwHXqrD2IwfxrJr6f+PPgX+3NAXxHYxZv9NQ+cFHMkHU/98nJ+hb2r5goAK6HwT4quvBniqz1m2yyxttniB/1sR+8v9R7gGueooA+9tO1C11XTrbULKVZba5jWWJx/EpGRVmvn79nzx1taTwffy8HdNp7Me/V4/5sP+Be1fQNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVk+JvEFn4W8O3us3zYhtoy20HBduiqPcnA/GgDyr4/+Ov7N0lPCthLi6vV33bKeUh7L9WI/IH1r5rrR13WrzxFrl5q9+++5upDI57D0UewGAPYVnUAFFFdR8P8AwfP428XWulR7ltgfNupR/wAs4geT9TwB7kUAewfs++Bfs9rJ4vv4v3swMVgrD7qdHk/H7o9gfWvd6htLWCxs4bS1iWK3gRY441GAqgYAH4VNQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIyq6MjqGVhggjIIr47+K3gdvBPi+WGBCNMvMz2bdgueU+qnj6EHvX2LXHfEvwXH448IXFiqqL+H99ZyHjEgH3c+jDg/UHtQB8Y0U+aGS3mkhmRo5Y2KOjDBUg4II9aZQBYsb6502/t76zlaK5t5FlikXqrA5Br7U8DeLLbxp4TtNYg2rKw2XEQP8AqpR95fp3HsRXxHXpfwX8df8ACJeLBZXku3StSKxTFjxFJ/A/tycH2Oe1AH1pRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8w/Hnx1/bmvr4csZc2GmufPKniSfof++RkfUt7V7L8VvG6+CfCEs0Dgand5gs17hscv9FHP1wO9fHTuzuzuxZmOSxOSTQAlFFFAB1NfXfwe8C/8Ib4RSW7i26rqAWa5yOYxj5I/wAAcn3Jrxn4HeBf+Em8T/2xexbtM0tg+GHEs3VV9wPvH8B3r6qoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+a/j94F/szVk8VWEWLW+bZdqo4Sbs30YD8wfWvFK+7td0Wz8RaHeaRfpvtrqMxv6j0Ye4OCPcV8T+JfD954W8RXujXy4mtpCu4DAdeqsPYjB/GgDJooooA+sfgp46/4SvwoNPvZd2q6YqxyFjzLF0R/c8YPuM969Or4h8EeK7nwZ4rs9Zt9zJG2yeIH/WxH7y/1HuAa+1dPv7bVdOtr+ylWW2uY1lidejKRkUAWaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApk0scEMk0zrHFGpZ3Y4Cgckk+lPrxT4/eOv7M0lPCthLi7vl33bKeUh7L9WI/IH1oA8c+JnjWTxx4vuL5GYWEP7mzjPGIwfvY9WPJ/Adq46iigAq3pWmXes6ra6bYxGW6upBFGg7knv6D1NVK+iP2ffAv2e2k8X38X72YNFYKw+6nR5Px+6PYH1oA9a8H+GLTwf4Xs9GtMEQrmWTGDLIeWY/U/kMDtW7RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV498evAv9t6AviSxizf6ah88KOZIOp/75OT9C3tXsNI6LIjI6hlYYKkZBHpQB8A0V3PxV8EN4J8XywQIRpl3mezbsFzyn1U8fTB71w1ABXv37PnjrBk8H38vB3TaezH8Xj/mw/wCBe1eA1YsL650zULe+s5WiubeRZYpF6qwOQaAPveiuc8DeLLbxp4UtNYg2rI42XEQP+qlH3l+ncexFdHQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZXiXxBZ+F/D17rN82ILaMttB5duiqPcnA/GvibXtavPEWu3mr3777m6kMj+g9FHsBgD2Feo/Hrx1/bevL4bsZc2GmuTOVPEk/Q/98jI+pb2rx2gAooooA6jwB4Qn8beLbXSo9y2+fNupR/yziH3j9TwB7kV9o2lpBYWcFpaxLFbwIscUajhVAwAPwrgPg74F/4Q7wks13Ft1XUQs1zkcxr/AAR/gDk+5PpXotABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcd8TPBUfjjwhPYoqi/g/fWbnjEgH3c+jDg/ge1fGksUkEzwzI0csbFXRhgqRwQR619+V81fH7wL/Zmrp4qsIsWl82y7VRwk3ZvowH5g+tAHitFFFAHpnwW8df8Il4rFjeS7dK1IrFKWPEUn8D+3JwfY57V9Z18AV9ZfBXx1/wlfhQafeS7tV0xVikLHmWPoj+54wfcZ70Aem0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3xV8br4I8ISzwuBqd3mCzXuGxy/0Uc/XA7120sscELzSuqRxqWd2OAoHJJPpXxr8TfGsnjjxfPfIzDT4Mw2aHjEYP3serHk/gO1AHHO7SOzuxZmOSxOST60lFFABXqnwO8C/8JN4o/te9i3aZpbB8MOJZuqr7gfeP4DvXm2l6Zd6zqtrptjEZbq5kWKNB3JP6D3r7X8HeGLTwf4Xs9GtMEQrmWTGDLIeWY/U/kMDtQBu0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVna9oln4j0K80i/TfbXUZjb1X0Ye4OCPcVo0UAfCviXQLzwv4hvdGvlxPbSFdwHDr1Vh7EYP41lV9O/HrwL/AG3oK+JLGLN9pqYnCjmSDqT/AMBOT9C3tXzFQAV0XgjxXc+DPFdnrFvuZEOy4iB/1sR+8v8AUe4Fc7RQB97aff22qadb39nKsttcRrLFIvRlIyDVmvn/APZ88df6zwffy/3ptPZj+Lx/zYf8C9q+gKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorK8Sa/Z+F/D17rN+2ILWMttB5duiqPcnA/GgDyr4/eOv7L0hPC1hLi7vl33ZU8pD2X6sR+QPrXzVWjr2t3niPXbzV7999zdSF29F9FHsBgD2FZ1ABRRXT+APCE/jbxba6THuW3z5t1KP+WcQ+8fqeAPcigD2D9n3wL5FvJ4vv4v3koaGwVh0Xo8n4/dHsG9a94qG0tILCzgs7WJYreCNY4o1HCqBgAfhU1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA10WRGR1DIwwysMgj0NfHXxU8EN4I8XywQoRpl3mezbsFzyn1U8fTB719j1xvxN8FR+OPCE9kiqNQgzNZueMSAfdz6MOPyPagD4yop8sUkEzwyoySRsVdGGCpHBBHrTKALFhfXOmahb39nK0VzbyLLFIvVWByDX2r4H8WW3jTwpaaxb7VkcbLiIH/AFUo+8v9R7EV8RV6Z8FfHX/CJ+KxYXku3StTKxSljxFJ/A/sOcH2Oe1AH1nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8xfHrx1/bWvL4bsZc2OmvmcqeJJ+hH0UZH1Le1ey/FTxuvgjwhLcQuBqd3mCzXuGI5f6KOfrgd6+OndpHZ3Ys7HLMxySfU0ANooooAK+ufg54F/4Q7wks93Ft1XUQs1xkcxr/BH+AOT7k+leM/A/wAC/wDCT+KP7XvYt2maWwchhxLN1VfcD7x/Ad6+rKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPmn4/eBf7L1dPFNhFi0v22XaqOEm/vfRgPzB9a8Wr7u1/RLPxHoV5pF+m+2uoyjeqnsw9wcEe4r4m8SaBeeF/EN7o1+uJ7WQruA4deqsPYjB/GgDKooooA+s/gr46/wCEs8KCwvJd2q6YFilLHmWP+B/c8YPuM969Mr4i8D+LLnwX4rtNYt9zRodlxED/AK2I/eX+o9wK+1bC+ttT0+3v7OVZba4jWWKRejKRkGgCxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMlljgheWV1SNFLO7HAUDkkmn14t8fvHX9l6Onhawlxd3677oqeUg/u/ViPyB9aAPG/ib41k8b+L571GYafBmGzQ8YjB+9j1Y8/kO1cbRRQAVb0vTbrWNUtdNsYjLdXMixRIO5J/Qe9VK+hv2ffAvkwSeML+L95KGhsFYdF6PJ+P3R7BvWgD1vwd4XtfB3hez0a1w3krmWTGDLIeWY/U/kMDtW9RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV458e/Av8AbWhL4lsYs32nJi4CjmSDqT9VOT9C3tXsdNdFkRkdQyMCGVhkEehoA+AqK7j4qeCG8EeL5reFD/Zt1mezbsFJ5TPqp4+mD3rh6ACvoD9nzx1/rPB9/L/em09mP4vH/Nh/wL2r5/qzp9/c6XqNvf2crRXNvIssUi9VYHINAH3tRXO+CPFdt4z8KWesW+1XcbLiIH/VSj7y/wBR7EV0VABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBleJNfs/DHh691m/bEFrGW2g8u3RVHuTgfjXxPr+t3niPXbzV7991zdSF29FHZR7AYA9hXqPx78df21rq+GrGXNjpz5uCp4kn6EfRRkfUt6CvHKACiiigDpvAPhC48beLbXSYtywZ8y6lH/LOIfeP1PAHuRX2nZ2lvYWUFnaxLFbwRrHFGvRVAwAPwrz/AODfgX/hD/CS3F3Ft1XUQs1xkcxr/BH+AOT7k+lejUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxnxO8FR+N/CE9kir/aEGZrJzxiQD7ufRhx+R7V8bSxSQSvFKjJIjFXRhgqRwQRX35XzT8ffAv9lawnimwixaX77boKOEn/AL30YD8wfWgDxaiiigD034K+Ov8AhE/FY0+8l26VqZWKQseIpOiP7DnB9jntX1lXwBX1n8FvHX/CW+FBY3ku7VdNCxSljzLH/A/vwMH3Ge9AHplFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcR8U/G6+CPCE1xC4/tK6zBZr3DEcvj0Uc/XA712ksscMTyyuqRopZnY4Cgckk18bfE7xrJ438Xz3kbN/Z9vmGyQ8YjB+9j1Y8/kO1AHHO7ySM7sWdiSzMckk9zTaKKACvU/gh4F/4SfxR/a17Fu0vS2DkMOJZuqL7gfeP0A715vpmm3Wsapa6dYxGW6uZFiiQd2Jx+XvX2t4N8L2vg7wtZ6Na4bylzNKBgyyH7zH6np6AAdqAN6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACs3X9Es/Emg3mj36bra6jKN6qezD3BwR7itKigD4U8R6BeeGPEF7o1+uJ7WQoSBw69VYexGD+NZdfTfx78C/wBs6EviWxizfacmLgKOZIOpP1U5P0Legr5koAK6PwN4sufBfiu01iDc0aHZcRA/62I/eX+o9wK5yigD73sL621PT7e+s5VltriNZYpF6MpGQasV4D+z546yJPB9/LyN02nsx/F4/wCbD/gXtXv1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVl+I9es/DHh+91m/bEFrGXIB5c9FUe5OAPrQB5X8ffHX9laMnhawlxeX67roqeY4P7v1Yj8gfWvmitLX9cvPEmvXmsX77rm6kLt6KOyj2AwB7Cs2gAoorpvAXhG48beLbTSYtywE+ZdSj/lnEPvH69APcigD1/9n3wL5UMnjC/i+eQNDYKw6L0eT8fuj23ete9VBZ2dvp9lBZ2kSxW8EaxxRr0VQMAD8KnoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGuiSRtHIoZGBDKwyCD2NfHPxT8EP4I8XzW0KH+zbrM9m3+wTymfVTx9MHvX2RXGfE/wSnjfwhPZxqv9oW+ZrJzx+8A+7n0Ycfke1AHxnRTpY3hleKVGSRGKsrDBUjqCKbQBZ0+/udL1G2v7KVorm2kWWJ16qwORX2r4I8V23jPwrZ6zb7VeRdk8QP+qlH3l/qPYg18Q16d8FPHX/CKeKxp97Lt0rU2WOQseIpeiP7DnB9jntQB9Y0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfMnx78df2zrq+GbGXNjpz5uCp4kn6Y+ijI+pb0FeyfFPxungjwhNcwuv9pXWYLNT/fI5fHoo5+uB3r45d3lkaSRmd2JZmY5JJ6k0ANooooAK+uPg34F/4Q/wktzeRbdV1ELNcbhzGv8ABH+AOT7k+leM/BDwL/wlHin+1b2LdpelsJGDDiWbqie4H3j9AO9fVtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHzR8ffAv9layniiwixZ377boKOI5/730YDP1B9a8Xr7t8QaHZ+JNBvNHv03W11GUb1U9mHuDgj3FfE3iPQbzwx4gvdGv1xcWshQkDhx1Vh7EYI+tAGXRRRQB9afBfx1/wlvhMWV5Lu1XTQsUxY8yx/wAD+/AwfcZ716XXxH4G8WXPgvxZaaxBuaJTsuIgf9bEfvL9e49wK+1LG+ttSsLe+s5VltriNZYpF6MpGQaALFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2SRIYnlldUjRSzMxwFA6kmnV4v8ffHX9k6MvhewlxeX6broqeY4P7v1YjH0B9aAPHPif42fxv4vnvI2b+zrfMNkh4+QH72PVjz+Q7VxdFFABVrTNOutX1O206xiMt1cyLFEg7sTj8veqtfQv7PvgXyoZPGF/F88gaGwVh0Xo8n48qP+BetAHrfgzwta+DvC1no1rhjEu6aUDHmyn7zfn09AAO1b9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXjfx78C/wBs6Gviaxize6cmLgKOZIOufqpyfoT6CvZKa6JLG0ciq6MCrKwyCD1BFAHwFRXbfFLwQ/gjxfNbRI39m3WZ7Jz/AHCeUz6qePpg964mgAr6B/Z88dblk8H38vI3TaezHt1eP+bD/gXtXz9VnTtQutK1G21CylaK5tpFlicfwsDkUAfe1Fc94J8VWvjPwrZ6zbYVpF2zxA/6qUfeX+o9iDXQ0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGX4i16z8M+H73WL9sW9rGXIB5c9FUe5OAPrXxN4g1y88Sa9eaxfvuuLqQu3oo7KPYDAH0r1P4+eOv7Y1xfDNjLmy0583BU8ST9MfRRx9SfQV41QAUUUUAdL4C8I3HjXxbaaRFuWEnzLmUD/VxD7x+vQD3Ir7TsrO30+xgsrSJYraCNY4o16KoGAPyrz74NeBf+EQ8JLc3kW3VdRCzT7hzGn8Ef4A5PuT6V6RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHF/E/wSnjfwhPaRqv9o2+ZrJzx84H3c+jDj64PavjaSN4ZXilRkkRirKwwVI6givv2vmf4++Bf7J1pfFFjFiz1B9t0FHEc/8Ae+jAZ+oPrQB4xRRRQB6f8E/HX/CK+Khp17Lt0vU2WOQseIpeiP7DnB9jntX1hXwBX1r8GPHX/CXeE1s7yXdqumhYptx5lT+B/fgYPuM96APSqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4n4peN08EeEJrqJ1/tK6zBZIf75HL49FHP1wO9dpJIkMTyyuqRopZmY4CgdSTXxt8UPGz+N/GE93Gzf2db5gskP9wHlserHn6YHagDjZJHlkaSRmd3JZmY5JJ6kmm0UUAFeo/BHwL/wlHikapexbtL0xhIwYcSy9UT3A+8foB3rzjTdOutX1O206yiMt1cyLFEg7sTgV9reC/C1r4N8LWejWuGMS7ppQMebKfvN+fT0AA7UAb9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZniDQ7PxLoF5o9+m63uoyjHup6hh7g4I+ladFAHwp4i0G88M+IL3R79dtxayFCQOHHUMPYjBH1rLr6a+PngX+2NEXxNYxZvdOTbchRzJB1z9VPP0J9BXzLQAV0ngXxbc+CvFlprEO5olPl3MQP+tiP3l+vce4Fc3RQB972N7balYW99ZyrLbXEayxSL0ZSMg1YrwL9nzx1vSTwffy/Mu6awZj1HV4/wCbD/gXtXvtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVmeItds/DPh+91i/bbb2sZcgHlz0Cj3JwB9aAPK/j746/snRV8L2EuLzUE3XJU8xwf3fqx4+gPrXzPWn4h1288S6/eaxfvuuLqQuwHRR0Cj2AwB9KzKACiiul8B+Ebjxr4stNIh3LCT5lzKB/q4h94/XoB7kUAev/s++BfLik8YX8XzOGhsFYdB0eT8eVH/AAL1r3uoLKzt9OsYLK0iWK2t41iijXoqgYAqegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAbJGksbRyIro4KsrDIIPUEV8cfFHwS/gjxfNaxI39m3OZ7Jz/AHCeUz6qePpg96+ya4r4oeCU8b+EJ7SNF/tG2zPZOf74HK59GHH1we1AHxrRTpI3hleORGSRCVZWGCCOoIptAFnTtQutJ1K21CylMV1bSLLE47MDkV9reCvFVr4z8K2es22FaRds8QP+qlH3l/PkexB718QV6h8E/HX/AAivioabey7dL1NljcseIpeiP7D+E+xB7UAfV9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXzL8fPHX9sa2vhixlzZae+65KniSfpj6KOPqT6CvZfij42TwR4QmuonX+0bnMFkh/vkcvj0Uc/XA718bySPLI0kjs7uSzMxyST1JNADaKKKACvrb4M+Bf+EQ8JrdXkW3VdSCyz7hzGn8Ef4A5Pucdq8Z+CXgX/hKfFQ1O9i3aXpjLI4YcSy9UT3A+8foB3r6voAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Zvj54F/sjWl8T2MWLLUH23IUcRz+v0YDP1B9a8Zr7s8Q6FZ+JdAvNHv03W91GUJHVT1DD3BwR9K+JvEOhXnhnX73R79NtxayFCezDqGHsRgj60AZlFFFAH1t8GPHX/CXeE1tLyXdqumhYptx5kT+CT34GD7jPevSa+JPAni248FeLLTV4dzRKfLuYgf8AWxH7w+vce4Ffalle2+o2Fve2kqy21xGssUi9GUjINAE9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU2SRIo3kkdUjQFmZjgADqSadXjPx88df2Roi+GLGXF7qCbrkqeY4OmPqx4+gPrQB438UPGz+N/GE13E7f2dbZgskP9wHlserHn6YHauKoooAKtabp91q2pW2n2URlurmRYokHdicCqtfQf7PngXZHJ4wv4vmbdDYKw6Do8n48qP+BeooA9c8F+FbXwb4Vs9GtsMYl3TSgf62U/eb8+noAB2roKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvGfj54F/tfRF8T2MWb3T023IUcyQdc/VTz9CfQV7NTZI0ljeORFeNwVZWGQQeoIoA+AqK7X4o+CX8EeL5rSJG/s65zPZOf7hPK59VPH0we9cVQAV9B/s+eOt8cng+/l+Zd01gzHqOrx/zYf8C9BXz5VrTdQutJ1K21CylMV1bSLLE47MDkUAfetFc/4L8VWvjLwrZ6zbYUyrtmiB/wBVKPvL+fT1BB710FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBmeIdds/DWgXmsX77be1jLkd2PQKPcnAH1r4m8Q67eeJtfvNYv33XF1IXIHRR0Cj2AwB9K9T+Pnjr+19aXwxYy5stPfdclTxJP6fRRx9SfSvGaACiiigDpPAnhK48a+LLTSIdyxMfMuZQP8AVxD7x+vYe5FfallZW+nWNvZWkSxW1vGsUUa9FUDAFee/BjwL/wAIj4TW7vItuq6kFlm3DmNP4I/bg5Pucdq9JoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDivij4JTxv4QmtYkX+0bbM9k5/vgcpn0YcfXB7V8byRvFI0ciMjoSrKwwQR1BFfftfM3x88C/2Rra+J7GLFlqD7bkKOI5+ufow5+oPqKAPGaKKKAPUPgl46/wCEW8VDTL2XbpepssbljxFL0R/YH7p+oPavq+vgCvrb4M+Ov+Ev8Jra3ku7VdNCxT7jzIn8En4gYPuM96APSaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4r4oeNk8EeEJruJ1/tG5zBZIf75HLY9FHP1wO9dnJIkUbSSOqIgLMzHAAHUk18cfFHxs/jfxfNdRO39nW2YLJD/cB5fHqx5+mB2oA4uSR5pXkkdnkclmZjkknqSabRRQAV6h8E/Av/AAlXioalexbtL0xlkcMOJZeqJ7j+I+wA715xp2n3WralbafZRGW6uZFiiQd2JwK+1vBXhW18G+FbPRrbDNGu6eUD/Wyn7zfnwPYAdqAOgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArM8RaFZ+JtAvdHv03W91GUJHVT1DD3BwR9K06KAPhPxDoV54a1+80e/TbcWshRj2YdQw9iMEfWsyvpj4++Bf7W0VfE9hFm809NtyFHMkHr9VPP0J9K+Z6ACul8B+LrjwV4stNXh3NCp8u5iB/1kR+8Pr0I9wK5qigD74sry31GxgvbSVZba4jWWKRejKRkGp68E/Z98deZFJ4Pv5fmTdNYMx6jq8f4csP8AgXoK97oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiszxDrln4a0C81i/fbb2sZdh3Y9Ao9ycAfWgDy34+eOv7H0RfDFjLi91BN1yVPMcHTH1Y8fQH1FfMtaniLXrzxN4gvdYv23XF1IXIB4QdAo9gMAfSsugAoorpPAvhK58a+LLTSIdyxMfMuZQP9VEPvN9ew9yKAPXv2fPAuxJPGF/F8zbobBWHQdHk/mo/4F7V77VexsrbTbC3sbOJYra3jWKKNeiqBgCrFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2SNJonikRXjdSrKwyGB6givjb4oeCX8EeL57SNW/s64zPZOf7hPK59VPH0we9fZdcT8UvBKeN/CE1rEi/wBpW2Z7Jz/fA5TPow4+uD2oA+NqKdJG8UjRyKyOhKsrDBBHUGm0AWtN1G60jU7bUbKUxXVtIssTjswORX2t4L8U2vjLwtZ6za4UyrtmiBz5Uo+8v59PUEHvXw/XqPwR8df8It4pGl3su3S9TYRsWPEUvRH9gfun6g9qAPq6iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5n+Pvjr+1taXwvYS5s9PfddFTxJP8A3fooOPqT6V7J8UPGyeCPCE93Gy/2jcZhskP98j72PRRz9cDvXxtJI80ryyuzyOxZmY5LE9STQA2iiigAr61+DHgX/hEfCa3l5Ft1XUgss24cxJ/Antwcn3OO1eM/BPwL/wAJV4qGo3sW7S9MZZJAw4ll6onuOMn2AHevrCgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5l+PngX+x9cXxNYxYstRfFyFHEc/XP0Yc/UH1FeNV91+ItBs/E3h+90e/XNvdRlCQOUPVWHuDgj6V8TeINDvPDWvXmj36bbi1kKN6MOoYexGCPrQBm0UUUAfW/wa8df8Jf4SW1vJd2q6aFhn3HmRP4JPxAwfcH1r0iviXwH4uuPBXi201eLc0IPl3MQP+siP3h9ehHuBX2nZXlvqNjBe2kqy208ayRSL0ZSMg/lQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNkdIo2kkZURQWZmOAAOpNOrxr4+eOv7H0NfDNjLi91FM3BU8xwdMfVjkfQH1FAHjfxS8bv438XzXMTt/ZtrmCzQ/wBwHl8erHn6YHauJoooAKs6dp91quo22n2URlubmRYokH8TE4FVq+gv2fPAu1ZPGF/Fyd0Onqw7dHk/mo/4F7UAeueCfCtr4M8K2ejW2GaNd08oH+tlP3m/oPYAV0NFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXjHx98C/2toy+KLCLN5p6bboKOZIP731UnP0J9K9npskaTRPFKivG6lWVhkMD1BFAHwFRXafE/wAEv4I8Xz2cat/Z1xmayc8/IT93Pqp4/I964ugAr6E/Z98debFJ4Pv5fnQNNYMx6r1eP8OWH/AvSvnurWm6jdaRqdtqNjKYrq2kWWJx2YHP5UAfetFYHgzxTa+MfC1nrNrhTKu2aIHPlSj7y/n09QQe9b9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+INcs/Deg3msX77be1jLt6seyj3JwB7mvibxHr154n8QXus37ZuLqQuQDwg6Ko9gMAfSvVPj746/tbWU8L2EubOwfddFTxJP/AHfooOPqT6V4vQAUUUUAdH4G8J3PjTxZaaPBuWJjvuJQP9VEPvN9ew9yK+1LGxttNsLexs4litreNYoo16KoGAK+JPDnjDXvCUlxJod+bN7gKsrCJHLAZwMspx17Vv8A/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9iUV8d/wDC5fiB/wBDFJ/4Dw//ABFH/C5fiB/0MUn/AIDw/wDxFAH2JRXx3/wuX4gf9DFJ/wCA8P8A8RR/wuX4gf8AQxSf+A8P/wARQB9G/FLwQnjfwhNbRIv9pWuZ7Nj/AHwOUz6MOPrg9q+OXR4pGjkVkdSVZWGCCOoNdz/wuX4gf9DFJ/4Dw/8AxFcbqOoXOq6jcaheyCS6uHMkrhFXcx6nCgDmgCtRRRQB6l8EfHX/AAi/ikaVey7dL1RhGxY8RTdEf2B+6fqD2r6tr4Ar64+Dfjr/AITDwkttdy7tV04LDcbjzIn8En4gYPuD60Aej0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxnxP8AGyeCPCE95Gy/2hcZhskPP7wj72PRRz+Q712LukUbSSMFRQWZmOAAO5r45+Kfjd/G/i+a5hc/2ba5gs1P9wHl8erHn6YHagDipZHmleWV2eR2LMzHJYnqSabRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV03gLxdceCfFtpq0W5oAfLuoh/wAtIj94fXoR7gVzNFAH3xZ3lvqFlBeWkqy288ayRSL0ZSMgj8KnrwX9n3x15sMng+/l+eMNNYMx6r1eP8PvD23ele9UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzPjzQtW8S+FbjR9Iv4bF7ohJppAT+6/iUY9eAfbPrXiv/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfN/8AwzXrP/QfsP8Av09H/DNes/8AQfsP+/T19IUUAfN//DNes/8AQfsP+/T0f8M16z/0H7D/AL9PX0hRQB83/wDDNes/9B+w/wC/T0f8M16z/wBB+w/79PX0hRQB83/8M16z/wBB+w/79PR/wzXrP/QfsP8Av09fSFFAHzf/AMM16z/0H7D/AL9PR/wzXrP/AEH7D/v09fSFFAHzf/wzXrP/AEH7D/v09H/DNes/9B+w/wC/T19IUUAfPOmfs++I9H1S21Gx8SWMV1bSLLE4ifhgc/l7V9BxeZ5Keds83aN+z7ue+M9qfRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVxnxN1rXvDXhJ9c0DyHks5Fe4hnj3q8R4PQgjBIPB6ZrzXR/wBpSM7U1vw+y/3pbKbP5I2P/QqAPfaK4HR/jN4F1jao1lbOU/8ALO9QxY+rH5f1rt7S9tNQgE9ldQ3MJ6SQyB1P4igCeiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCC9s4NRsLiyuoxJb3EbRSof4lYYI/I18O+JtCn8M+JdQ0a4yZLSZowxGN69Vb8VIP4190189ftG+FvLudP8UW8fyyj7JdED+IZKMfqNw/AUAeC1ZstQvdNnE9jeXFrMOkkEhRvzBqtRQB6Do/xq8daRtX+1hfRL/wAs72MSZ+rcN+td/o/7Sn3U1vw//vS2U38kb/4qvn+igD6/0f40+BdY2r/a/wBilb/lnexmPH1blf1ruLO/s9RgE9jdwXUJ6SQSB1P4g18EVYs7670+cT2V1PbTDpJDIUYfiKAPveivj7R/jP460fao1g3sQ/5Z3sYlz9W+9+tegaP+0o42prfh9T/elspsfkjf/FUAfQNFee6P8bPA2r7VOqtYyt/BexGPH1YZX9a7mx1Gx1OAT2F7b3cJ/wCWkEqyL+YNAFmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoopryJEheR1RR1ZjgCgB1FYV7418LadkXniLS4WH8LXabvyzmucvfjX4Bssj+2/PcfwwW8jfrtx+tAHoFFeO3v7RvhaHIs9N1S5YdCyJGp/HcT+leqaNe3Go6PaXt3ZNZTzxiRrZn3GPPIBOBzjGfQ8UAXqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArC8ZeHYvFfhHUtFkwGuISImP8Eg5Q/gwH4Vu0UAfAk8EttcSW86NHLE5R0bqrA4IP41HXqXx48Lf2F47bUoI9tpqymcYHAlHEg/PDf8Cry2gAooooAKKKKACiitXTfDGvazj+zdGv7sH+KG3dl/MDFAGVU9reXVjOJ7O5mt5l6SQuUYfiK7/TPgb471HBfTYbJD0a6uFH6Llv0rsdM/ZqvH2tqviKCL1S1gMmf+BMV/lQBwmj/GTxzo+1V1p7yIf8s71BLn6sfm/WvQNH/aUmG1Nb8Po/8Aelspiv8A442f/Qq6zTP2fPBlng3bahft3Es+xT+CAH9a7HTPh54P0jBsvDmnKy9HkhEjj/gT5P60AZ3hf4reGfFjrFYG/SduPKls3OPqyBlH5129NREjQIiqqgYCqMAU6gAooooAKKKKACiiigAooooAKKKKACiiigAoqhq8uqw2RbR7S0ubn+5dXDRL+YRsn8vrXjfiv4i/FjQt5l8I2lrbj/l4iie5UD13K2B+IFAHudFfIF78avH17kf235CH+GC3jTH47c/rXOXvjTxRqOReeItUmU/wtdvt/LOKAPtq6vrOxTfd3cFuv96WQIP1rnr34keC9Pz5/ibTCR1EU4lI/BM18Vu7yOXkdnY9WY5JptAH1pe/HnwHaZ8q+urwjtBauP8A0PbXOXv7Smix5+waBfz+nnypF/LdXzdRQB7de/tKa1Jn7BoFhB6efI8v8ttc5e/Hnx5d58q+tbMH/nhaof8A0PdXmlFAHU3vxI8aahnz/E2pgHqIpzED+CYrnrq+vL5993dT3Df3pZC5/Wq9FABRRUkEEt1cRW8EbSTSuEjRRksxOAB75oA9H+Cngn/hKvGC3t3Fu0zSys0uRxJJ/An5jJ9lx3r60rlvh54Qi8FeD7TSgFN0R5t3IP45W+9+A4UewFdTQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB598ZfC3/CTfD67MMe680//AEuDA5O0fOv4rnj1Ar5Br7+IBBBAIPUGviz4keFz4R8dajpiJttS/nWvoYn5UD6cr9VNAHKUUUUAFdb4F1LwfY6iU8X6JJfWrsNs8UzqYvqgI3D9fr0rrPgR4d0rxJret2er2MV3bGxA2yDlSXXlT1U8dRzV/wAcfAHU9KMt94Xd9RsxljaPjz4x7dn/AEPsaAPa/Cek+BbnT47/AMMafpEkB6TQQKXB9GJG4H2PNdZXwvo+u654R1Y3Gm3dzp95Gdsi9M4/hdTwfoRX0H8OPjg/ijVbTQtX0tk1Gc7Y7i0GY2IBJLKTleATkE/hQB7LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzeveAPCniXc2qaHaSyt1mRPLk/77XBP515jr37N+mz7pNB1me1bqIbtBKv0DDBA/A17lRQB8f698GPG+hbnOlfb4F/5a2Debn/gPD/+O1wk0E1tM0M8TxSocMkilWB9wa++6zNX8O6Nr8PlatpdperjA8+IMV+h6j8KAPhOivqLXv2evC2o7pNKuLvSpT0VW86If8Bb5v8Ax6vJPGfwZ17wdYy6hLe6dc2Cf8tBOIn+m18ZPspJNAHnFFFFABRRRQAV7T+z/wCCf7T1uXxRexZtdPbZahhw85HJ/wCAg/mw9K8k0bSbvXtZtNKsY991dSiKMdsnufYDkn0Ffbfhnw/aeFvDljo1kP3NrGF3YwXbqzH3JJP40Aa1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXi37RHhb7f4ctPEcEeZtPfypyB1hc8E/Rsf99Gvaap6tpltrOkXmmXa7re7haGQezDHHvQB8GUVf1vSbnQdcvdJuxie0maJ+ODg9R7HqPrVCgD3L9mpM63r0n922iH5sf8ACvo2vnv9mdM3XiWT+6lsPzMn+FfQlAHJ+L/hx4a8axltUsgt2BhbyA7JV/How9mBFc78N/hDD4C17UNSlvkvnkQRWj+XtaNDy2RyMnAGR2B9cV6dRQAUUUUARvPDHLHE8qLJJnYjMAWx1wO+Kkr5h/aC1TUrjxvbQNb3UFlYQhbeZkZVkkbDMyN3/hHH92uZ0D4w+NfD+1I9Wa9gX/ljfDzh/wB9H5h+BoA+xKK8L0P9pHT5QsevaJPbt0Mtm4kU++1sED8TXpGi/E3wbr4UWWv2iyH/AJZXDeS+fQB8Z/DNAHWUU1HWRA6MGUjIIOQadQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSMyopZ2CqOpJwBQAtFFFABXMeI/iF4V8Khl1XWIEnX/l3iPmS/8AfK5I/HArV8QaY2teHtQ0xJnhe6t3iSVGKlGI4OR6HFfF+l+DvEeuajNZado93c3EUhjl2p8sbA4IZz8o59TQB6t4q/aLvrjfb+F9PW0jPAursB5PqEHyj8S1eQalq+teKNSWXULy71G8kO1A7Fzz2Ve30Ar2Hwx+zleTMk/ifU0t4+ptrP53PsXIwPwDV7V4b8EeHPCUITRtLggkxhpyN0rfVzz+HSgD5F1zwF4g8NaDa6vrNoLOK6l8qKGVv3p4JyV/hHHfB9q5qvof9pefbYeHLfP35Z3x/uhB/wCzV88UAFFFb3gzwxc+MPFVlottlRM+ZpAP9XGOWb8B098DvQB7R+z14J8m3m8X3sXzy7oLEMOi9HcfU/KPo3rXvNVtPsLbS9OtrCziEVtbRrFEg/hUDAFWaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+b/ANorwt9k1qy8TQR4ivV+z3BA6SqPlJ+q8f8AAK8Qr7Z+IHhlfF3gnUtJCgzvH5luT2lXlfpkjB9ia+J3RkdkdSrKcEEYINAH0F+zMmLfxNJ6tbD8hL/jXvleGfs0pjRtfk/vXEQ/JW/xr3OgAooooAKKKKAIrm1t7y3aC6ginhcYaOVAyt9QeK891/4H+Ctb3SQ2UmmTt/HYvtX/AL4OVx9AK9HooA+atb/Zx1y13Po2rWl8g5Ec6mF/oOqn8xXnWsfD3xdoLMNQ8P3yIvWSOPzY/wDvtMj9a+2qKAOI+EWknR/hfosLqVkmiNy+Rz+8YsP/AB0qPwrt6KKACvJ9f+O+j+HPFN/ot5pN7ILOXyzPA6NuOAT8pIxycde1esV8/wDiv4A67rXiPU9Wtda09je3Mk4jnV02hmJC5AbpnFAHVW/7QngmbHmJqlv/ANdLYH/0FjWnH8cPh9IAW1t4z6NZzf0Q14zP+z341hzsfS5/+udyw/8AQlFZ0vwM+IEZIXR4pPdbyL+rCgD39fjN8PnHHiKP8baYfzSuy0+/tdV0631CylEtrcxiWKQAjcpGQcHmvkV/gx8QY+vh1z/u3MJ/k9fUngiwu9K8DaJYX0JhurezjiljJB2sBgjI4oA36KKKAPGNf/aFsNG1a902Lw9dzzWk7wOZJ1jBZGKnoG4yK5K//aS16XI0/RNOtgehmd5iPyK1veI/gBfeIPF+q6sNbtbW2vLl51UQtI43HJyMgdc96nsP2a9Gjx/aGv39x6+REkP891AHmGpfGvx5qIK/2wLVD/DawIn/AI9gt+tcdf63q+syhtR1K9vZCePPnaQ59sk19Uaf8DPAdiVZ9MmvGXobm5c/opAP5V2el+G9D0QAaXpFjZ4/iggVCfqQMmgCPwnqUuseEtJ1CdHSee1jeVXUgh9o3cH3zWxRRQAUioqDCqFGScAY5PJpaKACiiigD5z/AGlp92taBb5/1dvK+P8AeZR/7LXhlewftGz+Z8QLGEHiLTUz9TJIf5Yrx+gAr6k+A/gn+wPDB168i23+qKGTcOY4Oqj/AIF976bfSvD/AIXeDG8a+M7ezlQnT7f9/eN22A/d+rHA+mT2r7KRFjRURQqqMBQMAD0oAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvkf42eFv8AhHPiBcTwx7bPUx9riwOAxP7xf++ufowr64rzP45eFv8AhIfAMt7DHuvNKY3KYHJjxiQfl83/AAAUAYH7NiY8KaxJ/evgPyQf417XXjn7OCY8B6k/97U3H5RR/wCNex0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8mfHqfzvipeJn/U28Kf8Ajm7/ANmrzMDJwOtdz8Yp/tPxY1985xLGn/fMaL/Stf4H+Cf+En8XDU7uLdpulFZW3DiSX+BffGNx+gHegD3H4ReCv+EN8GRLcx7dTvsXF3kcqSPlT/gIP5lq76iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApskaTRPFIgeN1KsrDIIPUGnUUAcN8MPC7+D9K1rSCD5SavK8DH+KJkjKH34wD7g13NFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfFXjlZ9W+KOuw20bTTzapLBEi8l28wqAPrgV9X+AvCUHgvwhZ6RHtacDzLmRf+WkrfeP06AewFeS/B3wh/bPjrWvGd7Hm3gvZltNw4eVmJZv8AgIP5t7V9AUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm6Botr4d0K00mzGIbaPbuI5durMfckkn61pUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k= 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +1 PanMechanics_2024_2 "一辆以 $36 m/s$ 速度行驶的卡车经过一辆以 $45 m/s$ 速度朝相反方向行驶的警车。如果警笛相对于警车的频率为 $500 Hz$,那么当警车接近卡车时,卡车内的观察者听到的频率是多少?(空气中的声速为 $343 m/s$) + +(A) $396 \mathrm{Hz}$ +(B) $636 \mathrm{Hz}$ +(C) $361 \mathrm{Hz}$ +(D) $393 \mathrm{Hz}$ +(E) $617 \mathrm{Hz}$" "[""\\boxed{B}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +2 PanMechanics_2024_3 "一颗卫星绕 X 行星做圆形轨道运行,且轨道距离行星表面非常近。要估计行星 X 的密度,我们只需测量: + +(A) 卫星的周期 +(B) 轨道半径 +(C) 卫星的速度 +(D) 行星 X 的质量 +(E) 卫星的质量" "[""\\boxed{A}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +3 PanMechanics_2024_4 质量为 $M$ 的三角楔子置于水平无摩擦的地面上。将质量为 $m$ 的木块放在楔子上,如图所示。木块和楔子之间没有摩擦力。系统从静止状态释放。给定 $M = 3m$ 和 $\alpha = 45^{\circ}$。 "求三角楔子加速度的大小。 + +(A) $g/6$ +(B) $g/7$ +(C) $g/4$ +(D) $g$ +(E) 0" "[""\\boxed{B}""]" "[""Multiple Choice""]" [null] [2.0] text+illustration figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADMAU8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACkNFZ2uarFo2kzX03IQYVf7zHoKANEGlry/TPF+uae3m3qi9gc7mQcPH9D3ru9I1/T9bh32c4Zh96NuHU+4oA1aRmCgk9AM0ZpksiQxPLIcIilmPoBzQBjW/jLw/dTX8UWpRbtPXddbgVEQ9yRj8KZZ+N/Dl/pFxqtvqsLWVs5jllbK7W9MEZz/OvPPhvA2o2viPxtqqq0Fxdy3MMf8ACwjBAYj2xx+dQ+CIW0z4aav4z1JcTTm4vrdTyFLZCvj16Ae1AHrGia9pniPThf6TdLc2pYpvUEfMOoIPIrRri/hVpR0n4e6Ysu77RdKbufd13yHd/hXaUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUm4A0tc/wCJ03pYrudf3/3kbBHHrQB0FFcxa61eWICXim6gH/LZB+8X6jv+FdBa3lvewiW2mWROmVPQ+h9DQBPRRRQAUUUUAFFFGaAGmvM/Feqf2xrgtI23WdiecdHk/wDrV13i7Wzo2jt5PN3cHyoAPU9/wrzu2gFvCEyWbqzHuT1NAE3aoXt/3yzwyPBcLyssZwR/jU1FAG5pXje5sSsOuRGSIcC7iXn/AIEv9RXW3iweItBube0vtsV1EY/PhIJUMMEj3rzbANR2xutLuPtOl3BtpCfmQco/1FAHcjwTaR/D/wD4RC3up4bX7P5BnXHmEE5J9MmjWvBVrq3gX/hFI7mW0tRCkSyRgE4XHUd84qto/juCd1ttWj+xXPQP1jc+x7V16srqGVgQRkEHrQBQ0XR49GsY7dJZJ3CKrzSH5n2jA6cDgdBWlRmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsLxH/y4f9dj/I1u1heI/wDlw/67H+RoAoDpVc25jnFxbStbz/306N/vDoasDpRQBbtPERiIi1SMRHp9oT/Vn691rfSRZFDIwZSMgg5BrlCoIIIBB6g1Fb/adOcvp8uxSctA/MZ+n938KAOyorIsNfgupBBcKbW5P8Eh4b/dbof51r0AB6Ux3WNC7kKoGST2FPPSuN8daw0NpHpFs+Li7/1hH8Efc/jQBy2p6k2v65Lfn/j2hzFbD2HVvxplNjjWKNY0GFUYAp1ABRRRQAUUUUAMkiSZCkihlPYiptN1XVNBYCxl8+172sxyP+AntTKKAO+0Pxbp2tERKxt7sdbeXhvw9a3xzXjk9tFOBvX5h9114YfQ11vgXU9VvJLu3uZjcWduAqTOPm3eme9AHb0UgpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArC8R/8uH/XY/yNbtYXiP8A5cP+ux/kaAKA6UUDpRQAUUUUARzQxzoUlQOp7EU61vr/AE3iJjd2/wDzykb50H+y3f6GnUmKANdfEWnNYT3Rl2CBC0kcnyuuPavMhcTale3GqXPEtycqv9xB0FdXe6dbahEY7iIMCMZ7j8a5a70DUNJLSWLm5t+pjb7wFAD6Kq21/FcHZzHKOCjcHNWqACiiigAooooAKKKCQASTgDqaAILhpW8u3t13XE7COJfc969S0LSI9F0iCyj5KDLt/eY9TXJeBdKN5eSa5Ov7tcxWoI/Nq78UAGKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwvEf8Ay4f9dj/I1u1heI/+XD/rsf5GgCgOlFA6UUAFFFFABRRRQAUUUUAZOp6BZampZ08ubtInB/H1rmrm01LRj+/Q3NqOkqdR9a7vFNZQRggEHqKAOJguYrlN0ThvUdxU1aOpeF4LhzcWTfZbjr8vCmsGSa706XydShZfSVRkGgC7RTUdZFDIwZT3FOoAKYlrLqt/BpdvkPOf3jD+CMdTRLKkMTSOcKoya7HwNoz2tk+qXKYurzlQeqR9h/WgDqLS0isrSG2gXbFEoVR7CpxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheI/+XD/rsf5Gt2sLxH/y4f8AXY/yNAFAdKKB0ooAKKKKACiiigAooooAKKKKAExUc1tFcxGKaNZEPVWFS0UAcnfeF5bZmn0mUr3MLHg/SsyO/wBsvkXcZt5hxhhwa77FVL/TLTUovLuYQ3o3cfjQBz2j6Yde12K05Nrb4luWHf0X8a9XVQoAGAAMACuK0Dy/DEbwG3MtvI+5p05cf7w7ge1dhbXUF3CJreVJY26MpzQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4j/5cP+ux/ka3awvEf/Lh/wBdj/I0AUB0ooHSigAooooAKKKKACiiigAooooAKKKKACiiigBMVB5DQT+fZytbzeqfdb/eXoasUUAXbTxEEKxanGIH6CdeY2P/ALL+P51vKwdQwIIPQg9a5NlDKVIBB6gjrUVubvTWzYSAR5ybeQ5Q/T+7+FAHZUVk6fr1teSCCUG2usf6qTv/ALp6GtXNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXiP/lw/67H+RrdrC8R/8uH/AF2P8jQBQHSigdKKACiiigAprkhSVAJxwCcZNOo6kD1oA4q0+ISS+Of+EUu9Ma2uySolE4dScZA6Cu0OeMV4b4sV4rbTfHFspRl1iYyOOoj3/KP0YV6rreqytZWtrpjA3+qALblT/q0Iy0h9lB/PFAGNN8RopPGR8M6Xpkl/cAlWmEoRFI+92PA9a7WMs0al1CuRyAcgH615R4LtYX+L2si3X9xpdqLRGPVugLH3Jya9ZoAKKKKACiiigAooooAKKKKAIpoIp49kqB1PY1Lbajf6dgZN5bZ+45/eIPY9/wAaKKAN+w1S11JCbeT5l+9Gww6/UVdrjJbZJXEgLRzL92WM4YfjV22126syI9QQzw54uIl+YD/aX+ooA6aiobe6gu4Vmt5UljboyHIqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsLxH/y4f8AXY/yNbtYXiP/AJcP+ux/kaAKA6UUDpRQAUUUUAFZevaxa6Lo11d3U6RbIXMYY8u2DgAdznFalRvDHJjzI0fHTcoP86APP5tJttb+CwsrSVJmWzEwIOcSA7iD79RVjwJayaN4Ytta8RzpHcfZljj807fJgXkLz/EepruFiSNdqIqg9QAAKV40kXa6Iy+jDIoA8w+EE1veT+ItQZ1F3dXmQhOGMfJBx1xk16lUaQxRtuSKND6qoFSUAFFFFABRRRQAUUUUAFFFFABRRRQAUYoooAgEDwTefZSm3mPXb91v95ehrUtPEaqyw6lGLeQ8CUcxt+Pb8apU1kDgqwDKeoIoA61WDAEEEHkEUtcbA13pjbrGUeUOTbyn5D9D/DWj4f8AGOjeIvNjs7uM3EL+XLHuzhh1APRvwoA6GikBzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXiP/lw/wCux/ka3awvEf8Ay4f9dj/I0AUB0ooHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisvxDrtp4b0W51W9J8qFeFHV2PRR7mgDUorhLrVPE1v4KuPE9xdxQTJH9pTT1hUoI+oVmI3bsHqDWpoXiGfXtZY26oNNisopHbGSZ35259hQB09VNR1Oy0iykvNQuo7e3jHzPIcD6e59qt1jap4Y0vWdVtdQ1CE3D2qkRRSNmPOepXoT70AeceMvEmt+I/Dtxc2Ky6ZojsIYGcYnv5GOAqjsnvWp8KtEGlW3iHRrtQ8lrexhweoOzNamsINc+JekaTgfZdJhN/MuON54QfSnaKRY/FTxFZsdv263ivEB/iI+VsetAHb22pahpuFJa8th/Cx/eIPY9/xresNTtdSj3W8uWH3kYYZfqKwKgltlkcSqWjmX7ssZww/GgDs6K5m2164tMR6jH5sWcC4iXkD/AGl/qK6G3uYbqFZYJFkjboyHIoAlooooAKKKKACiiigAooooAKKKKACsLxH/AMuH/XY/yNbtYXiP/lw/67H+RoAoDpRQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcP8AFHTrq/8ADto1tbyXEdtexzXEUa7maMHnA713FJznINAHE+JdXXxH4T1HT9Asbq7ee3ZfmiaJY1xn+IcnjGBmn/DKa3XwbY2UNpcQTQx/6T5sJQGXPPJ6npXZ84xRigBaMZOKKRn8tGk/ugt+XNAHFeCP+Jh4g8U63Jy0t79liOekcY6fnXSz6LZ3Ou2msSK/2y0jaKJgxA2t1BHeud+F658IvcEc3N9cTfm/FdnQAUUUUAGKrrDJbTGexlNvKeoAyj/7y1YooAv2niJdyw6jGLaU8CQHMbn69vxrcDAgEEEHkEVyToJFKsAynqCM5plu93pnNjIGiH/LtKcr/wABPVaAOxorL0/XLW9byW3QXOOYZOD+B6H8K0waAFooooAKKKKAOZ15dba/U6frP2OHYMx/ZkkyfXJFZezxT/0M/wD5Ixf4V02oJunB/wBmqnle1AGJs8U/9DP/AOSMX+FVrrT/ABHeeV53iUny23Liyi6/lXSeV7UeV7UAcuNI8Qf9DK3/AIBRf4Uv9keIP+hlb/wCi/wrp/K9qPK9qAOY/sjxB/0Mrf8AgFF/hR/ZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FH9keIP+hlb/wAAov8ACun8r2o8r2oA5j+yPEH/AEMrf+AUX+FH9keIP+hlb/wCi/wrp/K9qPK9qAOY/sjxB/0Mrf8AgFF/hR/ZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FH9keIP+hlb/wAAov8ACun8r2o8r2oA5j+yPEH/AEMrf+AUX+FH9keIP+hlb/wCi/wrp/K9qPK9qAOY/sjxB/0Mrf8AgFF/hR/ZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FNk0XXpInjbxK211KnFlF0Ix6V1Ple1Hle1AHE6P4R1TQtLh06x8RSLbxZ2hrSNjycnkjmr/wDZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FH9keIP+hlb/wAAov8ACun8r2o8r2oA5j+yPEH/AEMrf+AUX+FJ/ZGv/wDQyt/4BRf4V1Hle1Hle1AHJzaBrVwm2XxDuHY/Yo8j6cVct7XxRbwrEPFTuF4BeziJ/PFdB5XtR5XtQBibPFP/AEM//kjF/hRs8U/9DP8A+SMX+Fbfle1Hle1AGVZp4kF9B5/iPzYt43x/Y4xuHpkDiu0rDhixOhx/EK3KAKlwm6QHHaovKq64Bam7R6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFVI8SKfer9RBRkcVLQB//Z 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +4 PanMechanics_2024_5 质量为 $M$ 的三角楔子置于水平无摩擦的地面上。将质量为 $m$ 的木块放在楔子上,如图所示。木块和楔子之间没有摩擦力。系统从静止状态释放。给定 $M = 3m$ 和 $\alpha = 45^{\circ}$。 "若当木块滑到地面时,楔子相对地面的速度为 $1 m/s$。求木块在楔子上离地面的初始高度(假设木块为无体积的重点)。 + +(A) $0.60 m$ +(B) $0.82 m$ +(C) $1.00 m$ +(D) $1.05 m$ +(E) $1.40 m$" "[""\\boxed{E}""]" "[""Multiple Choice""]" [null] [2.0] text+illustration figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADMAU8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACkNFZ2uarFo2kzX03IQYVf7zHoKANEGlry/TPF+uae3m3qi9gc7mQcPH9D3ru9I1/T9bh32c4Zh96NuHU+4oA1aRmCgk9AM0ZpksiQxPLIcIilmPoBzQBjW/jLw/dTX8UWpRbtPXddbgVEQ9yRj8KZZ+N/Dl/pFxqtvqsLWVs5jllbK7W9MEZz/OvPPhvA2o2viPxtqqq0Fxdy3MMf8ACwjBAYj2xx+dQ+CIW0z4aav4z1JcTTm4vrdTyFLZCvj16Ae1AHrGia9pniPThf6TdLc2pYpvUEfMOoIPIrRri/hVpR0n4e6Ysu77RdKbufd13yHd/hXaUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUm4A0tc/wCJ03pYrudf3/3kbBHHrQB0FFcxa61eWICXim6gH/LZB+8X6jv+FdBa3lvewiW2mWROmVPQ+h9DQBPRRRQAUUUUAFFFGaAGmvM/Feqf2xrgtI23WdiecdHk/wDrV13i7Wzo2jt5PN3cHyoAPU9/wrzu2gFvCEyWbqzHuT1NAE3aoXt/3yzwyPBcLyssZwR/jU1FAG5pXje5sSsOuRGSIcC7iXn/AIEv9RXW3iweItBube0vtsV1EY/PhIJUMMEj3rzbANR2xutLuPtOl3BtpCfmQco/1FAHcjwTaR/D/wD4RC3up4bX7P5BnXHmEE5J9MmjWvBVrq3gX/hFI7mW0tRCkSyRgE4XHUd84qto/juCd1ttWj+xXPQP1jc+x7V16srqGVgQRkEHrQBQ0XR49GsY7dJZJ3CKrzSH5n2jA6cDgdBWlRmigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsLxH/y4f9dj/I1u1heI/wDlw/67H+RoAoDpVc25jnFxbStbz/306N/vDoasDpRQBbtPERiIi1SMRHp9oT/Vn691rfSRZFDIwZSMgg5BrlCoIIIBB6g1Fb/adOcvp8uxSctA/MZ+n938KAOyorIsNfgupBBcKbW5P8Eh4b/dbof51r0AB6Ux3WNC7kKoGST2FPPSuN8daw0NpHpFs+Li7/1hH8Efc/jQBy2p6k2v65Lfn/j2hzFbD2HVvxplNjjWKNY0GFUYAp1ABRRRQAUUUUAMkiSZCkihlPYiptN1XVNBYCxl8+172sxyP+AntTKKAO+0Pxbp2tERKxt7sdbeXhvw9a3xzXjk9tFOBvX5h9114YfQ11vgXU9VvJLu3uZjcWduAqTOPm3eme9AHb0UgpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArC8R/8uH/XY/yNbtYXiP8A5cP+ux/kaAKA6UUDpRQAUUUUARzQxzoUlQOp7EU61vr/AE3iJjd2/wDzykb50H+y3f6GnUmKANdfEWnNYT3Rl2CBC0kcnyuuPavMhcTale3GqXPEtycqv9xB0FdXe6dbahEY7iIMCMZ7j8a5a70DUNJLSWLm5t+pjb7wFAD6Kq21/FcHZzHKOCjcHNWqACiiigAooooAKKKCQASTgDqaAILhpW8u3t13XE7COJfc969S0LSI9F0iCyj5KDLt/eY9TXJeBdKN5eSa5Ov7tcxWoI/Nq78UAGKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwvEf8Ay4f9dj/I1u1heI/+XD/rsf5GgCgOlFA6UUAFFFFABRRRQAUUUUAZOp6BZampZ08ubtInB/H1rmrm01LRj+/Q3NqOkqdR9a7vFNZQRggEHqKAOJguYrlN0ThvUdxU1aOpeF4LhzcWTfZbjr8vCmsGSa706XydShZfSVRkGgC7RTUdZFDIwZT3FOoAKYlrLqt/BpdvkPOf3jD+CMdTRLKkMTSOcKoya7HwNoz2tk+qXKYurzlQeqR9h/WgDqLS0isrSG2gXbFEoVR7CpxS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVheI/+XD/rsf5Gt2sLxH/y4f8AXY/yNAFAdKKB0ooAKKKKACiiigAooooAKKKKAExUc1tFcxGKaNZEPVWFS0UAcnfeF5bZmn0mUr3MLHg/SsyO/wBsvkXcZt5hxhhwa77FVL/TLTUovLuYQ3o3cfjQBz2j6Yde12K05Nrb4luWHf0X8a9XVQoAGAAMACuK0Dy/DEbwG3MtvI+5p05cf7w7ge1dhbXUF3CJreVJY26MpzQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWF4j/5cP+ux/ka3awvEf/Lh/wBdj/I0AUB0ooHSigAooooAKKKKACiiigAooooAKKKKACiiigBMVB5DQT+fZytbzeqfdb/eXoasUUAXbTxEEKxanGIH6CdeY2P/ALL+P51vKwdQwIIPQg9a5NlDKVIBB6gjrUVubvTWzYSAR5ybeQ5Q/T+7+FAHZUVk6fr1teSCCUG2usf6qTv/ALp6GtXNAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXiP/lw/67H+RrdrC8R/8uH/AF2P8jQBQHSigdKKACiiigAprkhSVAJxwCcZNOo6kD1oA4q0+ISS+Of+EUu9Ma2uySolE4dScZA6Cu0OeMV4b4sV4rbTfHFspRl1iYyOOoj3/KP0YV6rreqytZWtrpjA3+qALblT/q0Iy0h9lB/PFAGNN8RopPGR8M6Xpkl/cAlWmEoRFI+92PA9a7WMs0al1CuRyAcgH615R4LtYX+L2si3X9xpdqLRGPVugLH3Jya9ZoAKKKKACiiigAooooAKKKKAIpoIp49kqB1PY1Lbajf6dgZN5bZ+45/eIPY9/wAaKKAN+w1S11JCbeT5l+9Gww6/UVdrjJbZJXEgLRzL92WM4YfjV22126syI9QQzw54uIl+YD/aX+ooA6aiobe6gu4Vmt5UljboyHIqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsLxH/y4f8AXY/yNbtYXiP/AJcP+ux/kaAKA6UUDpRQAUUUUAFZevaxa6Lo11d3U6RbIXMYY8u2DgAdznFalRvDHJjzI0fHTcoP86APP5tJttb+CwsrSVJmWzEwIOcSA7iD79RVjwJayaN4Ytta8RzpHcfZljj807fJgXkLz/EepruFiSNdqIqg9QAAKV40kXa6Iy+jDIoA8w+EE1veT+ItQZ1F3dXmQhOGMfJBx1xk16lUaQxRtuSKND6qoFSUAFFFFABRRRQAUUUUAFFFFABRRRQAUYoooAgEDwTefZSm3mPXb91v95ehrUtPEaqyw6lGLeQ8CUcxt+Pb8apU1kDgqwDKeoIoA61WDAEEEHkEUtcbA13pjbrGUeUOTbyn5D9D/DWj4f8AGOjeIvNjs7uM3EL+XLHuzhh1APRvwoA6GikBzS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYXiP/lw/wCux/ka3awvEf8Ay4f9dj/I0AUB0ooHSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisvxDrtp4b0W51W9J8qFeFHV2PRR7mgDUorhLrVPE1v4KuPE9xdxQTJH9pTT1hUoI+oVmI3bsHqDWpoXiGfXtZY26oNNisopHbGSZ35259hQB09VNR1Oy0iykvNQuo7e3jHzPIcD6e59qt1jap4Y0vWdVtdQ1CE3D2qkRRSNmPOepXoT70AeceMvEmt+I/Dtxc2Ky6ZojsIYGcYnv5GOAqjsnvWp8KtEGlW3iHRrtQ8lrexhweoOzNamsINc+JekaTgfZdJhN/MuON54QfSnaKRY/FTxFZsdv263ivEB/iI+VsetAHb22pahpuFJa8th/Cx/eIPY9/xresNTtdSj3W8uWH3kYYZfqKwKgltlkcSqWjmX7ssZww/GgDs6K5m2164tMR6jH5sWcC4iXkD/AGl/qK6G3uYbqFZYJFkjboyHIoAlooooAKKKKACiiigAooooAKKKKACsLxH/AMuH/XY/yNbtYXiP/lw/67H+RoAoDpRQOlFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcP8AFHTrq/8ADto1tbyXEdtexzXEUa7maMHnA713FJznINAHE+JdXXxH4T1HT9Asbq7ee3ZfmiaJY1xn+IcnjGBmn/DKa3XwbY2UNpcQTQx/6T5sJQGXPPJ6npXZ84xRigBaMZOKKRn8tGk/ugt+XNAHFeCP+Jh4g8U63Jy0t79liOekcY6fnXSz6LZ3Ou2msSK/2y0jaKJgxA2t1BHeud+F658IvcEc3N9cTfm/FdnQAUUUUAGKrrDJbTGexlNvKeoAyj/7y1YooAv2niJdyw6jGLaU8CQHMbn69vxrcDAgEEEHkEVyToJFKsAynqCM5plu93pnNjIGiH/LtKcr/wABPVaAOxorL0/XLW9byW3QXOOYZOD+B6H8K0waAFooooAKKKKAOZ15dba/U6frP2OHYMx/ZkkyfXJFZezxT/0M/wD5Ixf4V02oJunB/wBmqnle1AGJs8U/9DP/AOSMX+FVrrT/ABHeeV53iUny23Liyi6/lXSeV7UeV7UAcuNI8Qf9DK3/AIBRf4Uv9keIP+hlb/wCi/wrp/K9qPK9qAOY/sjxB/0Mrf8AgFF/hR/ZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FH9keIP+hlb/wAAov8ACun8r2o8r2oA5j+yPEH/AEMrf+AUX+FH9keIP+hlb/wCi/wrp/K9qPK9qAOY/sjxB/0Mrf8AgFF/hR/ZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FH9keIP+hlb/wAAov8ACun8r2o8r2oA5j+yPEH/AEMrf+AUX+FH9keIP+hlb/wCi/wrp/K9qPK9qAOY/sjxB/0Mrf8AgFF/hR/ZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FNk0XXpInjbxK211KnFlF0Ix6V1Ple1Hle1AHE6P4R1TQtLh06x8RSLbxZ2hrSNjycnkjmr/wDZHiD/AKGVv/AKL/Cun8r2o8r2oA5j+yPEH/Qyt/4BRf4Uf2R4g/6GVv8AwCi/wrp/K9qPK9qAOY/sjxB/0Mrf+AUX+FH9keIP+hlb/wAAov8ACun8r2o8r2oA5j+yPEH/AEMrf+AUX+FJ/ZGv/wDQyt/4BRf4V1Hle1Hle1AHJzaBrVwm2XxDuHY/Yo8j6cVct7XxRbwrEPFTuF4BeziJ/PFdB5XtR5XtQBibPFP/AEM//kjF/hRs8U/9DP8A+SMX+Fbfle1Hle1AGVZp4kF9B5/iPzYt43x/Y4xuHpkDiu0rDhixOhx/EK3KAKlwm6QHHaovKq64Bam7R6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFTyqPKq3tHpRtHpQBU8qjyqt7R6UbR6UAVPKo8qre0elG0elAFVI8SKfer9RBRkcVLQB//Z 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +5 PanMechanics_2024_6 "在一维运动中,力 $F = -(m/b) v^2$ 作用在质量为 $m$ 的粒子上,其中 $v$ 是粒子的速度,$b$ 是常数。在 $t = 0 s$ 时,该粒子位于 $x = 0 m$。哪一个是粒子随时间变化的可能位置? + +(A) $x(t) = b \ln (\frac{t}{1 \mathrm{s}})$ +(B) $x(t) = b \ln (\frac{t}{1 \mathrm{s}} + 1)$ +(C) $x(t) = b \frac{t / 1\mathrm{s}}{2 + ( t/1\mathrm{s})^2}$ +(D) $x(t) = \frac{b}{t/1\mathrm{s}}$ +(E) $x(t) = b \sin (t/1\mathrm{s})$" "[""\\boxed{B}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +6 PanMechanics_2024_7 一个体重 $60 \mathrm{kg}$ 的人以 $5 m/s$ 的初始速度沿着半径为 $3 m$、质量为 $100 \mathrm{kg}$ 的固定均匀圆形平台的切线跑步,如图所示。平台本来静止,当人跳上及静止在平台上后,平台绕中心的垂直轴旋转。圆形平台通过其质心的转动惯量为 $I_{\mathrm{CM}} = \frac{1}{2} M R^2$。 "求该人跳上平台后系统的角速度。 + +(A) 0.500 rad/s +(B) 0.250 rad/s +(C) 1.33 rad/s +(D) 0.909 rad/s +(E) 1.705 rad/s" "[""\\boxed{D}""]" "[""Multiple Choice""]" [null] [2.0] text+illustration figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADrAZcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKK5X4i682g+Drl4J/Jvr1lsbNxuyJpPlDDaCflG5uBn5eOcUAdVRXl01/qHhJbRr+/fTFnlEP2mS/k1GzMhBIE3nBZYwcEBkbAP3jiutsPGNm9skmq+VYBl3Lc+aJLOUesdwMKc9g21v9nvQB0lFHWigAooooArv/wAhGH/rlJ/NKsVXf/kIw/8AXKT+aVYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszXPEGmeHLH7Zqlz5MRJAwjOzYBY4VQScKCSccAEngVp1wvjDwLqPiTXoL+31a2hgRIUMNzamYJ5cwlO0bwMOVQMCOQg5oA1bbx5oN+GSwnnu7sYxZxW7ic5AKnYwBCkEfOcJz96nXHie9tzEs3hq/gM8qwxPcXFsqb2OFBKyseT6An2rI0z4aRabPfXK+I9Y+0XsyTzMjRAb0+5t3IzAAcY3HI4Oa3m8NLcoUv8AV9WvF4wDc+Rg+uYAh/OgDlb3xDrt7rWo2suq2uhWmkIjXTWqC5eeRo2lMaNIoHCKDwmeT6Vm+H4tQ8ZxW9/rks1xZ2FwGs4pJFUm6QESSfIq/KjZVMkk4YnOVwzxH4d1fwPJNrumSyappRv4b6+S5YtcwBBsdg38a+WWBB5HByeav/Du6hSHXbES+aLPXLnbnqsTMXU4POCd34g0AV/GfiG3m0/VdE003Opa1HGGhsrKJ3e0cMpWV3UEKVYK2DzwBWRb6vP4lj+0WpvfCK3bRpf3TWKy2F3KTwQSy4LEFCxHIKqxztrB0f8A4STwLd6jFf6ZeXdnOvzXVjatdQzHCgyMBImGITJLc5J45OdfWdQTxj4fg8MaFay6hFdW++O8hspIoEk3EKCCcKFHzctx8pGehAPTDr2heD4NO8P3moTGeG0jWMeRJK7oo2BjsU9dppx8eeHwf+Pi6/8AACf/AOIq7H4b02W0sk1O0ttTura3SH7Xd26PI+0dSSD1OT9TUy+H9FXG3SNPGORi2T/CgDIPxC8OBS32m5x/15Tf/EVatvEkF1KLmK5sTpjRhg7ytHMrc5BQr049QfatFdI0xMbNOtFx0xAo/pWdd+DdDv8AWv7UvLMXEohWEQyEmEAEnPl/dJy3Ug9BQBhX3xK0qK8jNhputaxNGrpLBpli0zRZKkFjkLjjHBNbPhnxb/wkstxH/wAI9r2leSqndqtl5AkznhTk5Ixz9a11hjgvLaKGNI40hkCoigADKcACrdAHIa549/sPV5tP/wCET8Vah5QU/abDTvNhfIB+VtwzjOD7g1v6Jqv9t6PBqP2C+sPO3f6Nfw+VMmGK/MuTjOMj2IrQooA8/wD+Fp/9SF45/wDBP/8AZ12Gt6r/AGJo8+o/YL6/8nb/AKNYQ+bM+WC/KuRnGcn2BrQooA4/RPH/APbesQad/wAIl4rsPO3f6Tf6b5UKYUt8zbjjOMD3IrQ8TeK/+EZNqP7A13VftG7nSrPz/L24+/yMZzx64NdBRQBheGfE3/CSxXEn9h61pXksq7dVtPIMmc8qMnIGOayNV+In9lapcWP/AAh3i688l9v2i00zzIpPdW3DIrtKKAM6LV/N8O/2x/Z9+n+jG4+xPDi54XOzZn7/AGxnrXMWHxJ+3ajbWf8AwhXjK38+VIvOuNK2Rx7iBudt3CjOSewruKKAMfxJr/8AwjmnR3n9karqm+UReTplt58i5BO4rkYXjGfUj1rP8N+NP+Ej1GSz/wCEZ8R6XsiMvnanYeRG2CBtDbjluc49AfSuoooA5fxJ40/4RzUY7P8A4RnxHqm+IS+dplh58a5JG0tuGG4zj0I9a0PDev8A/CR6dJef2Rqul7JTF5Op23kSNgA7guTlecZ9QfStiigDhr34lfYr+4tf+EJ8ZT+RK0fnQaVujk2kjcp3cqcZB9K6i81f7HoDat/Z9/PthEv2OGHdcHIHyhM/eGeRnsa0aKAON0f4g/2xq1vYf8Ih4ssvOJH2i903yoUwCfmbccdMfUitPxN4p/4RkWp/sHXNV+0bv+QVZ+f5e3H3+RjOePXBqv4u+IHh3wVbb9WvR9oZcx2kPzzSfRew9zge9eWnxb8TPigzReFrD+wtFclTeyNtZh0/1hGf+/YyPWgDv7f4r+H1hupNat9T8PfZ1Vlj1i28mScNn/VICzPjHOBxketcrqP7QenSXgsvDPh/UNYuGcquR5Yf0KgBmP0IFWNA+AWhW0pvfEl7da5fOd0m9zHGWPUnB3Mc9y3PpXp+maPpui232fS9PtbKHulvEqAn1OByfegDxlde+OPieJJLDRbbRIS5G+SFY3x/tLMWbHuFGa4X7T8VtSvjNqk3jq2DdTY2EwA+iK0a19W0UAfP3if4LanZ6VNqV94w13WWQrmC109riZ8kDhTNzjOTz0BrmfD3wmOtaullHN4t0xmVm+03+geTEMDOC3nnk9q+p6KAPnDxJ4F8V+DPKttL8U+M9RMqbwNKsZWiXBxhmWfg/gau6FpvxwTw7Bf2GryusjH/AELUgv2pcMR83npwDjP3uhFfQVFAHh0nxT+JHhdpD4p8DCa3jUAz2odFB9TIPMQ/QYrp9A+OngvW3WK4uptKnYhQt6m1Scf31JUD3YivSq5fxD8OvCfigO2p6Lbmd8k3MK+VLk9yy4LfjkUAdHbXVveW6XFrPFPBINySROGVh6gjg1LXht18H/FXg64kv/h74knAzuNjcOFL/wDtNz/vAY9at6F8b5tN1AaN8QNHm0i9Xg3KRNsPuyHJA913A+woA9noqCyvbXUrOK8srmK5tpRujlicMrD2IqegAooooAKKKKACiiigAooooAKKKKAGTQx3EMkMyLJFIpR0YZDA8EEeleLeHtJjtfGlw3gm8gl0bT0aK8jupWLT7yWVVYKcxq27a/PO8ZIr2maFLiCSGUbo5FKMM4yCMGvNx4NuNLvbcz6fqWoJaW/2K1u9IvxazNbA5SOdS8YJXsytz1IFACeKNfMOm3OmaVHcjW7pFi228LTNZJIdrSyGLdtAGSO5IHFZF/rOo+DF0fTfBsOsXemvmOSO/wBPmdYwqDBjdgp+Y/w9OPl29+h0yeLw1DHpUGr22h24DSrBrViBKR32zLIqSY4JPzNzlicg10nhLVtR1jR3udTgt0kWd445rbcIrmMHiVA3zBTyOc5xkEgg0ATeHNRv9SsJJdQtTC6ybY38p4vOTap3eW/zJySuDn7uehFbFFFABRRRQBXf/kIw/wDXKT+aVYqu/wDyEYf+uUn80qxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVW1HUbPSdPnv9QuI7e0gXfLLIcBR/nt3oAnlljhieWV1jjRSzO5wFA6knsK8X8UfFvU/EGrN4Z+G9q95dtlZNQC5VB3KZ4AH99uPQdDWRqOseJPjjrD6RoQk03wnbyYuLpx/rcc/N/ePcIPYk9Mex+FPB+jeDNJXT9IthGpwZZm5kmb+87d/p0HYCgDhPB/wTsLC4/tjxbcHXNYkPmOJmLwq3vnmQ+7ce3evWERURURQqqMBQMAClooAKKKKACiiigAooooAKKKKACiiigArK1/w1o/ijTzZazYQ3cPO3ePmQ+qsOVPuK1aKAPBNQ8D+MvhPeS6x4IvJtT0YtvuNOlG5gP9pR97/eXDD0xk16L4B+Jui+PLXbbt9l1NFzLYytlh7of419xyO4HFdtXlHxC+Ea6rcnxH4Sf+zfEULediJvLS4brnI+6/v0PfrkAHq9FeXfDb4ptr1y3hvxPF9g8SW5MZWRdguCOuB/C/qvfqPQeo0AFFFFABRRRQAUUUUAFFFFABRRRQA140kXDorDrhhmnUUUAFFFFABRRRQBXf8A5CMP/XKT+aVYppRTIshHzKCoPscZ/kKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHcXENpbS3NxKkMESF5JJGCqigZJJPQAV4DfXOqfHfxidOsZZbTwdpsgaWYDBlP97B6u3O0H7o5Izwb3xI1/UPiF4ui+HPhlz9nSTOpXI5UbTyDj+FOM+rYHYZ9d8M+G9N8J6Db6RpcPl28I5Y/ekfu7Hux/wDrDAAFAFnR9H0/QNKg0zS7VLazgXakafzJ6knqSeSavUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5z8T/hjD4xtRqmlkWviK1AaCdTs87byFY9j6N2+lVfhV8SZvEXm+G/ESm28SWOUdZBtNwF4Jx2cfxD8R3A9QryT4veA7q5MfjXw0Wg17TcSy+UMNMi/xD1ZQOh6rxzgCgD1uiuQ+HHjq28eeGI75dkd/DiO9t1P+rkx1A67W6j8RnINdfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcB8W/HP/CF+E2+yPjVr/MNoB1Tj5pP+AgjHuRXfEhQSSABySe1eC+HEPxX+M134hnBk0HQyFtVP3XIJ8v8AMhnP0ANAHcfCLwGPB3hkXF7H/wATnUAJbpm5aMdVj/DOT7k+gr0OiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8B8S2svwb+J9t4l0+Jx4a1dzHdwRL8sZJyygdAR99enRlGADXvUE8V1bxXFvKksMqB45EOVZSMgg9wRWL4z8L23jDwrfaLc7VMyZhlIz5Uo5R/wPX1BI715/wDArxNczaXfeD9Wymp6JIyKjtlvK3bSvvsbI+hUDpQB69RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB558aPE58N/Dy7WFyt3qJ+xwkdQGB3n/vkMM+pFX/hX4WHhPwDp9pJHsvLhftV1kYPmOAcH/dG1fwrz/x2B42+PXh/wvw9lpaia5UjjJHmuD7FVjX6mvdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8J+IiH4ffGLRPGsAK2Gonyb4KCRkAK+e3KFWA7shNe7Vwfxj8Pr4g+GmpqqAz2S/bYSexjyW/NC4/GgDuwQwBBBB5BFFcT8I9f/AOEh+GulTu+6e2T7JN/vR8DPuV2n8aKAO3ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACgnAyaKxfGF/JpfgrXL+Fgk1vYTyRsezhCV/XFAHlHwWP/CR+P8Axl4vdnZZZfJgLj+B3LY/BUQV7jXln7P2nNZ/DNbhgB9tvJZlPcgYj/mhr1OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmyRpNE8UihkdSrKe4PWnUUAeI/AiV9G17xd4RlkY/YroyRA99rGN2/HEdFJZZ0P9qa8iGEi1W0JHbI8oOf8Ax6I0UAe30UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXB/Ged7f4S668bYZliTPs0yA/oTXeV578b/8Akkes/wC9B/6PSgC78JLY2nwq8Pxt1aAyf99uzf8As1drXO+AVCfDvw0B0/su2P5xqa6KgAooooAKKKKACiiigAooooAKKKKAAkAZJwBVa11KxvmdbS9t7hk+8IZVcr9cHivJP2hda1LTPDmnWtlPJDDdzMJynBIUAgZ+v+elfP3hnW9U0bxBZ3WnXM0c/nLwrH5snByO/WqSRLbPuWiorWSSW0hklTy5HjVnT+6SORUtSUFFFFABRRRQAUUUUAFFFFABRRRQB8/fF64bRvjLoWqodudOIz7gyj+TCiqv7SBMfiLQJF+99mlH/jw/xooA+i6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz743DPwi1v2Nv/AOj469BrlPiZZJqHwz8RQyDIWxkmH1jG8fqooAPhnci7+Gfh2QHIWxjj/wC+Bt/9lrq686+B17Hd/CjS40OXtnmhk9j5jMP0Za9FoAKKKKACiiigAooooAKKKKACiiigDM17QNN8S6XJp2q2yz2784PVT2IPY1yOjfBrwjoV99ts7edrlQfLeeQOI27MARjI9+K9Bop3YrI8z+G3ijxrrGqX+n+JbOzW3spJLdbwI0Tzyo2GCj7rAYySMY9+3plRXFtHcwGKQcE5BHBU9QQexB5zUENzJHN9muyokY4ikAwJRjOMdmAByPQZHcBDLlFFFABRRRQAUUUUAFFFFABRRRQB88fHyM6h8QNB05eW+wu+Pqzf/EUVp6/DH4h/ac0+xb5o7Ox8uX2/dSOP1kX86KAPdKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG7tor2zntZlDxTRtG6noVIwR+RqaigDxb9nm5mtdO8ReHLpQlxp98HZc8gsCjD6AxfrXtNeGafjwZ+0veWzBY7PX4S6En+J/nz9TKjr/wACr3OgAooooAKKKKACiiigAooooAKKKKACiiigAqOaGOdNkqB1DBhkdCDkEe4IBqSigDPt7qS1nisL+XfNJu8icptE4HODjgSBeSONwBZRgMF0KjnhS4geGTcFdSpKOVYe4YYIPuORVa3mlgmWzui7sFHlXLAYmx13YACv6jABzkdwoBdooooAKKKKACiiigAoorD8Za4vhrwdq2sFlVra2Zo93QyHhB+LFR+NAHlfwyz4h+N3jPxFgNDb7raNhyOXCoR/wCI/nRWz+z9oZ034fNqMi4l1O5aUHuY1+Rf1Dn8aKAPV6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8b+PukXEOnaP4v0/K3ekXKhnUdFZgVY/RwB/wM16noGs2/iHw/YavakeTdwrKBnO0kcqfcHI/Cna3pFtr2h3uk3gzBdwtE/qMjqPcHke4ryT4H6zc6Nf6x8PtXbbeafM8lsD0Zc/OF9s4ceoYmgD2qiiigAooooAKKKKACiiigAooooAKKKKACvP7vx1r2naUfEeoeH4rTw+twInSaV1vUjMgjErRlMdSDsznB616AeATjPtXkvjbVtE8ReEY/Fdhq1xDqNjIv2PT5n3A3KOQI3tjkGQk4zjI4IOBQB6Vfa9o+meZ/aGrWNp5RUSefcJHsLZ25yeM7Tj1wfSobnV9BuZYdMn1SwM92ivDB9qUSSA8qyAHPuCPTIrldL0ix1P4qeJbrUbCCa4i0+xRRKocIHEu8DPH8IGf8a4W10qwtf2d7bUIbSFb1b2OQXOweYGF6EB3deFAX6UAe3Qzywz/ZrrnccQzcYkGM4PowwfYjkdwLlRzwRXMLRTIHRsZB9Qcg+xB5B7VXhmktpVtrpg24kQy/3++0+jY/PBPHQAFyiiigAooooAK8X+PWrT3w0PwTpzbr3VLlZJEDY+XdtQH2LEn/tnXslxcQ2ltLc3EqRQQoZJJHOFRQMkk9gBXh3wzim+IPxS1jx9dxuLGzYwWCuOhI2qO4yqckA/ecGgD2jR9Mg0XRbLS7YfuLSBIUOMEhQBk+5xmirtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXinxm0K90DWtM+I+hLi6spES8AHDL0Vm9iDsPsVr2uoL2yttRsZ7K8hWa2uI2jljboykYIoApeHNfsvE/h+z1mwbNvdRhwCeUPRlPuDkH6VqV4B4Zv7n4L/EKfwxq8x/4RrU3821upD8sZPCuT0HQK/0DcDr7/wBaACiiigAooooAKKKKACiiigAooooAKzf+Ee0X+1v7W/siw/tLOftf2ZPNzjGd+M9OOtaVFAEMdpbRXU11HbxJcTBVllVAHkC52hj1OMnGemTVf+xtK/swaZ/Ztn/Z4ORa+QvlA7t2dmMfe+bp15q9RQAUySJJozHIgdG6gin0UAU45XtXWC5fchwI5jxuPTa3+10571cpskaTRPFIoZHBVlPQg9qqLO9nMIrqQvHI+IpiuME9EbHGc8A8Z4HXqAXaKK5zxv4wsfBHhqfVrz53HyW8AODNIRwo9B3J7AH6UAcB8bfFVzLHZ+A9CzLqurOqzrG2CsZPyoT0G49cnhQc8NmvRfB3hi18H+FrHRbXDeQmZZQMebIeWY/U9PQYHavOPg54Tv769ufiH4lLS6pqO42glXlIzwZBnpkfKoGMJ6huPZKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fx74JsfHXhyXTboCO4TL2tzjJhk9fcHoR3HuAR598L/Hd5oeqf8ACvfGWbfUbVhDYzyHiQfwxk/TGw9CMDrjPtNcN8SfhtY+PtKUqy22sWyn7Ld4/HY+OSpP4g8juCAdzRXjHgH4n32k6l/whnj8PaapARHBezniUdg7dCfR+jd+eT7PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3iSyWcyQLE0xQhBLnZuxxnHOM+lTVleIvEel+FtHl1TV7pYLaPgd2duyqO5Pp/SgDzzwq3ifwDeeI9R8eXkUulzItwl9HPvUOvyiNVPz5IIAGP4eua5fQNL1L42eM/+El1yJ4PC2nyFLS0bpLg/d984Bdvoo9mWllr3x38Qrf6is2neDrOQ+VCDgykcHH95j0LdF6Dnr73YWFrpdhBY2MCW9rAgSKKMYCgdqAJ1UKoVQAoGAB0FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByfjr4f6P480v7Pfp5N3GD9mvI1+eI/+zL6qf0PNeXaT4y8VfCDUItA8Z28uoaEfktL+LLFV7BWP3gP7hwR24wD77VTU9MsdZ0+aw1K0iurSYYeKVdyn/wCv3B6igCPR9a0zxBpseoaTew3drJ0kibOD1wR1B55BwRV+vDtW+EviPwZqUmt/DXVZUBOZNNlcfMP7oLfLIBk4D8jHBJrQ8O/He0F1/ZfjXTZ9D1KM7Xk8pvKz7qfnT/x4d8igD2Giq1jqFnqdol3YXcF1bP8AdlgkDo30I4qzQAUUUUAFFFFABRRRQAUUUUAFFc14o8feGvB8THV9TijnAytrGd8zdcYQcjOOpwPevK7jx949+J872HgfTJNJ0osUk1KU7Wx0OZOiHBB2pucYyDigDvvHvxV0HwNE8Eji+1bjbYwv8y5GQZG/gHT3ORgEc1wehfD/AMS/EzV4/EvxBklttPVs22lqDGSvpt6xr06/M2O3Brr/AAL8HNE8JSJqN+39ra1nebmdfkibOcxqc4PT5jk8ZGMkV6RQBFa2sFlaxWtrDHBbxKEjijUKqKOgAHQVLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWN4g8KaF4qtRb63pkF4oGFZxh0/3XGGX8DWzRQB4lefA7VdAu2v/AAF4pubCUkE29w5UNjnBdBhh7MpHvUI8ffFbwcNnibwqNVtoxzc264J9y8e5R+Kivc6KAPJNL/aF8JXZCahb6hp0gHzF4hIgPplST/47XW2PxS8D6ggaHxNYID/z3fyT+TgVs6n4Z0HWsnU9GsLxjxvnt1ZvzIyK898XfCjwRa6e11b6EkUvPKTygfkGx+lAHoUHifw/dAG31zTJgehju42/kanbWtKQZbU7ID1M6/418b+IdIsbGZ1toNgB4+dj/M1z1tEkkwVhkZ9aAPtm58beFLP/AI+PEukRn+6b2PP5ZzXP6h8aPAWnFlOuLcOP4baF5M/8CA2/rXivgvwboGrTxrfWHmhiMjzpF/kwr3bTfhX4G04I8HhqyZsA/wCkBp//AEYTQBw11+0EuoT/AGXwt4V1HUrhuAJOD7fIgYn8xVY2Pxo8dAC7uYfDVg4BKxnyWxnsFLSZ9iQK9utbO2sYBBaW8NvCOkcSBFH4CpqAPLfDPwI8MaNKt1qrS63e53FrkbYt2c58sHn/AIEWBr0+GGK2gSCCJIoo1CpGihVUDoAB0FPooAKKKKACiiigAooooAKKKKAP/9k= 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +7 PanMechanics_2024_8 一个体重 $60 \mathrm{kg}$ 的人以 $5 m/s$ 的初始速度沿着半径为 $3 m$、质量为 $100 \mathrm{kg}$ 的固定均匀圆形平台的切线跑步,如图所示。平台本来静止,当人跳上及静止在平台上后,平台绕中心的垂直轴旋转。圆形平台通过其质心的转动惯量为 $I_{\mathrm{CM}} = \frac{1}{2} M R^2$。 "找出总机械能的损失。 + +(A) $150 J$ +(B) $341 J$ +(C) $257 J$ +(D) $457 J$ +(E) $0 J$" "[""\\boxed{B}""]" "[""Multiple Choice""]" [null] [2.0] text+illustration figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADrAZcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKK5X4i682g+Drl4J/Jvr1lsbNxuyJpPlDDaCflG5uBn5eOcUAdVRXl01/qHhJbRr+/fTFnlEP2mS/k1GzMhBIE3nBZYwcEBkbAP3jiutsPGNm9skmq+VYBl3Lc+aJLOUesdwMKc9g21v9nvQB0lFHWigAooooArv/wAhGH/rlJ/NKsVXf/kIw/8AXKT+aVYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACszXPEGmeHLH7Zqlz5MRJAwjOzYBY4VQScKCSccAEngVp1wvjDwLqPiTXoL+31a2hgRIUMNzamYJ5cwlO0bwMOVQMCOQg5oA1bbx5oN+GSwnnu7sYxZxW7ic5AKnYwBCkEfOcJz96nXHie9tzEs3hq/gM8qwxPcXFsqb2OFBKyseT6An2rI0z4aRabPfXK+I9Y+0XsyTzMjRAb0+5t3IzAAcY3HI4Oa3m8NLcoUv8AV9WvF4wDc+Rg+uYAh/OgDlb3xDrt7rWo2suq2uhWmkIjXTWqC5eeRo2lMaNIoHCKDwmeT6Vm+H4tQ8ZxW9/rks1xZ2FwGs4pJFUm6QESSfIq/KjZVMkk4YnOVwzxH4d1fwPJNrumSyappRv4b6+S5YtcwBBsdg38a+WWBB5HByeav/Du6hSHXbES+aLPXLnbnqsTMXU4POCd34g0AV/GfiG3m0/VdE003Opa1HGGhsrKJ3e0cMpWV3UEKVYK2DzwBWRb6vP4lj+0WpvfCK3bRpf3TWKy2F3KTwQSy4LEFCxHIKqxztrB0f8A4STwLd6jFf6ZeXdnOvzXVjatdQzHCgyMBImGITJLc5J45OdfWdQTxj4fg8MaFay6hFdW++O8hspIoEk3EKCCcKFHzctx8pGehAPTDr2heD4NO8P3moTGeG0jWMeRJK7oo2BjsU9dppx8eeHwf+Pi6/8AACf/AOIq7H4b02W0sk1O0ttTura3SH7Xd26PI+0dSSD1OT9TUy+H9FXG3SNPGORi2T/CgDIPxC8OBS32m5x/15Tf/EVatvEkF1KLmK5sTpjRhg7ytHMrc5BQr049QfatFdI0xMbNOtFx0xAo/pWdd+DdDv8AWv7UvLMXEohWEQyEmEAEnPl/dJy3Ug9BQBhX3xK0qK8jNhputaxNGrpLBpli0zRZKkFjkLjjHBNbPhnxb/wkstxH/wAI9r2leSqndqtl5AkznhTk5Ixz9a11hjgvLaKGNI40hkCoigADKcACrdAHIa549/sPV5tP/wCET8Vah5QU/abDTvNhfIB+VtwzjOD7g1v6Jqv9t6PBqP2C+sPO3f6Nfw+VMmGK/MuTjOMj2IrQooA8/wD+Fp/9SF45/wDBP/8AZ12Gt6r/AGJo8+o/YL6/8nb/AKNYQ+bM+WC/KuRnGcn2BrQooA4/RPH/APbesQad/wAIl4rsPO3f6Tf6b5UKYUt8zbjjOMD3IrQ8TeK/+EZNqP7A13VftG7nSrPz/L24+/yMZzx64NdBRQBheGfE3/CSxXEn9h61pXksq7dVtPIMmc8qMnIGOayNV+In9lapcWP/AAh3i688l9v2i00zzIpPdW3DIrtKKAM6LV/N8O/2x/Z9+n+jG4+xPDi54XOzZn7/AGxnrXMWHxJ+3ajbWf8AwhXjK38+VIvOuNK2Rx7iBudt3CjOSewruKKAMfxJr/8AwjmnR3n9karqm+UReTplt58i5BO4rkYXjGfUj1rP8N+NP+Ej1GSz/wCEZ8R6XsiMvnanYeRG2CBtDbjluc49AfSuoooA5fxJ40/4RzUY7P8A4RnxHqm+IS+dplh58a5JG0tuGG4zj0I9a0PDev8A/CR6dJef2Rqul7JTF5Op23kSNgA7guTlecZ9QfStiigDhr34lfYr+4tf+EJ8ZT+RK0fnQaVujk2kjcp3cqcZB9K6i81f7HoDat/Z9/PthEv2OGHdcHIHyhM/eGeRnsa0aKAON0f4g/2xq1vYf8Ih4ssvOJH2i903yoUwCfmbccdMfUitPxN4p/4RkWp/sHXNV+0bv+QVZ+f5e3H3+RjOePXBqv4u+IHh3wVbb9WvR9oZcx2kPzzSfRew9zge9eWnxb8TPigzReFrD+wtFclTeyNtZh0/1hGf+/YyPWgDv7f4r+H1hupNat9T8PfZ1Vlj1i28mScNn/VICzPjHOBxketcrqP7QenSXgsvDPh/UNYuGcquR5Yf0KgBmP0IFWNA+AWhW0pvfEl7da5fOd0m9zHGWPUnB3Mc9y3PpXp+maPpui232fS9PtbKHulvEqAn1OByfegDxlde+OPieJJLDRbbRIS5G+SFY3x/tLMWbHuFGa4X7T8VtSvjNqk3jq2DdTY2EwA+iK0a19W0UAfP3if4LanZ6VNqV94w13WWQrmC109riZ8kDhTNzjOTz0BrmfD3wmOtaullHN4t0xmVm+03+geTEMDOC3nnk9q+p6KAPnDxJ4F8V+DPKttL8U+M9RMqbwNKsZWiXBxhmWfg/gau6FpvxwTw7Bf2GryusjH/AELUgv2pcMR83npwDjP3uhFfQVFAHh0nxT+JHhdpD4p8DCa3jUAz2odFB9TIPMQ/QYrp9A+OngvW3WK4uptKnYhQt6m1Scf31JUD3YivSq5fxD8OvCfigO2p6Lbmd8k3MK+VLk9yy4LfjkUAdHbXVveW6XFrPFPBINySROGVh6gjg1LXht18H/FXg64kv/h74knAzuNjcOFL/wDtNz/vAY9at6F8b5tN1AaN8QNHm0i9Xg3KRNsPuyHJA913A+woA9noqCyvbXUrOK8srmK5tpRujlicMrD2IqegAooooAKKKKACiiigAooooAKKKKAGTQx3EMkMyLJFIpR0YZDA8EEeleLeHtJjtfGlw3gm8gl0bT0aK8jupWLT7yWVVYKcxq27a/PO8ZIr2maFLiCSGUbo5FKMM4yCMGvNx4NuNLvbcz6fqWoJaW/2K1u9IvxazNbA5SOdS8YJXsytz1IFACeKNfMOm3OmaVHcjW7pFi228LTNZJIdrSyGLdtAGSO5IHFZF/rOo+DF0fTfBsOsXemvmOSO/wBPmdYwqDBjdgp+Y/w9OPl29+h0yeLw1DHpUGr22h24DSrBrViBKR32zLIqSY4JPzNzlicg10nhLVtR1jR3udTgt0kWd445rbcIrmMHiVA3zBTyOc5xkEgg0ATeHNRv9SsJJdQtTC6ybY38p4vOTap3eW/zJySuDn7uehFbFFFABRRRQBXf/kIw/wDXKT+aVYqu/wDyEYf+uUn80qxQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVW1HUbPSdPnv9QuI7e0gXfLLIcBR/nt3oAnlljhieWV1jjRSzO5wFA6knsK8X8UfFvU/EGrN4Z+G9q95dtlZNQC5VB3KZ4AH99uPQdDWRqOseJPjjrD6RoQk03wnbyYuLpx/rcc/N/ePcIPYk9Mex+FPB+jeDNJXT9IthGpwZZm5kmb+87d/p0HYCgDhPB/wTsLC4/tjxbcHXNYkPmOJmLwq3vnmQ+7ce3evWERURURQqqMBQMAClooAKKKKACiiigAooooAKKKKACiiigArK1/w1o/ijTzZazYQ3cPO3ePmQ+qsOVPuK1aKAPBNQ8D+MvhPeS6x4IvJtT0YtvuNOlG5gP9pR97/eXDD0xk16L4B+Jui+PLXbbt9l1NFzLYytlh7of419xyO4HFdtXlHxC+Ea6rcnxH4Sf+zfEULediJvLS4brnI+6/v0PfrkAHq9FeXfDb4ptr1y3hvxPF9g8SW5MZWRdguCOuB/C/qvfqPQeo0AFFFFABRRRQAUUUUAFFFFABRRRQA140kXDorDrhhmnUUUAFFFFABRRRQBXf8A5CMP/XKT+aVYppRTIshHzKCoPscZ/kKdQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBHcXENpbS3NxKkMESF5JJGCqigZJJPQAV4DfXOqfHfxidOsZZbTwdpsgaWYDBlP97B6u3O0H7o5Izwb3xI1/UPiF4ui+HPhlz9nSTOpXI5UbTyDj+FOM+rYHYZ9d8M+G9N8J6Db6RpcPl28I5Y/ekfu7Hux/wDrDAAFAFnR9H0/QNKg0zS7VLazgXakafzJ6knqSeSavUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5z8T/hjD4xtRqmlkWviK1AaCdTs87byFY9j6N2+lVfhV8SZvEXm+G/ESm28SWOUdZBtNwF4Jx2cfxD8R3A9QryT4veA7q5MfjXw0Wg17TcSy+UMNMi/xD1ZQOh6rxzgCgD1uiuQ+HHjq28eeGI75dkd/DiO9t1P+rkx1A67W6j8RnINdfQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcB8W/HP/CF+E2+yPjVr/MNoB1Tj5pP+AgjHuRXfEhQSSABySe1eC+HEPxX+M134hnBk0HQyFtVP3XIJ8v8AMhnP0ANAHcfCLwGPB3hkXF7H/wATnUAJbpm5aMdVj/DOT7k+gr0OiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8B8S2svwb+J9t4l0+Jx4a1dzHdwRL8sZJyygdAR99enRlGADXvUE8V1bxXFvKksMqB45EOVZSMgg9wRWL4z8L23jDwrfaLc7VMyZhlIz5Uo5R/wPX1BI715/wDArxNczaXfeD9Wymp6JIyKjtlvK3bSvvsbI+hUDpQB69RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB558aPE58N/Dy7WFyt3qJ+xwkdQGB3n/vkMM+pFX/hX4WHhPwDp9pJHsvLhftV1kYPmOAcH/dG1fwrz/x2B42+PXh/wvw9lpaia5UjjJHmuD7FVjX6mvdKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8J+IiH4ffGLRPGsAK2Gonyb4KCRkAK+e3KFWA7shNe7Vwfxj8Pr4g+GmpqqAz2S/bYSexjyW/NC4/GgDuwQwBBBB5BFFcT8I9f/AOEh+GulTu+6e2T7JN/vR8DPuV2n8aKAO3ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACgnAyaKxfGF/JpfgrXL+Fgk1vYTyRsezhCV/XFAHlHwWP/CR+P8Axl4vdnZZZfJgLj+B3LY/BUQV7jXln7P2nNZ/DNbhgB9tvJZlPcgYj/mhr1OgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmyRpNE8UihkdSrKe4PWnUUAeI/AiV9G17xd4RlkY/YroyRA99rGN2/HEdFJZZ0P9qa8iGEi1W0JHbI8oOf8Ax6I0UAe30UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXB/Ged7f4S668bYZliTPs0yA/oTXeV578b/8Akkes/wC9B/6PSgC78JLY2nwq8Pxt1aAyf99uzf8As1drXO+AVCfDvw0B0/su2P5xqa6KgAooooAKKKKACiiigAooooAKKKKAAkAZJwBVa11KxvmdbS9t7hk+8IZVcr9cHivJP2hda1LTPDmnWtlPJDDdzMJynBIUAgZ+v+elfP3hnW9U0bxBZ3WnXM0c/nLwrH5snByO/WqSRLbPuWiorWSSW0hklTy5HjVnT+6SORUtSUFFFFABRRRQAUUUUAFFFFABRRRQB8/fF64bRvjLoWqodudOIz7gyj+TCiqv7SBMfiLQJF+99mlH/jw/xooA+i6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArz743DPwi1v2Nv/AOj469BrlPiZZJqHwz8RQyDIWxkmH1jG8fqooAPhnci7+Gfh2QHIWxjj/wC+Bt/9lrq686+B17Hd/CjS40OXtnmhk9j5jMP0Za9FoAKKKKACiiigAooooAKKKKACiiigDM17QNN8S6XJp2q2yz2784PVT2IPY1yOjfBrwjoV99ts7edrlQfLeeQOI27MARjI9+K9Bop3YrI8z+G3ijxrrGqX+n+JbOzW3spJLdbwI0Tzyo2GCj7rAYySMY9+3plRXFtHcwGKQcE5BHBU9QQexB5zUENzJHN9muyokY4ikAwJRjOMdmAByPQZHcBDLlFFFABRRRQAUUUUAFFFFABRRRQB88fHyM6h8QNB05eW+wu+Pqzf/EUVp6/DH4h/ac0+xb5o7Ox8uX2/dSOP1kX86KAPdKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqG7tor2zntZlDxTRtG6noVIwR+RqaigDxb9nm5mtdO8ReHLpQlxp98HZc8gsCjD6AxfrXtNeGafjwZ+0veWzBY7PX4S6En+J/nz9TKjr/wACr3OgAooooAKKKKACiiigAooooAKKKKACiiigAqOaGOdNkqB1DBhkdCDkEe4IBqSigDPt7qS1nisL+XfNJu8icptE4HODjgSBeSONwBZRgMF0KjnhS4geGTcFdSpKOVYe4YYIPuORVa3mlgmWzui7sFHlXLAYmx13YACv6jABzkdwoBdooooAKKKKACiiigAoorD8Za4vhrwdq2sFlVra2Zo93QyHhB+LFR+NAHlfwyz4h+N3jPxFgNDb7raNhyOXCoR/wCI/nRWz+z9oZ034fNqMi4l1O5aUHuY1+Rf1Dn8aKAPV6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8b+PukXEOnaP4v0/K3ekXKhnUdFZgVY/RwB/wM16noGs2/iHw/YavakeTdwrKBnO0kcqfcHI/Cna3pFtr2h3uk3gzBdwtE/qMjqPcHke4ryT4H6zc6Nf6x8PtXbbeafM8lsD0Zc/OF9s4ceoYmgD2qiiigAooooAKKKKACiiigAooooAKKKKACvP7vx1r2naUfEeoeH4rTw+twInSaV1vUjMgjErRlMdSDsznB616AeATjPtXkvjbVtE8ReEY/Fdhq1xDqNjIv2PT5n3A3KOQI3tjkGQk4zjI4IOBQB6Vfa9o+meZ/aGrWNp5RUSefcJHsLZ25yeM7Tj1wfSobnV9BuZYdMn1SwM92ivDB9qUSSA8qyAHPuCPTIrldL0ix1P4qeJbrUbCCa4i0+xRRKocIHEu8DPH8IGf8a4W10qwtf2d7bUIbSFb1b2OQXOweYGF6EB3deFAX6UAe3Qzywz/ZrrnccQzcYkGM4PowwfYjkdwLlRzwRXMLRTIHRsZB9Qcg+xB5B7VXhmktpVtrpg24kQy/3++0+jY/PBPHQAFyiiigAooooAK8X+PWrT3w0PwTpzbr3VLlZJEDY+XdtQH2LEn/tnXslxcQ2ltLc3EqRQQoZJJHOFRQMkk9gBXh3wzim+IPxS1jx9dxuLGzYwWCuOhI2qO4yqckA/ecGgD2jR9Mg0XRbLS7YfuLSBIUOMEhQBk+5xmirtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXinxm0K90DWtM+I+hLi6spES8AHDL0Vm9iDsPsVr2uoL2yttRsZ7K8hWa2uI2jljboykYIoApeHNfsvE/h+z1mwbNvdRhwCeUPRlPuDkH6VqV4B4Zv7n4L/EKfwxq8x/4RrU3821upD8sZPCuT0HQK/0DcDr7/wBaACiiigAooooAKKKKACiiigAooooAKzf+Ee0X+1v7W/siw/tLOftf2ZPNzjGd+M9OOtaVFAEMdpbRXU11HbxJcTBVllVAHkC52hj1OMnGemTVf+xtK/swaZ/Ztn/Z4ORa+QvlA7t2dmMfe+bp15q9RQAUySJJozHIgdG6gin0UAU45XtXWC5fchwI5jxuPTa3+10571cpskaTRPFIoZHBVlPQg9qqLO9nMIrqQvHI+IpiuME9EbHGc8A8Z4HXqAXaKK5zxv4wsfBHhqfVrz53HyW8AODNIRwo9B3J7AH6UAcB8bfFVzLHZ+A9CzLqurOqzrG2CsZPyoT0G49cnhQc8NmvRfB3hi18H+FrHRbXDeQmZZQMebIeWY/U9PQYHavOPg54Tv769ufiH4lLS6pqO42glXlIzwZBnpkfKoGMJ6huPZKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fx74JsfHXhyXTboCO4TL2tzjJhk9fcHoR3HuAR598L/Hd5oeqf8ACvfGWbfUbVhDYzyHiQfwxk/TGw9CMDrjPtNcN8SfhtY+PtKUqy22sWyn7Ld4/HY+OSpP4g8juCAdzRXjHgH4n32k6l/whnj8PaapARHBezniUdg7dCfR+jd+eT7PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3iSyWcyQLE0xQhBLnZuxxnHOM+lTVleIvEel+FtHl1TV7pYLaPgd2duyqO5Pp/SgDzzwq3ifwDeeI9R8eXkUulzItwl9HPvUOvyiNVPz5IIAGP4eua5fQNL1L42eM/+El1yJ4PC2nyFLS0bpLg/d984Bdvoo9mWllr3x38Qrf6is2neDrOQ+VCDgykcHH95j0LdF6Dnr73YWFrpdhBY2MCW9rAgSKKMYCgdqAJ1UKoVQAoGAB0FLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQByfjr4f6P480v7Pfp5N3GD9mvI1+eI/+zL6qf0PNeXaT4y8VfCDUItA8Z28uoaEfktL+LLFV7BWP3gP7hwR24wD77VTU9MsdZ0+aw1K0iurSYYeKVdyn/wCv3B6igCPR9a0zxBpseoaTew3drJ0kibOD1wR1B55BwRV+vDtW+EviPwZqUmt/DXVZUBOZNNlcfMP7oLfLIBk4D8jHBJrQ8O/He0F1/ZfjXTZ9D1KM7Xk8pvKz7qfnT/x4d8igD2Giq1jqFnqdol3YXcF1bP8AdlgkDo30I4qzQAUUUUAFFFFABRRRQAUUUUAFFc14o8feGvB8THV9TijnAytrGd8zdcYQcjOOpwPevK7jx949+J872HgfTJNJ0osUk1KU7Wx0OZOiHBB2pucYyDigDvvHvxV0HwNE8Eji+1bjbYwv8y5GQZG/gHT3ORgEc1wehfD/AMS/EzV4/EvxBklttPVs22lqDGSvpt6xr06/M2O3Brr/AAL8HNE8JSJqN+39ra1nebmdfkibOcxqc4PT5jk8ZGMkV6RQBFa2sFlaxWtrDHBbxKEjijUKqKOgAHQVLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWN4g8KaF4qtRb63pkF4oGFZxh0/3XGGX8DWzRQB4lefA7VdAu2v/AAF4pubCUkE29w5UNjnBdBhh7MpHvUI8ffFbwcNnibwqNVtoxzc264J9y8e5R+Kivc6KAPJNL/aF8JXZCahb6hp0gHzF4hIgPplST/47XW2PxS8D6ggaHxNYID/z3fyT+TgVs6n4Z0HWsnU9GsLxjxvnt1ZvzIyK898XfCjwRa6e11b6EkUvPKTygfkGx+lAHoUHifw/dAG31zTJgehju42/kanbWtKQZbU7ID1M6/418b+IdIsbGZ1toNgB4+dj/M1z1tEkkwVhkZ9aAPtm58beFLP/AI+PEukRn+6b2PP5ZzXP6h8aPAWnFlOuLcOP4baF5M/8CA2/rXivgvwboGrTxrfWHmhiMjzpF/kwr3bTfhX4G04I8HhqyZsA/wCkBp//AEYTQBw11+0EuoT/AGXwt4V1HUrhuAJOD7fIgYn8xVY2Pxo8dAC7uYfDVg4BKxnyWxnsFLSZ9iQK9utbO2sYBBaW8NvCOkcSBFH4CpqAPLfDPwI8MaNKt1qrS63e53FrkbYt2c58sHn/AIEWBr0+GGK2gSCCJIoo1CpGihVUDoAB0FPooAKKKKACiiigAooooAKKKKAP/9k= 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +8 PanMechanics_2024_9 两个 $1.0 \mathrm{kg}$ 的粒子以 $(40.0 m/s) \hat{l}$ 和 $(-20.0 m/s) \hat{l}$ 的速度沿直线相互移动并發生碰撞。碰撞后,其中一个粒子以 $30.0 m/s$ 的速度离开。在碰撞过程中,两颗粒子共损失了 $100 \mathrm{J}$ 的能量。 "求碰撞后另一个粒子的速度。 + +(A) $33.2 m/s$ +(B) $36.1 m/s$ +(C) $17.3 m/s$ +(D) $26.8 m/s$ +(E) $30.0 m/s$" "[""\\boxed{E}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +9 PanMechanics_2024_10 两个 $1.0 \mathrm{kg}$ 的粒子以 $(40.0 m/s) \hat{l}$ 和 $(-20.0 m/s) \hat{l}$ 的速度沿直线相互移动并發生碰撞。碰撞后,其中一个粒子以 $30.0 m/s$ 的速度离开。在���撞过程中,两颗粒子共损失了 $100 \mathrm{J}$ 的能量。 "求碰撞后粒子速度之间的夹角。 + +(A) $141^{\circ}$ +(B) $105^{\circ}$ +(C) $70.5^{\circ}$ +(D) $96.4^{\circ}$ +(E) $48.2^{\circ}$" "[""\\boxed{A}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +10 PanMechanics_2024_11 "如图所示,粒子在 $x = a$ 点从静止状态释放,并根据图中所示的势能函数 $U(x)$ 沿 $x$ 轴移动。图中 $U(a) = U(e)$。粒子其后的运动为: + +(A) 移动到 $x = e$ 左侧的点,停止并保持静止。 +(B) 在 $x = a$ 及 $x = e$ 之间来回移动。 +(C) 以不同的速度移动到无穷大 $(x \rightarrow \infty)$。 +(D) 移动到 $x = b$,并保持静止状态。 +(E) 移动到 $x = e$,然后移动到 $x = d$,并保持静止状态。" "[""\\boxed{B}""]" "[""Multiple Choice""]" [null] [2.0] text+data figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEpAdkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD36iiigAooooAKK5q48TXkfjOPw5BpsErvatdmY3RUJGG2jcPLPJPuelaGq6jf2V3YwWdhBc/apDGTJcmPZhWYnGxsjC/qKANWikXcVG4ANjkA5ANZOga6uurqTLbmH7FfzWRy27eYzjd04znpQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcN4T/wCJn8QPF+snlIZYtMhPoI13P/481dMf9I8SDutpbHP+9I3H4gIf++qgtNCfS76/n025jhivp/tM0UsJcCQgBmUhhjOASDnmtO1tUtUYBmd3bfJI3V26ZP4AD8KOwdyeuP8Ah9/qvEv/AGMF7/6EK7CuP+H3+q8S/wDYwXv/AKEKAOwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuP+H3+q8S/9jBe/wDoQrsK8a+GfiI6f8SfFnhS4dhBNqFxcWZkbJLK5DqCeuRg/gaFqB7LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRUF7eQ6fYXF5cOEggjaWRj2UDJrg/hLPq+saTqPibVrqd/7Wumktrd2OyGJSQu0ds/0FCA9DooooAKKKKACiiigAooooAKKKKACiiigAooooAK8F8Q6VMmg6z4s04FdT0HxPdzqy9WiLqHU+3Q/TNe9VxXge3iu7DxXbToHhm12+R1I4KlgCKT8hrzOp0nUrfWNItNStXDwXUSyoQexGauV5d8L7iXw1rWsfD6/Y7rBzc6c7f8tbdznj1wT+ZPpXqNU+6F5MKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5v8ZdSlHhi18OWTf6fr10lpGPRMgsfp0H413ej6ZDo2jWWmWwAhtYVhT6KMV5tom7xv8AGfUdZdc6b4aU2VrxkPOc72+o5/8AHa9WoW3qD39AooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/4ff6rxL/ANjBe/8AoQrsK4/4ff6rxL/2MF7/AOhCgDB+K1pPot7ovj2wi3zaPNsvFUcyW78HJ9sn/vqvSLO7hv7KC8tnDwTxrJG4/iUjIP5Gm39jb6np9xY3cSy29xG0ciN0ZSMEV5x8K76fRL3Vfh/qbyNdaTI0lm7j/W2rEbT+BP647ULsD7np9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXPeOPEsfhLwdqOsPjzIYtsKn+KVuEH5kZ9ga6GvKfGg/4Tb4n6L4OQltP00f2jqYDHa3TYhx36f99+1Jq+g1pqdH8LfDknhrwJZQXS4v7rN3dE9TI/PPuBgfhXZ0dKKpu5KCiiikMKKKKACiiigAooooAKKKKACiiigAooooAK4/4ff6rxL/2MF7/6EK7CuP8Ah9/qvEv/AGMF7/6EKAOwry/4o20/hzWtG+INhGWbTn+z6hGgOZbdzjnHoSevqPSvUKr39lBqWn3NjdJvt7iJopF9VYYI/I0eaH5MWyvLfULKC8tZVlt541kjdejKRkGp68y+Fl9caLfat4B1OYvc6RJvsmc8yWzcrj1xkfn7V6bT80L1CiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFTVNSt9H0m71K7bbb2sTSyH2UZrgvhHp13c2WqeMNTRlvvEFx5yq3VIFyIx+WfwxUXxZurnV59F8C2DbJtbm3XEm4ALAnLe/PX/gNej2drDY2UFpbpsggjWKNR2VRgD8hQu4PsTUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH/D7/AFXiX/sYL3/0IV2Fcf8AD7/VeJf+xgvf/QhQB2FFFFAHknxs8LtPp8Hiuz88T2G2O8WFsGS13bj+IPP4+1eo6bqFvqumWuoWj77e5iWWNvVSMiqHivUrHSfDF9ealbPc2SoI5oUAJdXYJjkgfxVwnw6uZfB3inUPh3qEgZE3XmlzFv8AWQsclPqOTj2ahdgfc9UooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsrUNJtrjWdO1qe4kibTEm2gMAhEigMWz6BeK1a8z+MviCe10O08MWCM+oeIJPsyEAEImVDZHXndgfjRr0D1IPhzC3i3xfrXj663NEZGsdLDAACFTyw75P9TXqdZ2haPbaBoVlpVogWG1iWMYGMkDkn3JyfxrRpvsg8wooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH/D7/VeJf8AsYL3/wBCFdhXH/D7/VeJf+xgvf8A0IUAdhRRRQByPxOhkn+HmqRwxvJIfJwqKST+9TsKzPizoFxeaBD4g0mNv7b0SVbq3eNSXZAfnTjqMc49vevQaOtDBGR4Y8Q2finw7ZaxZOrRXEYLKDnY/wDEp9wcitevJ9Gz8OfipNoTFF0HxGzXNl1VbecdYx254H4rXrFPfUNtAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUABIAJJwBXh+h6neeM/jdYeI1tZToES3FrYSunykxp8z/izcH8O1dp8VvENxpfhpNI0z59Y1uT7FaxrncA3DsMegPXsSK6Pwp4et/Cvhiw0a2wVtogrOBje/Vm/E5NC7g+xs0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx/w+/1XiX/sYL3/ANCFdhXH/D7/AFXiX/sYL3/0IUAdhRRRQBy3xHvbrTvAWp3VncSW9wnlbJYmKsuZUBwR7EiuprI8UaEPEvhy70hrg24uNn70Ju27XVumR/dxWvQBzHj3wnD4v8MT2X3L2L99ZTKdrRTKPlIPYE8Gqnw18VP4l8MrHfbk1jTm+y6hFJwwkXjcfrjP1zXZV5V4wgm+H3jOPxzYIzaTfFbfWoF5x2WYD1H+etC0YbnqtFQWd5b6hZw3lpMk1vMgeORDkMp6EVPQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQTgZPSivPfiv4hubTR4fDejs7a7rTCC3SP7yxk4diewxkZ989qBozfBwbxz8SNU8Yz5On6UzafpQ/hY875Prz/497V1et3t1D8QPClpFcSJb3Ed6ZolYhZNqIVyO+CTitPwz4fs/C/h6z0exTbDboAT3durMfcnJpNQ0IX3iTR9YNwUOmrOoi2Z8zzVVeueMbfQ09tBb6mvRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArj/h9/qvEv/YwXv8A6EK7CuP+H3+q8S/9jBe/+hCgDsKKKKAKGtaxaaBpM+p3zOttDt3lF3Hlgo4+pFX6474p/wDJN9W/7Y/+jkrsaACoby0gv7Oa0uY1kgmQxyIwyGUjBFTUUAeWeAL658FeIJfh5rL/ALoFp9HumOBPESSU/wB4c/r7V6nXG/Ejwi3inw2zWQ8vWrFvtGnzqdrJIvOAffH549KsfD/xbH4u8NxzyBo9StT9nv4JBho5lGGyOwJyR/8AWoWoPQ6qiiigAooooAKKKKACiiigAooooAKKKKAILy9tdOs5Lu9uIre2iG55ZXCqo9ya5zSfiV4O1zUf7P0/X7WW63bVjYMm8+ilgA34Zri1tLj4veKrpryR4/BukXJhjt1JU30y9S3+yP5Edyai0r4baH4l0PxHaw2sNheWuu3S2V3bxhXg2EbVBHO0en9aPMPI9jorhvhx4qvdYtLzRNewniHSJPJul4/er/DIB6Ef4967mgAooooAKKKKACiiigAooooAKKKKACiiigCO4nitbeW4nkWOGJS7uxwFUDJJrzL4exy+LvGGr+PrpXFq2bHSVdMfuVPL/if5mnfE2+ufEWq6d8PtJdxcXzLPqMinAitQeQT7/wBB616Np9hbaXp9vYWcSxW1vGI40XoqgcULuD7FmqF1rFpZ6vp+lys4ub8SmABcg+WAWye3BFX64/xB/wAlM8Gf9c7/AP8ARaUAdhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH/D7/AFXiX/sYL3/0IV2Fcf8AD7/VeJf+xgvf/QhQB2FFFFACMqupVlDA9iM0tc18QNTvNG8Eajf6fOYLqLytkgUHGZFB4II6E10tABRRRQAV5R43sbnwH4sg8eaNbXEllO3l65bQjKsmOJdueo9fXHqc+r0yWKOeJ4pUWSN1KsjDIYHqCKPNAV9M1Oz1jTbfULCdJ7WdA8ciHIIq3XkeiXP/AAq3x5N4cvZWi8L6qxn02eXhIJT96LcTgD/63qa9cByMjpR5oPIKKKKACiiigAooooAKKKKACuM+KPiOTw34Hu5LYn7fekWVptOD5kmRke4GT+FdnXl/jfOu/FvwZ4fUK0doz6nPnnhfu5H1U/nRa+g721Oy8G+Grfwl4VsdIgUboowZnBzvlPLtn3OfwxW6qqudqgZOTgdTS1zXg7U7zU1143k5l+zazc20OVA2xqRtXgds9+abdxI5Xxr5fhP4meHvF5Hl2V2G0y/ZFP8AFzGzY68/+g16fXG/FTQ3174c6tbwrm4hj+0w467ozu49yAR+NafgnXk8TeDNK1dWy08C+b7SL8r/APjwNJbW7A97m/RRRQAUUUUAFFFFABRRRQAUUUUAFZHifxDaeFfDl7rN6T5Nsm7aOrseFUe5JArXryW5Zviv48WzjDN4S0CbdO/8N5dDoo9VH8s+oo30DzNj4Z+Hr8C68Ya+WbXNZAfYTxbwdUjA7cY/SvQqAABgdKKbAKQqpYMVBYdDjpS1zWs6neWvjrwxp8M5S1vEvDcR7Qd5REK84yMEnpSA6WiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuP+H3+q8S/9jBe/wDoQrsK4/4ff6rxL/2MF7/6EKAOwooooAw/F+hy+JPC15pMMyQyXGzDuCQNrq3b/drcqjrGr2ehaVNqV+7JbQ7d7KpYjLBRwPcir1ABRRRQAUUUUAY/ibw1pvizQ59K1OBZIpFOx9oLRN2dSehFcb4A8R6jpOqt4C8UsP7UtE3WN0WyLyAZxg/3gB+ntXpVcl498FR+LtMiktp3tNZsSZbC7jOGjf0J/unAo2Dc62iuG+H/AI6/4SCGTRtZAtPE2n5iu7V8AuVwPMXsQfbp9MV3NABRRRQAUUUUAFFFFABXmHgY/wDCQ/FLxf4mUA21uU0u2bGc7MFyD9QPzrpPiP4k/wCEX8EX97G2LuRfs9qo6tK/Ax7jk/hT/h54c/4RbwRp2mv/AMfGzzrhsYJkf5mz9M4/Chb3B7WOorD8NaHLoa6sJZkl+26lPertBG1ZCMKfcYrcqjpmr2eri7Nm7P8AZLl7WXKkYkT7w569etAF0gMCCMg8EV5j8K2bQdb8UeCZSQNOvDc2YY/8sJeRj6cH6tXp9eWfEZD4S8ZaD47t9yQ+YLDU9o4aFvusRnnHP5LQtw6HqdFNjkSWNZI2DIwDKwOQQe9OoAKKKKACiiigAooooAKKKxfFfiew8I+H7nVr+QBI1xHHn5pX7KvuaG7AtTnfiR4sutMt7bw7oIWXxFq58m3QH/UoeGlb0A5wfYntW94N8MW/g/wrZaNA28wrmWT/AJ6SHlm/Pp7Yrmfhz4ZvWnuPGfiQb9d1QbkRulpAfuooPQ46/wD669Eo2DcKKKKACsPUtDlvvFehausyLHpq3KvGQcv5qqBj6ba3Ko3Or2dpq1hpkzsLq+EhgUKSGEYBbJ7cEUAXqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/4ff6rxL/2MF7/AOhCuwrj/h9/qvEv/YwXv/oQoA7CiiigDjvin/yTfVv+2P8A6OSuxqK5tbe9t2t7qCKeF8bo5UDK2DkZB46gVLQAUUUUAFFFFABRRRQBw3xA8Dya8kGt6GyWnibTmEtrcD5fMA5Mb+oPv/Imp/Afj628X20lrcQPY65ZqBe2Uq7Sreqg8lf5Zrsq4Px34GuNVu7fxJ4bkSz8TWJBjlJ2rcIOsb465HA/Lp0Ng3O8ori/Avj+HxUs+nX9v/Z3iCzJW7sHzkY43LnqPzx+RPaUAFFFFABRRXnnj7xdqH2+Lwb4VRZvEF8h8yUN8tlEersR0ODx+foCAZNxKPiP8V7WCBfO8P8Ahpi88hHyS3XZeeuMfofWvWawfB3hW08H+HINKtSZGX555m+9LKfvMf8APTFb1G2gb6hXHfD/AO54n/7GC8/mtdjUUFrb2vmfZ4IofNkMsnloF3uerHHUn1oAlrO17RbTxFod5pN8m63uoyjeqnsw9wcEfStGihq4bHm/wk16d9OvPCWqyf8AE30KU27BjzJCDhGHqB0/L1r0ivMviTpd9oWqWnxC0NN93pyeVf24H/HxbE89O4z+WD2rv9G1a013R7XVLCUSW1zGJEYHpnsfcdD7ii99Q2L1FFFABRRRQAUUUEgAknAFAEVzcw2drLc3MixQRIXkdjgKoGSTXlWhW83xT8Xr4nv4nXwxpjldLtpFIFxIOsrKeo/wA7GotWv7z4u64NC0hZofCVlcf8TLUA20XbLz5SdCR789QeMDPrFlZ22nWUFnZwpDbQII440GAqgYAFC7g+xPRRRQAUUUUAFcf4g/5KZ4M/653/8A6LSuwqKS1t5biG4kgieeHcIpGQFo93DbT1GcDOOtAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8Pv9V4l/wCxgvf/AEIV2Fcf8Pv9V4l/7GC9/wDQhQB2FFFFAHN+PtVvdE8E6hqOnzeTdQ+XsfaGxmRVPBBHQmukrC8Y6HP4k8K3uk28scUs+za8mdo2urc49lrdoAKKKKACiiigAooooAKKKKAOL8a/D228SzQ6tp1wdL8RWpDW+oRDk46K4/iH8vpwczwn8SW/tBPDHjOL+zfEcbGMOy7YbrHRkboCfToe3oPR65jx74Qt/Gfhe505orf7ZtzazzA/uX/vZHNGwbnT1k614o0Lw7E0mr6raWeF37JJBvYeyfeb8Aa4T/hQnhDvcavn/r7/APsa09I+DXgrSZxOdNe+mBBV76Uy4/4Dwv5igDEufiD4g8dSyad8PdPkitt2yXXLtdscfTOxSOT+vt3rrPBHgOy8G2s0hnkv9XuzvvNRn5kmbr3JIHtn611UMMVvEsUESRRqMKiKFAHsBT6NgCiiigArm/B+q3uqrrpvZvN+y6xc2sPyhdsaEbV4HOM9TzXSVheGdDm0NdXE0scn23U571NmflVyMA578UAbtFFFADZI0ljaORFdHBVlYZBB6givInE/wc8S+YuX8EarOS6hSTp8p7/7p/l7jn1+qupabaavptxp9/As9rcIY5Y26MD/AJ60eaDyJ4pY54UmidXjkUMjqchgeQQafXj0T6r8GL6WKSGfUfBFxLuSVTul09mPIPcr/nrwfVtM1Sx1nT4b/TrqO5tZl3JLGcgj/PajzQepbooqK4uYLO3kuLmZIYY1LPJIwVVA7kmgCWvJdf1zVPiZqtz4V8KTG20aBtmqatzh/WKP1/r9Osep65ffFjWv+Ef8OS3Ft4ZtpAdR1WJihnGP9XHx0z+fXp19K8PeH9O8L6LBpOlw+Vawg4ycsxPJLHuTRbqw22JND0Sw8OaNbaVpkAhtLddqL1J7kk9yTkk1oUUUAFFFFABRRRQAVzesare2vjjwzp0M220vUuzcR7Qd5REK8kZGCT0rpKwtT0Oa+8W6Dq6SxrDpy3KyI2dzeYqgY+m2gDdooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArj/h9/qvEv/YwXv8A6EK7CuP+H3+q8S/9jBe/+hCgDsKKKKAKuo6jaaTYSX1/OsFtFjfI2cDJAHT3Iq1XHfFP/km+rf8AbH/0cldjQAUUUUAFFFFABRRRQAUUUUAFVdR1G00nT57+/nWC1gXfLK2cKPXirVch8U/+SX+If+vQ/wAxQB1/WikX7o+lLQAUUUUAFFFFABVWy1G01EXBtJ1l+zztby7c/JIv3lPuKtVx3w/+54n/AOxgvP5rQB2NFFFABRRRQAyWKOeJ4pY1kjcYZGGQR6EV5bqPgnXfA2oT638P2WS0kIe60KXlJPUxnsfb+fSvVaKAPMovjj4aj0+dtTt7+w1WD5X0uSBjKWzjCnAB/HFZ1vovib4q3kF54nhOleFEkMsGmKSs1zg/L5voO/b2Heul12ws7j4s+F3mtIJGFleSBnjBO5TDtbnuMnB7V3NAFXTtOstJsYrHT7aK2tYhhIol2qtWqKKACiiigAooooAKKKKACqs+o2ltf2tjNOqXV2HMEZzlwgBbH0BFWq4/xB/yUzwZ/wBc7/8A9FpQB2FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf8Pv9V4l/wCxgvf/AEIV2Fcf8Pv9V4l/7GC9/wDQhQB2FFFFAEN3Z21/avbXlvFcW743RSoGVsHIyDx1ANTVz/jfWbrw94QvtUshGbiDy9nmLlfmkVTkfQmugoAKKKKACiiigAooooAKKKKACobuztr+0ktby3iuLeUbZIpUDK49CDwamrA8b6zdeHvBWratZCM3NrAZI/MXK5yOooA36KQHKg+1LQAUUUUAFFFFABUNtZ21n5v2a3ih86RpZPLQLvc9WOOpPc1NXP8AhTWbrWV1o3QjH2PVbizi2Lj92hGM+/NAHQUUUUAFFFFABRRRQBC9nbSXcV29vE1zCrJHMUBdFbG4A9QDgZ+gqaufv9ZurbxzoujxiP7LeWtzNLlfm3RmPbg+nzmugoAKKKKACiiigAooooAKKKKACoZLO2muoLqW3ie4gDCGVkBaPcMNtPUZwM461NXP6rrN1ZeMvDulRCP7NqCXTTbly37tFK4PbknNAHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV55pT+K/DV5rdvD4Rk1CC61S4vIriPUIIwySEEfKxyDXodFAHH/8ACS+L/wDoQLj/AMGtt/8AFUf8JL4v/wChAuP/AAa23/xVdhRQB5p4uufGXiXwxeaRH4Gmge42YkbU7cgbXVum7/Zrb/4SXxf/ANCBcf8Ag1tv/iq7CigDj/8AhJfF/wD0IFx/4Nbb/wCKo/4SXxf/ANCBcf8Ag1tv/iq7CigDj/8AhJfF/wD0IFx/4Nbb/wCKo/4SXxf/ANCBcf8Ag1tv/iq7CigDj/8AhJfF/wD0IFx/4Nbb/wCKo/4SXxf/ANCBcf8Ag1tv/iq7CigDj/8AhJfF/wD0IFx/4Nbb/wCKo/4SXxf/ANCBcf8Ag1tv/iq7CigDj/8AhJfF/wD0IFx/4Nbb/wCKrF8XXXjLxL4T1LRovA00D3kJjEjanbkLyOcbq9KqOWeG3TfNKka5xl2AH60AckPEvi8AD/hALj/wa23/AMVS/wDCS+L/APoQLj/wa23/AMVXYUUAcf8A8JL4v/6EC4/8Gtt/8VR/wkvi/wD6EC4/8Gtt/wDFV2FFAHH/APCS+L/+hAuP/Brbf/FUf8JL4v8A+hAuP/Brbf8AxVdhRQBx/wDwkvi//oQLj/wa23/xVYnhy58ZaGNVD+Bppft2pTXq7dTtxsEhGFPzdRivS6KAOP8A+El8X/8AQgXH/g1tv/iqP+El8X/9CBcf+DW2/wDiq7CigDj/APhJfF//AEIFx/4Nbb/4qj/hJfF//QgXH/g1tv8A4quwooA4/wD4SXxf/wBCBcf+DW2/+Ko/4SXxf/0IFx/4Nbb/AOKrsKKAPNL258Z3Xi/StbHgaZUsba4haI6nb5cyFMEHd22frW3/AMJL4v8A+hAuP/Brbf8AxVdeSFBJIAHUmmxTRTpvhkSRMkbkYEZHXpQByX/CS+L/APoQLj/wa23/AMVR/wAJL4v/AOhAuP8Awa23/wAVXYUUAcf/AMJL4v8A+hAuP/Brbf8AxVH/AAkvi/8A6EC4/wDBrbf/ABVdhRQBx/8Awkvi/wD6EC4/8Gtt/wDFUf8ACS+L/wDoQLj/AMGtt/8AFV2FFAHH/wDCS+L/APoQLj/wa23/AMVR/wAJL4v/AOhAuP8Awa23/wAVXYUUAcf/AMJL4v8A+hAuP/Brbf8AxVYmpXPjK+8U6HrC+BpkTTVuFaM6nbkv5qqowd3GNtel0UAcf/wkvi//AKEC4/8ABrbf/FUf8JL4v/6EC4/8Gtt/8VXYUUAcf/wkvi//AKEC4/8ABrbf/FUf8JL4v/6EC4/8Gtt/8VXYUUAcf/wkvi//AKEC4/8ABrbf/FUf8JL4v/6EC4/8Gtt/8VXYUUAUtJur2906OfUNNbTrlid1s0yylcHj5l4ORzUGqvYhi1/cRGGG3kme1cj5lGMuR3A+mOfpWpWdd6Dpd/fi9urNJLgRGAuSfmjJyUYZwy57HIoYHL+DNJM+i+G9Wv727GoNC84jMn30kGVR8jJVFKgDOM8nJruap2OlWemoiWsTKqII0DSM+xR/Cu4nA4HA44FXKbAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAULzV7e0vYbELJPezKXS3hALbB1Y5IAGcDJI5pNJ1qz1qO5e0Mn+jTtbyh0KlZFA3Lz1xnGRxWDa2d3p/jrX9TuLaef7XBbx2JjQsNqKdyE9F+Y55x1qTwFa3tloCQ3ts8NyzyT3JkUgmeSRmYDPUDIGRwaAZ1VFFFABRRRQAUUUUAFFFFABXFfETyLpNA0p7YTy32qQjAjDMI4z5rkenCAE+9drXMaraTJ450vV5YZpbK2sbiJPJjMhSZ2j5IGTyqsM9PXrQt0HQ19N1i21OS7hjWSO4s5fKuIZQN0bFQw6Egggggg1oVzPhHRrqyl1fVtQXy73V7s3DQ5BMMYAWNCRxkKOcdzXTUAFFFFABRRRQA2SRIo2kkZURQWZmOAAOpNYkfi3TJZLADzRDqEnlWc7KAs7YJ+UZ3YwM5xj3qLx3pd9rXgnVNO04n7TPEFCg4LruBZQfdQR+NXrOeJ4bSG10+YLEAo86ExCEAY43Ac444oA1KKKKACiiigAoopkyu0EixNtkKkKT2OOKAMDVvFGnQaXqs5gku7SxR1upFQNErAZKnJ+b0OAcd6TwFpZ0jwNpFq6BJTAJpVAwBJId7D82NcoNH1CL4W2fhsWF21y0saamwjPCtMGmYH/lpkFvu54Nej2jyS2qPJH5ZOSExghcnbkdjjGaYE9FFFIAooooAKKKKACiiigArNl1u2XUZNOt45bu8iQSSxQAfu1PTcWIAJ7DOfatKuI0TRV0zVvED6lb30099qElxG0RlMcsRVdgO07eBlcNjp6UAdhZ3cV9ZxXUJJjlXcuRg1PUNqCtrGpgWDC4ESkEIOw44qagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q== 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +11 PanMechanics_2024_12 "逃离木星引力的最低速度为 60 公里/秒。假设木星的半径为 70,000 公里,那么 80 公斤重的宇航员在木星上的重量是多少? + +(A) $1029 N$ +(B) $1371 N$ +(C) $2057 N$ +(D) $2742 N$ +(E) $4114 N$" "[""\\boxed{C}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +12 PanMechanics_2024_13 "下列哪一个人必须是非惯性观察者?将地面视为惯性系。应考虑空气摩擦力。 +I. 一个人的位置被另一个观察者描述为 $y(t) = -\frac{g}{2} t^2$。 +II. 坐在固定在地面上旋转的旋转木马边缘的人。 +III. 一个人垂直向上跳跃。而此刻,当人处于最高位置时。 +IV. 一个人垂直向上跳跃。而此刻,人还在上升的时候。 +V. 一个戴着打开的降落伞进行跳伞的人。 + +(A) 只有 I, IV 和 V +(B) 只有 I 和 II +(C) 只有 I,II,IV 和 V +(D) 只有 II, III 和 IV +(E) I, II, III, IV 和 V" "[""\\boxed{D}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +13 PanMechanics_2024_14 "如图所示一个 3.0 kg 的三角体,求推动三角体的力 $F$,使在三角块上的 1.0 kg 方形块不会沿斜面移动。假设所有表面都是无摩擦的。 + +(A) $15 N$ +(B) $20 N$ +(C) $25 N$ +(D) $40 N$ +(E) $45 N$" "[""\\boxed{D}""]" "[""Multiple Choice""]" [null] [2.0] text+illustration figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACvAUIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiqd/qtjpj2i3tykBu5xbQFzgPIVZgufUhTj346mrlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeW/HW1S+8M+H7SRmVJ9et4mZDggMkoJHvzSeBvHN5p2oQ+E/Fk+65b5dO1NuFu17I57SD9frgtY+NH/II8L/8AYx2n/oMlYWr6RZ65p72V7HujblWHDI3ZlPYigD2iivLPA3jm807UIfCfiyfdct8unam3C3a9kc9pB+v1wW9ToAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPjR/wAgjwv/ANjHaf8AoMlUavfGj/kEeF/+xjtP/QZKo0AUNX0iz1zT3sr2PdG3KsOGRuzKexFavgbxzeadqEPhPxZPuuW+XTtTbhbteyOe0g/X64LQ1Q1fSLPXNPeyvY90bcqw4ZG7Mp7EUAe0UV5Z4G8c3mnahD4T8WT7rlvl07U24W7XsjntIP1+uC3qdABRRRQAUUVxFxcT+PrqWwsJXh8MxOUvL2NirX7DgwxEdI+zOOv3R3NABc3Nx4+uZbDTp5bfw1CxS7voWKvfMODFCw6Rg8M469B3NT6Vqt74c1KDw94hnaeGZtmmarJ/y8ekMp6CUDoejj3yK6u2toLO2itraFIYIlCRxxrhVUcAAdhUGq6VZa1ps+n6hAs9rMuHRv0IPUEHkEcg0AXKK4/StVvfDmpQeHvEM7TwzNs0zVZP+Xj0hlPQSgdD0ce+RXYUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5p8aP+QR4X/7GO0/9BkqjV740f8AII8L/wDYx2n/AKDJVGgAooooAoavpFnrmnvZXse6NuVYcMjdmU9iK1fA3jm807UIfCfiyfdct8unam3C3a9kc9pB+v1wWhqhq+kWeuae9lex7o25VhwyN2ZT2IoA9ooryzwN45vNO1CHwn4sn3XLfLp2ptwt2vZHPaQfr9cFty4uZvH13Np2nzPD4agkMV7eRtta+ccNDER0jHRnHX7o7mgAuLifx9dS2FhK8PhmJyl5exsVa/YcGGIjpH2Zx1+6O5rsra2gs7aK2toUhgiUJHHGuFVRwAB2FFtbQWdtFbW0KQwRKEjjjXCqo4AA7CpaACiiigCnqulWWtabPp+oQLPazLh0b9CD1BB5BHINc3pWq3vhzUoPD3iGdp4Zm2aZqsn/AC8ekMp6CUDoejj3yK7Cqeq6VZa1ps+n6hAs9rMuHRv0IPUEHkEcg0AXKK4/StVvfDuq2/hzxBcNPHOSul6m/W4x/wAspfSUDoejjnrkV2FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFDU9c0jRREdV1WxsBLnyzdXCRb8YzjcRnGR+dUrfxn4Wu7mK3tvEujTTysEjijvomZ2JwAAGyST2rnPiTMbu/wDDGhR2M189zqAvJbeDZvaKAbyMuyqMsUHJHGcc1r6RJJ4q8+61XTJrMWOpf6Jb3AQyIY1HzErkZLM3QngDnrQB1FFFFABRRRQAUUUUAeafGj/kEeF/+xjtP/QZKo1e+NH/ACCPC/8A2Mdp/wCgyVRoAKKKKACiiigChq+kWeuae9lex7o25VhwyN2ZT2IrB8N+JNZ8D+IzaXYa5Nw2XReF1JRxvTstyBjI/wCWnT72C3W1Q1fSLPXNPeyvY90bcqw4ZG7Mp7EUAeuaVqtjremQajp1ws9rOu5HX9QR2IPBB5Bq5Xzz4b8Saz4H8Rm0uw1ybhsui8LqSjjenZbkDGR/y06fewW960rVbHW9Mg1HTrhZ7WddyOv6gjsQeCDyDQBcooooAKy9f1+y8Oaaby8LsWYRwQRLulnkP3Y0Xux/+v0o1/X7Lw5ppvLwuxZhHBBEu6WeQ/djRe7H/wCv0rI0DQL251IeJfEoRtWZStraq26LT4z/AAL6uf4n79Bx1ADQNAvbnUh4l8ShG1ZlK2tqrbotPjP8C+rn+J+/QcderoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqOeaO3gknlbbHGpd2xnAAyax/8AhMNB/wCf/wD8gv8A/E1cYSl8KuTKcY/E7GPZ6J4jk+JTeItSt9KFitkbKBIbyR5IV3by+DEAzMQoPIwO579kkaR52Iq5JY4GMk9TWL/wmGg/8/8A/wCQX/8AiaP+Ew0H/n//APIL/wDxNP2NT+V/cT7an/MvvNymSyxwRmSWRI0HVnYAfnWN/wAJhoP/AD//APkF/wD4mqGr634b1mwa0n1FlGQyssT5BH/AeaqNCbesXb0FKtC2jV/U6oEMoZSCDyCO9LXlllr11oFz5Vnepe2ec7SrBcewIBU/Tj613Wj+JbDWAER/KuO8Mh5/A96urhp09d0RSxMJ6bM2aKKK5joPNPjR/wAgjwv/ANjHaf8AoMlUavfGj/kEeF/+xjtP/QZKo0AFFFFABRRRQAUUUUAUNX0iz1zT3sr2PdG3KsOGRuzKexFYPhvxJrPgfxGbS7DXJuGy6LwupKON6dluQMZH/LTp97BbraoavpFnrmnvZXse6NuVYcMjdmU9iKAPXNK1Wx1vTINR064We1nXcjr+oI7EHgg8g1X1/X7Lw5ppvLwuxZhHBBEu6WeQ/djRe7H/AOv0rw3w34j1vwR4jNncI13Jctkxg7V1MdN6Z4W5HGR0k7/Ngt63oGgXtzqQ8S+JQjasylbW1Vt0Wnxn+BfVz/E/foOOoAaBoF7c6kPEviUI2rMpW1tVbdFp8Z/gX1c/xP36Djr1dFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEc8MdxBJBKu6ORSjrnGQRg1j/wDCH6D/AM+H/kZ//iq3KKuM5R+F2JlCMviVzD/4Q/Qf+fD/AMjP/wDFUf8ACH6D/wA+H/kZ/wD4qtyin7ap/M/vJ9jT/lX3GH/wh+g/8+H/AJGf/wCKqhq+ieG9HsGu59PZgCFVVlfLE9vvV1dMmhiuIzHNEkiHqrqCPyNVGvO+snb1FKjC2kVf0PL7PQrnX7nzLKxSztM43MzFR+JJLH6fpXc6P4YsNICuqedcj/ltIOR9B2rZVQqhVACgYAHalq6uJnPRaIilhoQ1erCiiiuY6DzT40f8gjwv/wBjHaf+gyVRq98aP+QR4X/7GO0/9BkqjQAUUUUAFFFFABRRRQAUUUUAUNX0iz1zT3sr2PdG3KsOGRuzKexFavgbxzeadqEPhPxZPuuW+XTtTbhbteyOe0g/X64LQ1Q1fSLPXNPeyvY90bcqw4ZG7Mp7EUAe0UV5Z4G8c3mnahD4T8WT7rlvl07U24W7XsjntIP1+uC3qdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeafGj/AJBHhf8A7GO0/wDQZKo1e+NH/II8L/8AYx2n/oMlUaACiiigAooooAKKKKACiiigAooooAoavpFnrmnvZXse6NuVYcMjdmU9iK1fA3jm807UIfCfiyfdct8unam3C3a9kc9pB+v1wWhrmPFl3pV1bnRp7aa/vZRvjtrUZkjPZ89Ex6n9aAPoCivJvh3491KzmtfC3jX91fyKBY3zOGW4H/PN26eYOme/1wW9ZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPjR/yCPC//AGMdp/6DJVGr3xo/5BHhf/sY7T/0GSqNABRRRQAUUUUAFFFFABRRRQAUUUUAYfiDVLmBrfS9LCtqd7kRs33YUH3pG9h2Hc1a0bQ7TRLYxwAvNId09xIcyTN3Zj/TtWZ4YUajf6nr7/MbiZre2Y9oIzgY+rBjXS0AUNX0iz1zT3sr2PdG3KsOGRuzKexFavgbxzeadqEPhPxZPuuW+XTtTbhbteyOe0g/X64LQ1Q1fSLPXNPeyvY90bcqw4ZG7Mp7EUAe0V5jqHivRtQ+IXhm4Gvaf5UN3cwJAt4mU/cuu51B4ZnwFBzxjGCzCovA3jm807UIfCfiyfdct8unam3C3a9kc9pB+v1wW9DvdHt77VdM1CV5RNpzyPEqkbWLoUO7jngnpjmgDmr7TnsPGFvqmq6XpWp293drFb3n2bFzp7YxGNzFtyEgcrs2sxODkkS+G7DXYddln1Bb2JPLmW6M1550FzIZAYngTeTGAgfI2p94DDYyNqPQ2/tIXl5qt9fIkhkgtpxEsULHIBGyNWbAJA3FvXrzWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmnxo/5BHhf/sY7T/0GSqNXvjR/wAgjwv/ANjHaf8AoMlUaACiiigAooooAKKKKACiiigAqK5do7WZ05ZUJH1AqWkZQylT0IwaAMLwVGsfgzSgpyDAGP1PJ/U1vVz3gsPD4dSxlUiSxmltWJGM7XOCPwxXQ0AFFFFAFDV9Is9c097K9j3RtyrDhkbsynsRWr4G8c3mnahD4T8WT7rlvl07U24W7XsjntIP1+uC0NUNX0iz1zT3sr2PdG3KsOGRuzKexFAHtFFeWeBvHN5p2oQ+E/Fk+65b5dO1NuFu17I57SD9frgt6RLJqIkYRWtq0eflZ7llJ+o8s4/OmlcTdi3RVHzdV/58rL/wLb/43R5uq/8APlZf+Bbf/G6fI/6aFzL+kXSyhgpI3HoM9aWse/F1JBvvLOwRI/mEpvXUofUN5eRS6JcanP5gvIl+zj/VSljvce4Krn64H0PWq9m+XmJ9ouaxr0UUVmaBRRRQAUUUUARzyvFHvSCSZs/cjKg/+PED9aq/b7n/AKBN7/33D/8AHKvUU00ugmm+pR+33P8A0Cb3/vuH/wCOUfb7n/oE3v8A33D/APHKvUU+ZdvzFyvuUft9z/0Cb3/vuH/45R9vuf8AoE3v/fcP/wAcq9RRzLt+Ycr7lH7fc/8AQJvf++4f/jlH2+5/6BN7/wB9w/8Axyr1FHMu35hyvuUft9z/ANAm9/77h/8AjlH2+5/6BN7/AN9w/wDxyr1FHMu35hyvuUft9z/0Cb3/AL7h/wDjlH2+5/6BN7/33D/8cq9RRzLt+Ycr7nDePvDt9400mxs7db3TZrO+jvY5/Kgm+ZFYAbTKB1bP4dK5T/hXfjX/AKG29/8ABPaf/Hq9koo5l2/MOV9zxv8A4V341/6G29/8E9p/8eo/4V341/6G29/8E9p/8er2SijmXb8w5X3PG/8AhXfjX/obb3/wT2n/AMeo/wCFd+Nf+htvf/BPaf8Ax6vZKKOZdvzDlfc8b/4V341/6G29/wDBPaf/AB6j/hXfjX/obb3/AME9p/8AHq9koo5l2/MOV9zxv/hXfjX/AKG29/8ABPaf/HqP+Fd+Nf8Aobb3/wAE9p/8er2SijmXb8w5X3PG/wDhXfjX/obb3/wT2n/x6j/hXfjX/obb3/wT2n/x6vZKKOZdvzDlfc8b/wCFd+Nf+htvf/BPaf8Ax6j/AIV341/6G29/8E9p/wDHq9koo5l2/MOV9zxv/hXfjX/obb3/AME9p/8AHqP+Fd+Nf+htvf8AwT2n/wAer2SijmXb8w5X3PG/+Fd+Nf8Aobb3/wAE9p/8eo/4V341/wChtvf/AAT2n/x6vZKKOZdvzDlfc8P1P4TeJ9YtPst/4lu5odwYA6RaggjoQROCD9K9K8Mx65o+iQ2Gqm81aeH5VujFDEzL23Dzmyffv355PTUUcy7fmHK+5R+33P8A0Cb3/vuH/wCOUfb7n/oE3v8A33D/APHKvUUcy7fmHK+5mSTPNJHJLol27RnKFmhO0+o/edal+33P/QJvf++4f/jlXqKfMu35hy+f5FH7fc/9Am9/77h/+OUfb7n/AKBN7/33D/8AHKvUUuZdvzDlfco/b7n/AKBN7/33D/8AHKPt9z/0Cb3/AL7h/wDjlXqKOZdvzDlfco/b7n/oE3v/AH3D/wDHKKvUUcy7fmHK+5//2Q== 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +14 PanMechanics_2024_15 "一个边长为 $L$ 的正方体平稳地漂浮在容器内静止的水中。此时有一半的立方体位于水面以下。再将密度为水四分之一的液体添加到容器中,使立方体完全浸没在液体的表面下,而液体和水不混合,液体留在水上面。添加液体后,立方体从原來的水面上升了多少? + +(A) $L/6$ +(B) $L/3$ +(C) $L/2$ +(D) $L/4$ +(E) $L/5$" "[""\\boxed{A}""]" "[""Multiple Choice""]" [null] [2.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +15 PanMechanics_2024_16 "一个盒子由两根具有相同线性质量密度的绳子悬挂在天花板上,如图所示。求弦 1 的基频 $f_1$ 与弦 2 的基频 $f_2$ 之比,$f_1 / f_2$。 + +(A) $\sqrt{3 \sqrt{3}}$ +(B) 3 +(C) $3 \sqrt{3}$ +(D) $\sqrt{6}$ +(E) $\sqrt{3}/4$" "[""\\boxed{A}""]" "[""Multiple Choice""]" [null] [2.0] text+variable figure Mechanics PanMechanics_2024 /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADhAUMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAgvb230+0kurl9kSYyQpYkk4CqoyWYkgBQCSSAASaq6Rrmna5DLJYTs/kyGKaOSJ4pInHZ0cBlPfkDirV3NbW1s9zdOiQwjeXfouO9chcXcmhjUNThiiXWdeu4Ire2mbAiyBFE0gyDgAMzAc/wg5GaAOqn1W0ttUtNOlaUXN2HMIELlW2jLZcDavHYkZq5XF+Gma+8W3zza22rHTIfsqytGibZnIaZVCAAqoWIDqQWYFjXaUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxWsfErRLTUpdIsdT0t9QiO2V7u9SCCA9PmYnLEf3UBPYletdrWJqPhq3urxtRsZ5NN1QgZurbH7zHQSIflkH1GR2IoApWPjfw1DZRpe+M9AuLkA+ZKl5DGrHPZd5wB06np1qx/wAJ34P/AOhr0P8A8GMP/wAVWxYi8WyiGoNA90ARI0ClUY56gEkjjHGTj1NWKAOf/wCE78H/APQ16H/4MYf/AIqj/hO/B/8A0Neh/wDgxh/+KroKKAOf/wCE78H/APQ16H/4MYf/AIqj/hO/B/8A0Neh/wDgxh/+KroKKAOf/wCE78H/APQ16H/4MYf/AIqj/hO/B/8A0Neh/wDgxh/+KroKKAOf/wCE78H/APQ16H/4MYf/AIqj/hO/B/8A0Neh/wDgxh/+KroKKAOf/wCE78H/APQ16H/4MYf/AIqj/hO/B/8A0Neh/wDgxh/+KroKKAOf/wCE78H/APQ16H/4MYf/AIqj/hO/B/8A0Neh/wDgxh/+KroKKAOV1DxT4B1a1NrqOveGry3JDGK4vIJEJHQ4YkVRjv8A4WQ2U1lFd+DktJyrTQLJahJCv3Sy5wcds9K7iigDlbPxR4A09pGstd8NWzSKiuYbuBCwRdqA4PIVQAPQDAq1/wAJ34P/AOhr0P8A8GMP/wAVXQUUAc//AMJ34P8A+hr0P/wYw/8AxVH/AAnfg/8A6GvQ/wDwYw//ABVdBRQBz/8Awnfg/wD6GvQ//BjD/wDFUf8ACd+D/wDoa9D/APBjD/8AFV0FFAHP/wDCd+D/APoa9D/8GMP/AMVR/wAJ34P/AOhr0P8A8GMP/wAVXQUUAc//AMJ34P8A+hr0P/wYw/8AxVH/AAnfg/8A6GvQ/wDwYw//ABVdBRQBz/8Awnfg/wD6GvQ//BjD/wDFUf8ACd+D/wDoa9D/APBjD/8AFV0FFAHP/wDCd+D/APoa9D/8GMP/AMVR/wAJ34P/AOhr0P8A8GMP/wAVXQUUAcJqHxD0vTr17qDxF4f1LTWA3W0WoQpcQ4HJUl9sg74O0jsTwK6nQvEGleJdMTUdHvYru2Y43IeVP91geQeRwarajo99q968d1qTwaSMYtrTMck3HPmSZyFzn5Ux7k5xWpZWNrp1pHaWVvFb28YwkUSBVUewFAE9FFFABRRRQAUUUUAFFFFAHn//AApL4ef9C9/5O3H/AMcrBu/gb4e0+6kurHRo9VtWOWsbm8likT/rlIrAH/dcc/3xXr1FAHlOl/Db4WapO1oPD8lrqCDdJY3d1cRzKPXaZPmX/aUlfetb/hSXw8/6F7/yduP/AI5XZapo2na1AsOoWqTBDujblXjb+8jDDKfcEGsjyPEOg/8AHtI2u2A/5YzsqXaD/ZfhZPo20+rGgDE/4Ul8PP8AoXv/ACduP/jlH/Ckvh5/0L3/AJO3H/xyut0rxBp2sNJHbTFbqIfvrSdDHNF/vI3IHv0PYmtOgDz/AP4Ul8PP+he/8nbj/wCOUf8ACkvh5/0L3/k7cf8AxyvQKKAPP/8AhSXw8/6F7/yduP8A45R/wpL4ef8AQvf+Ttx/8cr0CigDz/8A4Ul8PP8AoXv/ACduP/jlH/Ckvh5/0L3/AJO3H/xyvQKKAPP/APhSXw8/6F7/AMnbj/45R/wpL4ef9C9/5O3H/wAcr0CigDz/AP4Ul8PP+he/8nbj/wCOUf8ACkvh5/0L3/k7cf8AxyvQKKAPP/8AhSXw8/6F7/yduP8A45R/wpL4ef8AQvf+Ttx/8cr0CigDz/8A4Ul8PP8AoXv/ACduP/jlH/Ckvh5/0L3/AJO3H/xyvQKKAPP/APhSXw8/6F7/AMnbj/45R/wpL4ef9C9/5O3H/wAcr0CigDz/AP4Ul8PP+he/8nbj/wCOUf8ACkvh5/0L3/k7cf8AxyvQKKAPP/8AhSXw8/6F7/yduP8A45R/wpL4ef8AQvf+Ttx/8cr0CigDz/8A4Ul8PP8AoXv/ACduP/jlH/Ckvh5/0L3/AJO3H/xyvQKKAPP/APhSXw8/6F7/AMnbj/45R/wpL4ef9C9/5O3H/wAcr0CigDz/AP4Ul8PP+he/8nbj/wCOUf8ACkvh5/0L3/k7cf8AxyvQKKAPNtQ+EPw00vTrm/u9B2W9vG0sjfbLjgAZP/LTk+1VdA+Cfg6TR4Z9W0DF5OTM0X2uceQGOVj4fnaCASepBNddqv8AxPfElroq/NZ2Wy+v/RmB/cxf99KXI9EXs1dLQB5//wAKS+Hn/Qvf+Ttx/wDHKP8AhSXw8/6F7/yduP8A45XcX17b6dZS3d05SGIZYhSx9AAACSSeMDk159r/AIt8StrOkxWNqunWJu7aS6SdQ1w1u9xHFlh0j3FzheWIVs7cYIBZ/wCFJfDz/oXv/J24/wDjlH/Ckvh5/wBC9/5O3H/xyvQKKAPP/wDhSXw8/wChe/8AJ24/+OUf8KS+Hn/Qvf8Ak7cf/HK9AooA8/8A+FJfDz/oXv8AyduP/jlFegUUAFFFFABRRRQBm6roOna0sZvLfM0XMNxGxjmiPqjrhl/A896zN3iLQfvg69p4/iULHeRj3HCS/htPsxrpaKAM/Stb07WonewuVkaM7ZYmBSSJvR0bDKfYgVoVlar4e0/V5UuJo3hvYxiK8tnMc8Y9A45x/snIPcGs/wC1+INB4v4DrViP+Xq0jC3KD/biHD/VMH/YoA6WiqWmatYaza/aNPuo7iMHa2w8ow6qwPKkehANXaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnq2pwaPpVzqNzuMUCFyqjLMeyqO5JwAO5Iq5XNXn/E+8WQaePmsdIK3V16PcEZiT/gI/eH3MdAFzwzpk+n6Y0t9tOpXshur1lOR5jY+UH0VQqD2UVs0UUAQ3l3BYWU95dSLFbwRtJI7dFUDJP5Vy9hoM+saJcXl+Wtr/VbmC8cMuWgjjkV4osZ6qqjP+0zGrOt/wDE71y08Pr81tFtvdR9Cgb91Ef991yf9mNh3rpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1Pw1Y6jdfbUMtlqQG1b6zby5cDoG7Ov+y4Ye1Uv7U1vQ/l1m0/tCzH/L/p8RLqPWSDk/im7/AHVFdLRQBWsNRstUtEu7C6iubd+kkThhnuOO/tVmsO/8MWlzdvqFjLLpmpt966tCFMn/AF0QgrIP94E+hFVv7c1TRPl8Q2Qkth/zErBGaPHrJFy8f1G5R1JFAHS0VDaXdtf2sd1aXEVxbyDcksThlYeoI4NTUAFFFFABRRRQAUUUUAFFFFABSMQqljnAGeBk0tFAHiq6rPHbX95BqLaJqN1HBY/2brNzfyEeaz7HEszxGM8PygYKIzgktivSfB81xd6Mt3Lq02oxSfJFJJaiEMqEqHXkllcBW3EnOSRgEKtG48I6lqv9onUdbNub24Xf/Z0KrvtUBCRN5occkktxgglcYNa+iaFJo1xdyHVLy9W4CErcCMbXBbcwCKqjcCoICj7meSSSAYXxCtIpJPDF0xl8yHXbRVAlYJ8z85QHax44JBI5xjJrtaxPEfhtfEa2Svqd9ZCzuFuU+yCL5pFIKMfMjb7pHQYByc54xtKCFAJLEDqepoAWiiigDP1vVY9F0i4v3RpWjAEcK/elkY7UQe7MQB9ai8O6VJpOkJFcust9M7XF5KBxJM5yxHsOg9AAO1Z7/wDE+8YLH97T9EIZ/SS7ZeB/2zRs/WRe610tABVXUdQt9K025v7t9lvbxtI5HJwBngdz6CrVc1qf/E88TW2jrzZ6fsvb70Z85hjP4gyH/cTs1AFrwxp9xa2Et7qCbdT1GT7VdLnPlkgBYwfRFCr9QT3rboooAKKKKACiiigAooooAKKKKACiiigAorl/HOvW+g6TbSzaheWRnuREklo9qjk7WOCbn92F469c4rm7bXPFNjJpdpNqWlSwQ28az6k9550U7zsEhJVYUJbJ3AK4DKPmZdwYAHplFRRef9lTzjGLjYN5QEpuxzjPOM1ysGn3emeN7COz1O/uYZbSWTU47q5aVc5Xy5FUnERZt/yoFUgHAwvAB19FFFABRRRQBgXfhaAXUl9o1zJpF/IdzvbqDFMfWSI/K/14b/aFRDxHd6OfL8TWQtox/wAxG1y9qfd/4ov+BZUf3jXSUdRg0AMimiuIUmhkSSJxuV0YEMPUEdafXOzeFhaTPdeHrs6TOxLPCqb7WU9TuiyACe7IVJ7k0ieJ3051g8S2f9msTtW8VvMtJD2/eYGwn0cL6AmgDo6KRWV1DKQVIyCDwRS0AFFFFABRRRQAUUUUAFFFFABRRRQAVmeINWOjaPLdRxia5YrFbQZx5sznai/iSMnsMntWnXNQ/wDE+8XyXB+aw0UmKL0ku2X52/4Ah2j3dx2oA09B0kaLo8NmZDNPzJcTkczSsSzufqxJ9uB2rSoooApavqcOjaTc6hcBjHAm7YvLOeiqvqSSAB6kVV8N6ZPpullr0q2o3chubxlOQZWxlQf7qgKg9lFUrr/ie+LYrIfNY6OVuLj0e5IzEn/AFO8+7RmukoAKKKKACiiigAooooAKKKKACiiigAooooAzdffU10W5/se1hub5l2Rxyz+Uozxu3YPTOcd8VyEXw6u4NUjurW70ezW3t4ra3ki0wm4VUjVfM8wSKDJgFQWVgFGMYZw3oNFAFWzS9TSoI7uaF78QKJZUQ7Gl28sFyDjOTjPSsbR9G8QWN35l7rljcxySmWcw6a0UspxgAs0zgKOOAvQdepro6KACiiigAooooAKKKKACmuiyIyOoZGGGVhkEehp1FAHNt4Zl0tjN4avP7P5ybGVTJaP9EzmP6oQO5U0+DxSltOlpr9q2k3TnajyPvtpj/sTcDJ7KwVj6V0NRzwQ3UDwXESSwyDa8cihlYehB60ASUVzf/CPX2jfP4avRFCOf7NvCz259kblovwyo/u1NZ+KLdruOw1W3k0nUHO1IbkjZMf8AplIPlf6Z3eqigDeooooAKQkAEk4A6k0tMmjjlgkjlGY3Uq4JxwRzQBg6b4wstSvbOAWl7bxX6s+n3U6KI7xVG4lMMWHy/MA4UkZIzg06x8X6ffXcUYiuIbe5DmzvJgohugnL7CGJGACfmC5AJXIGa4jRtJvNVvdG0nTNet9T8P6Esjx38VqVIbynihiEwcpMVVzuKKMbADgnFSaVHBrOm+CPDw2Nd6SpXVbYH5rcR2zwMHA+7uZxtzjcMkZAJoA7/Sdf07WzMtjLIzw7S6TQSQsFbO1trqCVODhhwcHB4NadY+ieHotELv8Abbu9maKOATXZQusUe7YmVVcgFmOTljnknAxsUAZHiTVJdK0ktaKsmoXLrbWUbdHmfhc+w5Y/7KmrGjaXFoukW2nwuziJfmkf70jk5Z292Ylj7msnT/8Aie+KrjVDzY6WXs7P0ebpNJ+GBGPTEnrXS0AFZ+t6qmjaRPfNGZXQBYoVPzSyMQqIPdmIH41oVzZ/4n3i4D71hopyfSS7Zf18tG/OQd1oA0PD+lPpGkRwTyCW8kZp7uYD/WTOcuR7Z4A7AAdq1KKKAIbu8trC1kury5htreMZkmmcIiD1JPArK0LVrjVtQ1ZhPaT6bDLHHaSwIRvzGrsS24hx864IAHXrWd4gs9Tn8V6ZcppJ1OxtoHaBDNGkUF2WAWWQMd2Au4AqGIy2FyRV3wbZ3tl4Yt01KzW0v5HknuY1Kn97I5dz8pIxuY4wTxj6AA36KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKgvLK11C0ktb23iuLeQYeKVAysPcGp6KAOb/sbVtE+bQb37Raj/mG6hIzKB6Rzcsn0bcOw21a0/xNZ3d2thdRzadqZBxZ3gCs+OpjYErIPdSffFbVVdQ02y1a0a11C1iuYGOdki5AI6EehHYjkUAWqK5v+ztc0PnSro6pZD/lxv5T5qD0jnOSfpJnP94CrumeI7DU7g2f7201BRuexu18uZR6gdGX/aUlfegDXrjh8RdNj1C6W7tLu30mK4NsmsFd1s8i4DgsOUAbK7j8pIPNXPGOp3cFnb6PpUmzV9Wc29s4/wCWK4zJMfZF5/3io71r6ZpFlpOjW+k2sIFnBEIlRhnK45z6k8k+uTQBbiljniSWKRZI3AZXQ5DA9CD3rI8TajcWWmpbWBH9p38gtbPIyFdgSXI9EUM5/wB3HesW+8NP4XhudU8MajFpcEStNcafdZaxcAZYgDmE+6ceqmk8FahP4ykTxdd2TWkXk/ZrG2dtxTkGaTOByWAUcDiP/aoA6rS9Ot9I0u20+1BEFvGI13HJOO5PcnqT3Jq3RRQBma/qraRpElxFGJrpysNrCTjzZnO1F+mTyewBPanaHpS6NpEFl5hmlXLzTEYM0rEs7n3ZiT+NZlv/AMT3xZJdH5rHRy0EHo90wxI//AFOwe7yDtXSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVHU9H0/WbcQahapOqnchPDRt/eRhyp9wQavUUAeeXOk+IvCniSXX7aKTxNYm3W2EMj4vbWINuIjJ+WXJ5OcMcKMnGa6fw74u0XxRE50y8DTxcTWsoMc8J7h0PI54z0963K5nxN4E0fxNIl3IstlqsX+p1Kzby54zjj5h1Hsc+2KAOa+JF9ca/qth4E0uQiS8dZNQkXnyouSFP1CsxB6hQP4xXodjZW+m2FvY2kYjt7eNYokH8KqMAVwXww8KPpZ1TWr+/OoahcXt1bmdo9p/d3Do7dTy5jQ+gCqO2T6LQAVk+ItTm03S/wDQ1V9QunFtZo3RpW6E+ygFz/sqaPEeoT6XpH2q327xc20Z3DI2POiN/wCOsay4L21vvEkusXlzDDYWUh06wMrhVlnY4lYZ6nIEY7/K/rQBu6RpkOj6TbafAWZYVwXb70jHlnb/AGmYkn3Jq7RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz/AIN/5Adz/wBhXUv/AEtmroK5/wAG/wDIDuf+wrqX/pbNXQUAY3ivSLnXfDN5ptncJbXMwXypnGRGyuGDY74xVTw54MstChtXmlk1C+t4hFHc3A/1YxyI16JnuR8x/iJrpKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKxfFmsv4f8ADN3qMSo0ybI4g/3fMkdY0J9gzAn2oAt6prWmaJAJ9Tv7e0jY4UzSBS59FHUn2Fc9L8SNIz/odlqt6OzRWhjB+hlKVxkNkounvbmR7vUJP9Zdznc7ew7KvoowB6VaoAteFviBBa6XcRPoOssDqN9JvRYCMPdStj/W5yN2Dx1Bxkc10tv8RPDkrqlzdS6e7cD7dA8K/wDfbDZ/49XAaNby21jJHMhRjd3MgB/utO7KfxBB/Gr5AZSrAEHgg96APWI5EljWSN1dGGVZTkEeoNOryTRb1/C2r2Rs3KadeXUdtPZZ/dhpXCLIg/hYMwzjgjORnBHrdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFch8ToEufAdzbygmOW7skYA44N1EDzXX1ynxH/5EyT/AK/rH/0rhoA84WbVdMHl3ED6jbr92eHAmA/20OAfqvX+7Un/AAkmlL/r7k2p7i6jaEj/AL7ArVooAyv+En0HtrWnsfRblCfyBpD4gt5eLK1vL1+3lQFV/wC+3wv61rUUAYL2t/dajpF5qLJEItWsTDawtkKTcxjc7cbjgkYHAz34Ne7145ef63TP+wrYf+lUVex0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVynxH/5EyT/r+sf/AErhrq65T4j/APImSf8AX9Y/+lcNAHI0UUUAFFFFAFW8/wBbpn/YVsP/AEqir2OvHLz/AFumf9hWw/8ASqKvY6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwfGel3Or+Fbu1s133KtFcRJnG9opVlC599mPxreooA8ftLyG9jLwscqxSSNgVeNh1VlPKkehqeu81nwhouuTfabm2aK8xgXds5ilx2BZfvD2bI9qwJfh5eR8WXiWbb2F7aJKfzQx0AYVFbA8Aa6SN3iSwx32aU4P6zn+VW4PhxbuQdT1nUbte8MbLbxn/AL4Af/x6gDl7SBta8QWGm2YMj293Bd3TrysCRSLINx7FigUDqck9ATXr1VNN0uw0ezW0060htbdTkJEuAT3J9SfU81boAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//Z 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +16 PanMechanics_2024_17_1 质量为 $m$ 的质点附着在力常数为 $k$ 的弹簧上,在粗糙表面上沿 X 轴移动。以原点为弹簧自然长度时的位置。 当 $t = 0$ 时,粒子在 $x_0 \neq 0$ 及静止。假设弹簧力足够大,使得粒子在恒定的摩擦力 $f$ 下移动。在时间 $0 \leq t \leq \tau$ 内,求 $x(t)$,其中 $\tau$ 是 $t = 0$ 后粒子第一次停止的时间。用 $k$、$m$、$f$ 和 $x_0$ 表示 $x(t)$。设静摩擦系数为 0.03,动摩擦系数为 0.01,$m = 1 \mathrm{kg}$,$k = 10 \mathrm{N}/\mathrm{m}$,重力加速度 $g = 10 m/s^2$。 "[""\\boxed{$x(t) = (x_0 - \\frac{f}{k}) \\cos(\\sqrt{\\frac{k}{m}}t) + \\frac{f}{k}$}"", ""\\boxed{$x(t) = (x_0 + \\frac{f}{k}) \\cos(\\sqrt{\\frac{k}{m}}t) - \\frac{f}{k}$}""]" "[""Expression"", ""Expression""]" [null] [8.0, 8.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +17 PanMechanics_2024_17_2 "质量为 $m$ 的质点附着在力常数为 $k$ 的弹簧上,在粗糙表面上沿 X 轴移动。以原点为弹簧自然长度时的位置。 +(a) 当 $t = 0$ 时,粒子在 $x_0 \neq 0$ 及静止。假设弹簧力足够大,使得粒子在恒定的摩��力 $f$ 下移动。在时间 $0 \leq t \leq \tau$ 内,求 $x(t)$,其中 $\tau$ 是 $t = 0$ 后粒子第一次停止的时间。用 $k$、$m$、$f$ 和 $x_0$ 表示 $x(t)$。设静摩擦系数为 0.03,动摩擦系数为 0.01,$m = 1 \mathrm{kg}$,$k = 10 \mathrm{N}/\mathrm{m}$,重力加速度 $g = 10 m/s^2$。 +注意:(a)是前置问题,请不要写入最终答案中。" 设 $x_0 = 1 m$。使用 (a) 或其他方式,找到粒子永久停止时的最终位置。(单位用 $m$ 表示) "[""\\boxed{-0.02}""]" "[""Numerical Value""]" "[""m""]" [8.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +18 PanMechanics_2024_17_3 "质量为 $m$ 的质点附着在力常数为 $k$ 的弹簧上,在粗糙表面上沿 X 轴移动。以原点为弹簧自然长度时的位置。 +(a) 当 $t = 0$ 时,粒子在 $x_0 \neq 0$ 及静止。假设弹簧力足够大,使得粒子在恒定的摩擦力 $f$ 下移动。在时间 $0 \leq t \leq \tau$ 内,求 $x(t)$,其中 $\tau$ 是 $t = 0$ 后粒子第一次停止的时间。用 $k$、$m$、$f$ 和 $x_0$ 表示 $x(t)$。设静摩擦系数为 0.03,动摩擦系数为 0.01,$m = 1 \mathrm{kg}$,$k = 10 \mathrm{N}/\mathrm{m}$,重力加速度 $g = 10 m/s^2$。 +(b) 设 $x_0 = 1 m$。使用 (a) 或其他方式,找到粒子永久停止时的最终位置。(单位用 $m$ 表示)。 +注意:(a) 和 (b) 都是前置问题,请不要写入最终答案中。" 求出粒子的总移动距离。(单位用 $m$ 表示) "[""\\boxed{49.98}""]" "[""Numerical Value""]" "[""m""]" [6.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +19 PanMechanics_2024_17_4 "质量为 $m$ 的质点附着在力常数为 $k$ 的弹簧上,在粗糙表面上沿 X 轴移动。以原点为弹簧自然长度时的位置。 +(a) 当 $t = 0$ 时,粒子在 $x_0 \neq 0$ 及静止。假设弹簧力足够大,使得粒子在恒定的摩擦力 $f$ 下移动。在时间 $0 \leq t \leq \tau$ 内,求 $x(t)$,其中 $\tau$ 是 $t = 0$ 后粒子第一次停止的时间。用 $k$、$m$、$f$ 和 $x_0$ 表示 $x(t)$。设静摩擦系数为 0.03,动摩擦系数为 0.01,$m = 1 \mathrm{kg}$,$k = 10 \mathrm{N}/\mathrm{m}$,重力加速度 $g = 10 m/s^2$。 +(b) 设 $x_0 = 1 m$。使用 (a) 或其他方式,找到粒子永久停止时的最终位置。(单位用 $m$ 表示)。 +(c) 求出粒子的总移动距离。(单位用 $m$ 表示) +注意:(a)、(b) 和 (c) 都是前置问题,请不要写入最终答案中。" 求粒子永久停止之前所经过的总时间。(单位用 $s$ 表示) "[""\\boxed{48.68}""]" "[""Numerical Value""]" "[""s""]" [3.0] text-only Mechanics PanMechanics_2024 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +20 PanMechanics_2024_18_1 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。" 求 $k_N$ 。答案以 $K$ 表示。 "[""\\boxed{$k_N = (N-1) K$}""]" "[""Expression""]" [null] [2.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +21 PanMechanics_2024_18_2 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。" 求释放前处于平衡状态的弹簧的总长度 $L_0$。答案以 $M$,$g$ 和 $K$ 表示。 "[""\\boxed{$L_0 = \\frac{Mg}{2K}$}""]" "[""Expression""]" [null] [2.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +22 PanMechanics_2024_18_3 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。" 应用牛顿第二定律,写出顶部 $x_N$、底部 $x_1$ 和第 $n$ 个质量 $x_n$ 的运动方程,而 $1 < n < N$,答案以 $m_N$、$k_N$、$g$ 以及其他质量的坐标 $x_2, x_3, \ldots$(如果需要)表示。 "[""\\boxed{$m_N \\ddot{x}_1 = -k_N (x_1 - x_2) + m_N g$}"", ""\\boxed{$m_N \\ddot{x}_n = k_N (x_{n+1} - 2x_n + x_{n-1}) + m_N g$}"", ""\\boxed{$m_N \\ddot{x}_N = k_N (x_{N-1} - x_N) + m_N g$}""]" "[""Equation"", ""Equation"", ""Equation""]" [null, null, null] [2.0, 2.0, 2.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +23 PanMechanics_2024_18_4 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 \mathrm{s}$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 \mathrm{s}$ 时,$x_N = 0 \mathrm{m}$。现在考虑 $N = 2$、$m_N = 1 \mathrm{kg}$ 且 $k_N = 1 \mathrm{N}/\mathrm{m}$ 的情况($g = 10 m/s^2$)。" 求系统质心的加速度。(向下为正,单位用 $m/s^2$ 表示) "[""\\boxed{10}""]" "[""Numerical Value""]" "[""m/s^2""]" [2.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +24 PanMechanics_2024_18_5 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。现在考虑 $N = 2$、$m_N = 1 \mathrm{kg}$ 且 $k_N = 1 \mathrm{N}/\mathrm{m}$ 的情况($g = 10 m/s^2$)。" 求出两个质量随时间变化的距离函数:$d(t) = x_1(t) - x_2(t)$。(表达式中重力加速度用 $g$ 表示) "[""\\boxed{$d(t) = g \\cos(\\sqrt{2} t)$}""]" "[""Expression""]" [null] [5.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +25 PanMechanics_2024_18_6 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。现在考虑 $N = 2$、$m_N = 1 \mathrm{kg}$ 且 $k_N = 1 \mathrm{N}/\mathrm{m}$ 的情况($g = 10 m/s^2$)。" 当两个质量碰撞时(设碰撞时间为 $\tau$),设底部质量从 $t = 0 \mathrm{s}$ 的下降距离为 $D_2 = x_1(\tau) - x_1(0) = \gamma L_0$。求 $\gamma$ 的数值。 "[""\\boxed{0.117}""]" "[""Numerical Value""]" [null] [6.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +26 PanMechanics_2024_18_7 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。现在考虑 $N = 3$ 的情况。" 为了使弹簧的总质量和总弹簧常数 $K$ 与 $N = 2$、$m_N = 1 kg$ 且 $k_N = 1 N/m$ 的情况相同,(1)求出对应的 $m_N$(单位用 $kg$ 表示),(2)求出对应的 $k_N$(单位用 $N/m$ 表示)。 "[""\\boxed{2/3}"", ""\\boxed{2}""]" "[""Numerical Value"", ""Numerical Value""]" "[""kg"", ""N/m""]" [1.0, 1.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +27 PanMechanics_2024_18_8 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。现在考虑 $N = 3$ 的情况。" 求解底部质量随时间变化的位置:$x_1(t)$。提示:尝试先找出质心的运动方程,$x_1$ 和 $x_3$ 之间的差的运动���程,及另一个由 $x_1, x_2$ 及 $x_3$ 的线性组合组成的量的运动方程。 "[""\\boxed{$x_1(t) = \\frac{5}{9}g + \\frac{1}{2}gt^2 + \\frac{g}{2} \\cos(\\sqrt{3}t) - \\frac{g}{18} \\cos(3t)$}""]" "[""Equation""]" [null] [8.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。 +28 PanMechanics_2024_18_9 "总质量为 $M$ 的弹性弹簧在未拉伸时具有均匀的质量分布。其弹簧常数为 $K$,为简单起见,假设其自然长度为零。现在它从顶端悬挂起来,并在恒定重力 $g$ 下垂直悬挂并达至静止状态。 + +[figure1] + +如图 1 所示,在 $t = 0 s$ 时,顶端从静止状态释放,弹簧落下。为了理解它的下落运动,我们可以将弹簧建模为一系列 $N$ 个质量为 $m_N$ 的相同质量,与 $N - 1$ 个具有弹簧常数 $k_N$ 和零自然长度的相同弹簧连接。 + +[figure2] + +如图 2 所示,坐标 $x_1, x_2, \cdots x_N$ 分别是距离底部 $(x_1)$ 和顶部 $(x_N)$ 位置的质量,从天花板开始测量(向下为正)。在 $t = 0 s$ 时,$x_N = 0 m$。 + +(f) 考虑 $N = 2$、$m_N = 1 \mathrm{kg}$ 且 $k_N = 1 \mathrm{N}/\mathrm{m}$ 的情况($g = 10 m/s^2$)。当两个质量碰撞时(设碰撞时间为 $\tau$),设底部质量从 $t = 0 \mathrm{s}$ 的下降距离为 $D_2 = x_1(\tau) - x_1(0) = \gamma L_0$。求 $\gamma$ 的数值。 +注意:(f) 是前置问题,请不要写入最终答案中。 + +现在考虑 $N = 3$ 的情况。" "底部质量经过 (f) 部分中的 $\tau$ 时间后: + +(1)求下降的距离 $D_3 = x_1(\tau) - x_1(0)$(用 $L_0$ 表示)。 +(2)比较 $D_3$ 及在 (f) 部分所得距离 $D_2$,看看哪一个比较小,在答案中写上 $D_3$ 或 $D_2$。" "[""\\boxed{$D_3 = 0.054 L_0$}"", ""\\boxed{$D_3$}""]" "[""Expression"", ""Open-Ended""]" [null] [1.0, 1.0] text+variable figure Mechanics PanMechanics_2024 "[""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADoAUYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+uU8R/8AIXH/AFwT/wBCaurrC1jR7q+vxPA0O3yghDsQcgk9gfWgDnKK1f8AhHNR/vWv/fxv/iaP+Ed1D+9a/wDfxv8A4mgDKorSh0K8uIUmhls5I3UMrrKxDA9x8tP/AOEc1H+9a/8Afxv/AImgDKorV/4RzUf71r/38b/4mj/hHNR/vWv/AH8b/wCJoAyqK1f+Ec1H+9a/9/G/+Jrnda1nR/D7FNS1zS4pR/yxWdpJP++FUn9KALtFYul65e63ciPTvDesSwnkXTwCGEj1DSFc/gK61PD2pMisRboSOVaU5H5LigLmZRWr/wAI5qP961/7+N/8TR/wjmo/3rX/AL+N/wDE0AZVFav/AAjmo/3rX/v43/xNH/COaj/etf8Av43/AMTQBlUVq/8ACOaj/etf+/jf/E0f8I5qP961/wC/jf8AxNAGVWr4c/5C5/64P/6EtH/COaj/AHrX/v43/wATV7R9HurG/M87Q7fKKAIxJySD3A9KAN2qmq/8gi9/64Sf+gmrdQXsLXNhcQIQGkiZAT0yRigDhqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoAyqK1f+Ec1H+9a/8Afxv/AImj/hHNR/vWv/fxv/iaAMqitX/hHNR/vWv/AH8b/wCJo/4RzUf71r/38b/4mgDKorV/4RzUf71r/wB/G/8AiaP+Ec1H+9a/9/G/+JoA6DSv+QRZf9cI/wD0EUVJZQtbWFvA5BaOJUJHTIGKKAJ6KKKACsDxjNfp4emg022mnuLj91+6Ukop+8fy4/Gt+iqhLlkpWvYUldWOM+HM2oLorWl7azRwpiS2ldSFdG5wD9ef+Be1dnWb4d/5FnSv+vOH/wBAFaVXXlzVJO1iaatBIK8v+Jfjnxh4WvWXSNCWTTFiR31F4XlCkkgj5ThcYH3vWvUKKyLPH/D3h9fH9lFda18RbrU5XjV5NP0yZIEjyASroMk+nQV32h+A/C3h3a2maJaRTKcid03y59d7ZI/A1Q174X+FNem+1Ppwsr4EMt5YN5EqsOjcfKT7kGsL+yvid4RT/iV6naeKrJSP9Hvz5VyBnnDk4J92b6L2oEenUV5/YfFzQzerp3iC2vPDuo9DFqMe1Cf9l+6+jEKDXd211b3tslzazxTwSDKSxOGVh6gjg0DJaKKKAIbi6t7QRm5uIoRJIsSGRwu52OFUZ6kngDvU1eb/ABMk0k+JPCEOtTzW9kLi4uXliuZYzmOP5VURkEuXdcYG7ghepz2uqxXEGgvDYHUTNGqLGbN4nuCAQOGuCUJx1LkkjPfFAGnVHV9YsNCsGvdSuPJgDKgIVnZmY4VVVQSxJPQAmuVsP+Ej/tG28/8A4TLyfNTf9o/sjy9uRnf5fz7cddvzY6c0fExhb2vhvUJQVs7HXra4upcfLFHh13t6KGZefegDqNG1zTtfs3u9MuPOiSVoZAyMjxyKcMrIwDKw9CAeRWhXE+AXhvtU8V6vYqP7NvdTBtpFOVm2RIjyKe6lw3I4ODXbUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADZJEijaSR1REBZmY4AA6kmmwTxXNvHcW8qSwyqHjkjYMrqRkEEcEEd65L4qSrD8M9bLbsPEsWVkZNpd1TcSpHA3ZIPBAIORkVr+FINJg8PW40O4nuNOORDJNPLLkL8nymQk7fl4x8uORwaANS0u7a/tY7qzuIbi3kGUlhcOjD1BHBqSSRIo2kkdURAWZmOAAOpJrza6httYu5LvwFp17b3srbm1a3f7JZSH5uXDKy3HPdY2/3hXUa9Z6pcfDfVbKdlu9Vk0qeIm3jKiWUxMPlXJ6mgCfRPGGheIrprbTL0yzLCLgJJBJEXiJwJE3qN6543LkdPWtyvK/CN/Y674p8JyaSyzf2Z4faO/ljziJm8pUib0YFHO0816pQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFFFUtR1fTdIgM+paha2cQ/juJVQdcdzUFF2ivPbz4vaNJM9r4b0/UvEd2p27dPt2MYP+1IRgD3AIpsw+KHiG4jaE6d4TtAMOpZb6Yn1+6F/WgDstcstGv8ATXh12Gzlsj94XYXYPfJ6H3rw3VP+Ed8OXNxN8NfE+rf2ruGNKtElurdiTg5BUj16lq9DtPhHosl4L7xFeX3iC83bi19KREG9RGuAPociu20/S9P0i2FtptjbWcAOfKt4ljXPrgACgDmfAGreL9T0+T/hK9GWydQDDOCFMo77o8kqffjPoK7GiigAooooAKKKKACiiigAooooAKKKKACiiigAooqjrOpf2Pot5qItZ7r7NE0vkQLueTA6AUAXqK8g0v4q6/4w1iTSNB0zTdLnQHfJqtwxI5AG1VAy3PSum/4QnxBqgA8QeNtQljIw0GmRLZqR6EjJP6UAdTqmvaTokJl1TUrWzQDP76UKT9AeT+FY+mfELw3rThdMuL68Gcb4NMuXQf8AAhHgD3zTdM+HHhLSiXj0W2uJm+9NeDz5G/F8/pXUIixoqIoVFGAqjAAoFqKDkAjPPqMUtFFAwooooAKKKKACiiigAooooAKKKKACiiigDN8O/wDIs6V/15w/+gCtKs3w7/yLOlf9ecP/AKAK0qup8bJj8KCuB8efCnS/G919va7mstSWNY1nVRImATjKHHr2I6DOa76ioKPL7OT4l+CtOitptJ0zxLYQDYhsZTBcKgHGVK4P0UE1qab8XfC1zdrYanLc6FqJHzW2qwNAV4ycsflA9yRmu8qjqujaZrlobXVLC3vID/BNGGx7j0PuKALcM0VxCk0MiSRSKGR0YFWB5BBHUU+vNpvhKdMuEn8GeJtT8PYbc1vva5t2467HYc/7xYe1Z17458deA3j/AOEw0ez1TTCyxLqOmtsdie5Q9WxnjCDjgmgD1qiuX8H/ABA0HxvDKdKmkW4hGZbWdQskYzjJAJBH0JrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDH1vwroPiOMpq+k2l3kY3yRjeB7MPmH4GuYf4f6toq7/B/iq9sVXJ+xX5+1W59hu+ZPrz9K7+igDzweMvGPh9pF8U+EJLm2Q4F9obiZTxnJjYhlUc5Y4+lb/h/wAe+GfExSPTdWga5b/l1lPlzA+mxsE/hkVuXl9aadAZ726htoQceZNIEXP1NeZeKda+G/iSURNpc2vXzEhX0i2Zpgw9JFK9PrigD1WivGtE0n4lWusf8SNrmz0Jdvk2/iG4SVtg6qdhdh9OPrXsce/y18wKJMDcFORnvigB1FFFAHOeOtSvNI8H3l7p85gukkhVJQqsVDTIp4YEdGPUVyfgDxNruq+KnstS1OS7t/sUkoR4YlwyvGAcogPRjXRfEv8A5EK+/wCu1t/6UR1xPwx/5Hhv+wbN/wCjIa7qUIvDTk1qv+Ac85NVoq+h7HRRRXCdAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/9AFaVZvh3/kWdK/684f8A0AVpVdT42TH4UFMmmit4WmnlSKJBlndgoA9yafXnHj/4Raf421B9WW/mtdS8lY13qJITtJwSvBB5xw2OmQeQYKNDVvi34L0kBRrEd/O3CQaeDO7nOMAr8oP1Iqj/AMJ54q1sGPw14Gv4t33brWj9mjUeu3q34GsfQ5PFXw00+Gyu/BFrqVjGoU32gtumxznejKGc55zhQK7LQ/iT4S8QsIrPWIUuM4NvcgwyBu4w+Mke2aAMYeGfiFrahdc8XW+l25OWh0WAhz7ea3I/AGrNn8IvC0UouNSS+1u7H/Lxql28zfTGQpH1Fd3RQBUsNL0/SofK0+xtrSP+7BEqA/kKt0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFVdRv4NL025v7nf5FtG0smxCx2gZOAOTVqigDzC2+LzeI9Qk03wj4fnvrxRndezpbIB3OCSxxzxjtWlDonxD1cyNrHiex0iF/lFvo9t5jbe/wC8k5VvpmtjWfh/4V164Fzf6NAbkHP2iAtDIT6lkIJ/GsRvBHinRnaXw142u2THy2esp9qjPsH4ZR9ATQBbsPhZ4ZtiJL6K61efOTLqdy0xJ9dpO39K7C2tbezgWC1gighX7scSBVH0ArhY/F/i7Q38rxR4Se4iUMWv9DYzJx/0yb5lGO+SeOla2jfEfwlrpKWmtWyTj70Fy3kyA5xja+P0oA6migEEAg5B6GigAooooA88+KT66mkFIUtZNEdozcuImM0JR1cHO7G0lQCccfqOK8Hya0viqI+H47aS5aBopmuY2eOKJmQlztYYPyDA7/qPd3RZEZHUMrDBUjII9Kz9H0HTNAt5INLs47aORzI4XPJPuew6AdhwK6qeJ5aLp23MZUuaanc0EDBFDkFsckDAJ+lLRRXKbBRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQUUUVBQVgeIfBPhvxSjf2xpFrcSkAefs2yjHTDj5se2ce1WtV8TaFoaFtU1eytMdRNMqt+Wc1yn/C29IvppYfDuk6zr7Rjl7C1/dg+hZiMfkaAKA+G3ifw9j/hDvG95DbrytjqaCePPoDj5V9gv40h+JuveFwI/HXhK6twzbY73S8TwOc9wW+XoTgkk+lXI7/4pa5PmHSdH8OWn968mN1MR7BDt/A4pzfDK61YsfFPi/VtWQyCT7NCFtoMjp8gyfxBFNAdXoHinQ/FFs0+i6lBeKmN6ocOmem5Dhl/EVr1i6F4S0Lw0XbSNPS2d1CO4dmZgDnBLEnrW1SAKKKKACiiigAooooAKKKKACiiigAooooAKKKpas2oppF02kJbvqIjJt1uc+Wz9g2MHFAF2mu6xoXdgqjqWOAK8P1LxB8R7fWkj8WXNzoWj7CZbvRrATRjpyXO8rjkkkj2Fb3h/wR8PvFO67/tq88UTDDM17qTu6445QFcDjuKAOsv/AIjeENOuWtp9dtXuBx5UBMzZ9MIDzXM63qVl4zhW3i+HGo6vE+SlzeRrZqPdZGO9fqADXfaZoWk6NEsWmaba2iAYxDEq/mR1rQoA8W8PfDXx5pd6s9j4jGi2fml1sftD3aRqf4SpAVvqeeK9miDrEiyuHkCgMwXaGPc45xT6KACiiigAooooAKKKKACiiigAoorE8NeJYvE9pc3MFhe2iW9y9sftQjG50OG27HYEA5GfUUAbdFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQV5/wDEDwV4m8S3sdzofimbT4VgEbWXmSRRuwLHcWQ55DYIwfuivQKKgo8F8PaFb+B4ox4s+HNxfTK7NJq8AW+B+Y4Yp1UD1wD7V6joHxC8H+IJFtdI1u1eUfKkDhoWOB/CrhSfwFdTXPa54F8L+IxIdV0Oznlk+9MI9kp7/fXDfrTbuB0PUZFFeat8MdW0KD/ijPGOqWDA5FrfMtxbn2AI+X64Oaral488beCreOTxV4ZtL2yDLG2o6bd4BJ7+Wwzk/gM0gPU6K5nwn490Hxmso0qeUXEIDS288ZSRAeM+hGe4JrpqACiiigAooooAKKKKACiiigAooooAKKKKACiiigArltd+HPhXxDKbi70mGK83Fxd2v7mYN/eLLjcf97NdNNNFbxmSaRI4x1Z2AA/E1ymq/E7wbpBKTa9aTTDgQ2ree5PphM8/WgDNHhLxjoDbvDni172Aciz1xPOGAOnmrhh3pP8AhOvEegrnxZ4PukhwSbzSD9qjUDu6/eQe5qwfHesagANC8D61cErnzL7ZZoM9CC5+b8KlW3+Impwx+ff6LomTlvs0LXUgHpl8Ln8DQBp6F468L+JZPK0nWrW4mwD5O7ZIforYJ/CuhrzkfBvQry9lv9burrU7yaRpZHbbEpY9SFUcH8a9DijWGJIkztRQoySTge5603YB9FFFIAooooAKKKKACiiigCpql42n6Vd3kdvLcPBC0iwwoXeQgZCgAEkk8V5toHieXwj8P4LZdF1OR9O0iW+vJ7y0mtkFxkMYgXQbyXkbJBwApPPSvVKhvLSC/sp7O6iWW3uI2iljbo6MMEH6gmgDA8M6zql5qms6RrAs3u9NeH99ZoyRuskYYDazMQQcjrzxwK6WszRfD+meHoJYtNgeMTOHkaSZ5XchQoy7ksQAAAM4AHFadAGb4d/5FnSv+vOH/wBAFaVZvh3/AJFnSv8Arzh/9AFaVXU+Nkx+FBTJZooF3SypGPV2Ap9cP47+GWn+Oporm51C8triGMRxhGDw8EkFoz1PPYjPFQUWdV+KHg3SQyya7bXEwO0Q2bee5PphM8/XFZreOvFOqpnw74D1Aoek2qyJarj1Ck5NZGj6F4w+HVstrpXh3RNdsYwSJrY/Zbog5J3FywY+mM+la1j8YfD5uWstet7/AMP3q9YtRt2UfUMARj64oAcfD/xC1vadW8VWmkQHlrfR7bL/AE81+R+FWLb4U+Gx8+qNqOtXG7cZtSvZJCT/ALoIUj6iuvstQs9St1uLG7guYWAIeGQOCD7irNAFWy0yw01NljZW1quMYhiVBj8BVqiigAooooAKKKKACiiigAooooAKKKKACiiigAqtqNq99pl1aR3Mtq88LxrPCcPEWBG5T2IzkfSrNFAHi+pfB7XTq1rqEusp4nhhZnkstXmkj8zjoGBcZ9OAK2rXxdZeCYWTVPh9e6ChPzz6fbxz2+P7zSR4/IjNenUU2wOf0Xxx4X8QrH/ZeuWU0kn3YTJsl64/1bYYflXQVg6z4K8M+IJDJqmiWdzKTkymPa5PuwwT+dcTqOk6J4PmkbSviNPoku7b9jurlLyJfYQud360gPVKK8Y0D4l+NJb+e2XQl8S2kL7Re2MEkAceuWG38OPrXskMhlgjkaN4y6hij43LkdDgkZHsaAH0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/wDQBWlWb4d/5FnSv+vOH/0AVpVdT42TH4UFFFch4u+JXh/wXfR2Wqm7a5lh86OOCAvuXJHB4GcqeM1BR19V7yxtNRtmtr21huYG6xTRh1P4HivNdN+KWveLRP8A8Ij4Qa5SFlV5r29jiCZHdQc59s1o/wBhfEfWGDan4nsNJiJ3eVpVuWYexaTr/KgBNS+D3heSdr3SpL3QLvk+dptyYhntkdMewxXL6x4m8Z/Dzy3l8SaR4msWZYlimUR3I/74/md1dY3wk0O9n87W9Q1nWWYhnS9vWMbH12rgD6V0uneEfDmkKosND0+AqMB1t13Y/wB7GT+dCAzfBvjYeLEkV9Ju7CaJAzeYQ8Tc4O114OD2IB9q6ukVVRQqgKoGAAMACloAKKKKACiiigAooooAKKKKACiiigAooooAKhvLqOxsp7uUO0cEbSMI0LsQBk4A5J46CpqKAPKV+NkWqapDpnh7w3eXd3KxUfbbiO0QADOcnd+oHpW6tn8SNWcG61PRtBg/uWcDXcp9iXwo/DNdLq/hzRdfiaPVdLtLwMu0mWIFgM54bqPwNcvcfDKO0Bfwv4h1fQpdwYRpcNPASP70bk5+gYCgCeP4cQXLbtd1/XNY9Yp7sxxf98x7f51taV4O8N6IE/s7RLGB0O5ZBCC4PrvOW/Wub834n6Ezb7fRvE1svCmNzZXDe5Byg+goh+K1hZ4TxPouseHpMffurVpIWOcYV0Bz9SAKAO/orO0rXtI1yLzdK1O0vVxuPkTK5A9wDkfjWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBm+Hf+RZ0r/rzh/8AQBWlWb4d/wCRZ0r/AK84f/QBWlV1PjZMfhQVT1HStP1e3NvqNjb3cJ/gniDj9auUVBRwtz8KdEQySaJe6voMzjDNpt/Igf03Ak5A9Biq0eh/EnQY410/xNYa7Cg5i1S2MchHoHQ5J92Ndze6lY6bEZb68t7aMDO6aQIP1rlJ/ix4OSdbe11J9RuG4WKwt3mY/iox+tAGfN8Rtb8PwLJ4r8F6haxD791p8i3MSjOATgjHbrW3o3xJ8Ia66x2euWyzt/yxuCYXz6YcDP4ZrNbxv4l1AyJongTUWw2Em1KVbVSPXBycVh+Ifhx4g8d3EUmvtoOnJGNwaxgeWYsf7zMVBosB6wCCMg5FFcb4H+HsHgnzDBrGo3fmpsaKaT9yDnO5U7Ht16GuyoAKKKKACiiigAooooAKKKKACiiigAooooAKKKgvbOHULC4srhS0FxE0UgDEEqwIPI5HBoAr6hrelaUpbUNStLUDk+dMqn8ia5yf4peE0cxWd/Lqc4bb5On28k7E/VRj9a5DUfgBppuRc6RrNxbupBC3kQuBkc4yCpx9c10ME3xF0OUJ/YHhzUrLB+TTJWtGU++/IP0H50AWj4w8S30bnSPAt+SGwr6lcR2qkeuMlvwx+NJDB8RtTDrfyeGdOtZP+WS28t24Ho2XVTSj4kW9mUXXdA1zSCSQZJrQyRDHffHkY/CtnSfGfhrXMDTdcsbhycBBMA5P+6cH9KAOMsfgrpsWoS319qtxNcStvc2sKW4B/wBnGSo9gfTmvTYYhDBHEHdwihdztuY4GMk9z70+ii4BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVwnj7wn4q8RTwvoPiZ9Pt/KEc1pvaNXOSd29QW5BAx7Zru6Kgo+f9E8JyeF79pvGXgXUNdcHdHfwS/bAijPBQtyO/PPtXovh/wAe+ACyWun3FnpUzkr9nmt/sjAjscgD9a7us7VdA0jXIvL1TTbW8GNoM0QYgdeD1H4UAXYLiG5iEtvNHLGejxsGB/EVJXm2qfDfwlpO6fTdYuPC8+dyyW1+Ykz7qxwR7cVyF58QfEXha+tbXTfFOleLrWQ45hzKOeQWjbr6daAPeKK4/wAE+M7/AMUq6X/hu/0uSNN3nSLmCQggEKxwc85xjsea7CgAooooAKKKKACiiigAooooAKKKKACiiigAooqC+hmubC5gt7lraeSJkjnVQxiYggMAeDg849qAJ6y9S8SaHo5I1LWLC0YDJWa4VW/InNeSa78MvH1zM00/iOXXLcud9q17Jbean93aPkGa0dNg8JeGIUXU/hhe6cynLTvZrqCR+5mBY4oA6xvih4akVTpsl9qzM20Jp9lJKSfrgD9awNV06DxS9zKvwqWV3OTdag8VnK7Y6krmSun0X4g+C9TgjTTte05F+6kLyCFvoFbB/IV1KsGUMpBUjII70AeN+H/hb420mZTa+MX0m2zuW3hke5VO+3Y4CEfhXsFrHNFaQx3E3nzIirJLsC+YwHLYHTJ5xUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/ANAFaVZvh3/kWdK/684f/QBWlV1PjZMfhQVxPjvxnrPhQxf2d4YudUieIs1yhOyNs4wwAJ6c121FQUeIeGviN4o8Zarc2n9t6HoAiUMUlhLOc9Nu8gEjvXWp8O9Xv5A2tePdZvYGGTFbYtVP4oeldVrHhTw/4gRl1XR7O6LdXkiG/wD76HP61yU3wktbSUS+GvEOs6E6tuWOG4MkK/8AAGP8zRZCNG3+E/gyGRJZtI+2Tqc+bdzvKx+uTj9K6mx0vT9Mj8uwsba1Q8lYIlQH8hXCxp8UvD8DM0ukeJYl6Kc20+PXIG0/Soo/jDa6eEj8VeHtX0KdgCPMhMkZHqGHP6UDPSqKzNG8RaN4ht/P0jUra8TGT5TglfqOo/EVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRXKSyWsqQTeTMyERyld2xiODjvg84oAlprukaF3ZVVRksxwBXi/iTwl8XJEZ4fEi6ig4ENnP8AY2b6jAH/AI9VaSPwLZpCnjTwp4mgliAV73VBPcRbu+HRyD+AoA7fxFrPwuujLJrl54bupfuuzGKaUY7fLlq4OMeCWuJX8BS+LYZ2zg6JFM0G/wBXVxgj9K7/AMKat8NrhIU8Oz6KkoOI02rHOfwcBzXc0eoHkHh6++MUe03Fhb3kO4qRqXlQvj1zGc/oa9atmme1ha5jSOcopkRG3KrY5APGRnvUtFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGb4d/5FnSv+vOH/0AVpVm+Hf+RZ0r/rzh/wDQBWlV1PjZMfhQVka14p0Lw7tGr6rbWbMu9Vlf5mGcZA6nmtesbXfCeg+JjEdZ0yC8aEFY2fIKgkE4IIPYVBRy0fxi0C+ne30bT9a1adRkx2dkScevzEcVMfE/jnVNjaR4MWziPWTVrlUI/wCAKc1W/wCFRWGm3j3vhjWtT0O7bjMbiaPHptfqPqankh+J2kjNvdaJrkSgKEmja3lf/aJHy5oAkGjfETUN5vPFGm6ajdEsLHzSv/AnNI3wws9ReCTxFrWq61JEchZ5Qkf/AHyoGPzph+IGtaWwTxB4I1a3AA3z2BW7jH4rgirth8VPBl/MkA1qK2uG48q7RoWU+h3AAfnRewWNXRPB3h7w3cST6RpcFpNIux5EyWYZzgkk1uVHBPDcxLLbyxyxt0eNgwP4ipKACiiigAooooAKKKKACiiigAooooAKKKKACiimTLI8EixSCOQqQjldwU44OO/0oAfRXjHiLRvjRJErx6rZzgf8s9LmWFhxznzFXP8A31/hVezbRogg8caf45idUxPJfyzzWhfp8piY5z9MUAdv4j074aTh5Nej8Pq6nLM7xxyE+5BDGuJnl8H205Xwf4z8SW9yo/dWWmrPeQk9hsKMMfjXVeHrn4UMVTSToCSjkLOqpLn6SANmvQYjEYlMJQx4+XZjGPbFAHkHh/xJ8W3kMknh0alabsZu40sZceuGYY/75NevW7yyW0TzxeTMyAvFu3bGxyMjrg8ZqSigAooooAKKKKACiiigAooooAKKKKACiisHxdc6pY6DJe6VKElgIeQFA25O/UduD9AaqEeeSiuopPlVy54d/wCRZ0r/AK84f/QBWlXHfDy61W90cy3soNpEFgtU2AcKME5xz2H4Guxq68OSo0yacuaKYVy/i3x7o/gt7ddVjvT9oUlGt7cyLwQME9Aea6imyRpLGUkRXQ9VYZBrIs8psvjdFrWsrpuieG7u6eQ7Y2muEh3H6c4rejvviZfIwXRtB0wngNcXTzEe+EGK1dS+H/hXVJfNuNFtlmHSWAGFwfXKY5rMPw8ubOEJovjHX7Ihs4mnFyn0w4/rQLUbb6J8Rbg5v/F2nWo9LLTg/wCr1Ruvg3pOsXTXuv6rqGoXrnLSqUiB/wCAhavmP4laVG/lzaJrqg/L5qtbSkfh8tNfx9q+lsf7e8E6tbQom6S4smW6jX1J24OKNgNfwz4E8P8AhGSSTRrRoJJE8uRjKx3DOeRnGffFdJXP+G/GuheKi6aXdlriNd0lvLG0cqDOMlSOma6CgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhIVSzEAAZJPalprokkbRyKrIwIZWGQQexFAGLfeMvDOmwNNd6/psSL63KE/gAcmsl/in4QCoYNRmuy/3VtbOaUn/vlaq6h8G/A98jbNI+xyMc+ZaStGR9Bkr+lJY+A9e8PW6WvhrxjNBZIS32bULGK4BJ/wBpdhAoEVNU8SaPq+9H+HGuap5vHmSaQiq31ZyCPrXNXHg/VbmD/inPBF94buXPyXSa6I1X/ejUt+grtvtfxK0+TdPpfh/V4c4C2VxJbS49f3m5f1p58fXNnvGreD/ENpsGWeGBbmMD/ejY/wAqBnOaH4W+LOnnZP4u05ouuJt10T7EtGp/WvUrfz/s0X2kxm42DzDECFLY5xnnGa5uy+JHhG+nSBNbghuH6Q3QaB/ycCuoVldQysGVhkEHIIoAWiiigAooooAKKKKACiiigAooooAKa6LJGyOoZGBDKRkEHtRRQBFZWcGn2cVpaxiOGJdqKOwqeiim227sNgooopAFFFFABRRRQAwQxCYzCJBKRtL7RuI9M0+iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCpe6Xp+pLtv7C1ul9J4VcfqKsRRR28KQwxpHFGoVERQFUDgAAdBRRQA+iiigAooooAKKKKACiiigD/2Q=="", ""/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEiAMwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iioL2ZrawuJ0ALRxM4B6ZAzQBPRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRXKf8JHqP8Adtf+/bf/ABVH/CR6j/dtf+/bf/FUAdXRXKf8JHqP921/79t/8VR/wkeo/wB21/79t/8AFUAdXRWFo+sXV9fmCdYdvlFwUUg5BA7k+tbtABVTVf8AkEXv/XCT/wBBNW6qar/yCL3/AK4Sf+gmgDiqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDV8Of8AIXP/AFwf/wBCWurrlPDn/IXP/XB//Qlrq6ACkdFkRkdQysMFSMgj0paKAMTWtOsY7GJksrdSbu2XKxKODOgI6dwSK0P7K07/AJ8LX/vyv+FQa5/yD4v+vy1/9Hx1pVb+BfP9CftGJounWMljKz2VuxF3crlolPAncAdOwAFaH9lad/z4Wv8A35X/AAqDQ/8AkHy/9fl1/wCj5K0qKnxsI/Cjn9SsLFNY0WJbO3USTybgIlAYCJ+D684P4Vq/2Vp3/Pha/wDflf8ACqOqn/ioNBHfzpj/AOQmrZontH0/VhHdlT+ytO/58LX/AL8r/hVDUNPso73SlSzt1WS6ZXAiX5h5MpwePUA/hW1Wbqf/ACENG/6/G/8ARE1KG/3/AJBLYn/srTv+fC1/78r/AIUf2Vp3/Pha/wDflf8ACrdFSUVP7K07/nwtf+/K/wCFH9lad/z4Wv8A35X/AAq3RQBU/srTv+fC1/78r/hR/ZWnf8+Fr/35X/CrdFAFT+ytO/58LX/vyv8AhR/ZWnf8+Fr/AN+V/wAKt0UAVP7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wq3XN+OfEF/4b8O/a9LsBe30s8VtBGzKF3yOFXILKW5OMLzk9hkgA2f7K07/nwtf+/K/4Uf2Vp3/Pha/9+V/wpI57y70ppY7ZrG8eNvLivAr+W/IXeI3IIzg4DdO4NYD+LrnQ0/4qvSnsIlwDqNqTcWh6DLEAPHkn+NQP9o0AdB/ZWnf8+Fr/AN+V/wAKP7K07/nwtf8Avyv+FYnjvX7jQfA1/q+mtG1wFjSCQ/MoMkioH98b8++KreHb3WbTxjq3h3VtQbUYorSC9tbqSKOOTa5ZGVhGAp+ZCRxnnnPFAHUQ2VrbOXgtoYmIwWSMKcenFT0UUAFFFFAGbrn/ACD4v+vy1/8AR8daVZuuf8g+L/r8tf8A0fHWlVv4F6v9CftGbof/ACD5f+vy6/8AR8laVZuh/wDIPl/6/Lr/ANHyVpUVPjYR+FGJqn/Iy6D/AL8//os1t1ian/yNOg/9vH/oArbpz+GPp+rCO7/rogrB1fVtNh1TS45dQtEeG7Yyq0ygoPIlGWGeOSBz6it6vOfGXhm71jxBb3Nppl0FdhFcSAxYcDoy/P8A3QR823oo71eGjCU7TdlZkVXJRvFXPQ4ZoriFZoJUlicZV0YMCPYin1npO9nYWyW+k3RVV2CBGizEBwAcuB09CakgvbibzN+l3cG1Sw8xojvPoNrnn64HvWTj1RpcuVT1bVbLRNLuNS1CdYLS3XfI7dh/Uk4AHvUI1K7JA/sPUB7l4P8A47Xkf7Q97O2l6VppnFpayyySM8uSsxULjGwMeNxzkDrxmmoO9v1QnLQxda/aQvhqDroej2otFJCtebmdvf5WAH05+tdZ8PvjhZeKb+LSdYtksNQmYLC8ZPlSsf4eeVPTHJz7d/mX7NF9p8r7db7MZ83bJt+n3c/pTzCloyTQahbyyKwIWISBv/HlA/WnYLn3nRXN+H9bv7vw1pVzNpN9cSy2cMjzK8IEhKAlhmQHB68gGtie9uIhGU0u7m3ruIjaIbD6Hc45+mR70nBp2/VBzIuVgeK/Dtx4itdOW1v0sp7G+jvY3kg85WZAwAZdy8ZYHr1ArTjvbiSCWRtLu42TG2Nmi3SfTDkfmRVtSSoJUqSOh6ipasNO5VEF4mki3W9D3og2C7liBBk243sikDryVBHpxWNbeC7B547vWp59cvUO5ZNQIaONuOY4QBGnTqF3e5rpKKQzH8U+H4fFPhq90aeZ4FuFXbKgyUdWDK2O+GUHHequgeG7nTdX1DWNU1JNQ1K9SKEyR2/kJHHGDhVXcx5LEk55J6CuiooAKKKKACiiigDN1z/kHxf9flr/AOj460qzdc/5B8X/AF+Wv/o+OtKrfwL1f6E/aM3Q/wDkHy/9fl1/6PkrSrN0P/kHy/8AX5df+j5K0qKnxsI/CjE1L/katD/3Ln/0Fa26xb8Z8V6NntFcn9E/xrapz+GPp+rCO7/roFYXjDUtS0fwvfalpZshPaxPM32wMUKqpbAAIySQF6jGc84wd2qV9pNlqcttJeRNL9mfzI0MjCPd2LIDtcggEbgcHkYNZlGRpPiGeTww/ibVzDb6bLAt3DFBA8kkMBG7LlS28lSCdqjbz161f0/xJpOqXVvbWV000lxZLfxEQuFaBjgNuIwDn+End7Vj33g+Ox8K/wBheG7S3htpbmJriO4uZMNCGXeoYhzkogQDoAfbFL4P8JTeGr/V5JJ4pLaaQJYRxg5gtw8kgQ57h5pB34C/QAHUySxwxmSV1RF6sxwB+Nee/E3TPDnjXw0+nvrmnQ38BMtq5uEOGx90jOcH29B6Yrt9YNgNJuP7TtxcWW397Ebcz7hn+4ASefavO5tQ+HFsxMWgJbt6xW62Z/8AHmShOwHzHqOhajply0FxbPkHAZPmVvcEcGuk8JfDvXdbuYbt9JuzYKwYt5bL5g9AwU4+uDX0Hb3NneAf2NFqi56AeIBj8jK4/Srq6f4wcf6LfzQH0ubuKYD8oQf1p3QrF3S9Z19EgtR4PeG2jCxqUu0ARRwOGAPArra5Gy0/x6k6G71zRmhDDcq2LliO4zvA/SuupDCiiigArnNS8deHdI1GfT729lS6gIEiJaTSBSVDDlUI6MD1710deFeNf+R91z/rtF/6TxV04Wiq0+VmVao6cbo9us7uDULG3vbV/Mt7iNZYnwRuVhkHB5HB71PWJ4O/5EfQP+wbb/8Aota2652rM1QUUUUgCiiigDN1z/kHxf8AX5a/+j460qzdc/5B8X/X5a/+j460qt/AvV/oT9ozdD/5B8v/AF+XX/o+StKs3Q/+QfL/ANfl1/6PkrSoqfGwj8KMi9Xd4q0n/Zt7k/rEP61r1lXKlvFGmkfw2tyT/wB9Qj+tatE9o+n6sI7sKKKKgoKKKKAK1/NdW9jLLZ2n2u4UZSDzBHvPpuPArkpfEvjMMVbwQ8C/89BexTj/AL5Ug11t/Hdy2UqWNxHb3JH7uWWLzFU57rkZ/MVyc2j+Pd5I8T2Uqf3UtFgz+JEhoAzbi4nvsjVNNs4s9fM8OXE2Pq3K1U/svw25Cy+ILKx/2ILFbMj6dDWlPaa3a86nPM+Ocwa95f6GNKoyar4dRSNQ0/UJh3J1RLjP4JMT+lAGjpnhzQUnjktvGOqTOGBCDVyytz02knj2pfihqWn6fZaI2owPNDFqK3riOAyuiQK0hYADjJCrk4ADnJAzVLTNZ+H895ElvoE/2jeArSaRK2Dng7ypH45rub/RNO1OcTXtss7i2ltfmY48qXb5i4zjnavPXj60AZUXiGbQvCS6z4wuLODJDO9hBI8USscICQXJ6jLcLk/ide01exvtQvbG2lZ7iy8vzx5bBRvXcuGI2tkc/KTjviufv/BsAsdH0TTbG1GhQ3JlvoJ7iTdImxgoBIYudzK3zMPuAZ9J/A3hu88MaJLa6hdx3d082TMg6xoiRRA5A58uNM++evWgDori5gs7eS4uZo4IIxueSVgqqPUk8CvCPFV5a6h4z1m6srmG5t3mi2SwuHRsQRA4I4PII/Cve3RZEZHUMrDBUjII9K8o1/4ZX0Wrp/wj4i+wXL/MsrYFme5A6snoByDx06dmCqQp1OabMMRCU42idl4E1XTr3wjo9raX9rPcW+n26zRRTKzxkRqCGAORyCOa6asjw74dsfDWmLZ2almJ3TTP9+Z+7Mf6dAK165ZWu7GyvbUKKKKkYUUUUAZuuf8AIPi/6/LX/wBHx1pVm65/yD4v+vy1/wDR8daVW/gXq/0J+0Zuh/8AIPl/6/Lr/wBHyVpVm6H/AMg+X/r8uv8A0fJWlRU+NhH4UZkzA+KLJc8iyuCf++4f8K06yZf+Rvtf+vCb/wBGRVrUT2Xp+oR3YUUUVBQUUUUAV76zW/s5LZ5Z4lkGC9vK0bj6MpBFeT/ErT9J8F+G5NRk1fVp7yQ7LW3uZ0nWR/8Aa8xGO0d/wHGa9W1HUbTSdPmv76YQ20IzJIQSFGcdq+efjl4p0Txdp2lNod6br7E8pmxBIoAbZj5ioB+6e9NbiZ5Bfa1f6hcNNLNtJOdsShFH0AwBXYeAvijrHhS9SGUx3ti5wYrkZ2ehVuo/l7V5/UkEMlxcRwxKWkdgqgDJJppsLI+zNM8Q+Kr0QSt4Wg+zShWE0eoqRtP8QBUZGOa6+uF8N6H420/TdOt5tc0+KCCGOMwSWfmlVVQNuQUx0x3/ABruqljCiiigAooooAKKKKACiiigAooooAzdc/5B8X/X5a/+j460qzdc/wCQfF/1+Wv/AKPjrSq38C9X+hP2jN0P/kHy/wDX5df+j5K0qzdD/wCQfL/1+XX/AKPkrSoqfGwj8KMZ/wDkdIP+wdJ/6MStmsRv+R4j/wCwa3/oxa26dTp6BHqFFFFZlBRRRQBWv71NPspbqSKeVYxkpbxNK5+iqCTXA6/4z8O6rYzWWp6DdTQyqUYXax25x7GVlIPvXe6ldy2OnzXMFnLeSxjKwQkB356DPFcZJ4+1sOV/4QjVrYD/AJaXABT80zQB4jJ8If7Wv3fRdW0+3tHOUS8vY3ZR6Exk5rsPCnwNudLuVu5tW06S7QgxSwyO/lnswA28/jXW3Ovxak2zUI/DEBbtdQSyN+IaMD9aE8OaVfgFdf0K3U/w2NoICPoRIP5U7isbVh4R8T2s6PP48vZYlYEwrZxAMM9Mtub9a7SuH0zwBZQTRzweJ9dkKMG2pqBaM4OcEHdx+NdxSGFFFFABRRRQAUUUUAFFFFABRRRQBm65/wAg+L/r8tf/AEfHWlWbrn/IPi/6/LX/ANHx1pVb+Ber/Qn7Rm6H/wAg+X/r8uv/AEfJWlWbof8AyD5f+vy6/wDR8laVFT42EfhRidfHI9tNOP8Av7/9atusQc+OWPppo/WU/wCFbdOp09Aj1Ciiq2oy+Tpl3L9o+zbIXbz9m/y8Kfm298dcd8VmUWaKy/Dd19t8Nabdf2j/AGl5tuj/AG3yPJ8/I+/s/hz1x2rUoAKQjIxnHuKWigClPYzTAgaldRg9lSIj/wAeQ1h3ngSw1Ak3N7eOT3Cwg/pHWt4hvLmw0C8urO4062uI0zHLqTlLdDkcuRyBWhExeFGYoWKgkoflJ9vagDlrX4c+HrWdJvKupJEIZS9y45HspArrKKKACiszxDeXNhoF5dWdxp1tcRpmOXUnKW6HI5cjkCtCJi8KMxQsVBJQ/KT7e1AD6KKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j460qt/AvV/oT9ozdD/AOQfL/1+XX/o+StKs3Q/+QfL/wBfl1/6PkrSoqfGwj8KMVRnxtKfTTk/WRv8K2qx4wT4zuD2GnxA/wDfyT/CtinU3Xogj1CorhJZLWWOCbyZmQhJdobYxHDYPXB5xUtFZlFXTYLq2022gvrz7bdxxhZbnyhH5rActtHC59BVqiigAooqOd5EjLRLGzD/AJ6OVH54NAFDxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1eS+IPjrYaDqZs1s7G/2HDva37sFP4wgH8DWhpPxq0bVLcyrZSDBAKreW6sD7CR0J/AGnZiuj02iuY0nxzp2r3cdtDY6qjyHAZrJ2jH1kTcoHuTiunpDMzxDZ3N/oF5a2dvp1zcSJiOLUkL27nI4cDkitCJSkKKwQMFAIQfKD7e1PooAKKKKACiiigAooooAKKKKAM3XP8AkHxf9flr/wCj460qzdc/5B8X/X5a/wDo+OtKrfwL1f6E/aM3Q/8AkHy/9fl1/wCj5K0SMgg559DisHS9H0y8tpprnTbOeU3l1l5YFZj+/k7kVp/2Rpn2X7L/AGdafZt2/wAnyF2bvXGMZ96qpy8z16ijeyPO9N0rWz8QJbCXUr9oYMPJKbh8vCDlFJzzknGO2Wr1CsmfTbbTIHutI0OykvlwIlRUhyScHL4O0AEk4BOAcAniue8IXGneL9Pi1VfCen2thLECJJUUyNMMB1C+WMqrbl3kgkqflxzV1qqqtN6WXYmnBwTsdvRVOfSNMuvL+0adaTeWoRPMgVtqjoBkcD2oj0jTIoJYI9OtEhlx5kawKFfHTIxg1jaPc01LlFUItD0iCVJYdKsY5EOVdLdAVPqCBRLoekTyvLNpVjJI5yzvboSx9SSKLR7/ANfeGo3WtKOsWBtRqN9YfMG86ykCScdskHivCfjFp7+DtGto7fxDrV/LqDuhF7etIFVQM8Agc7h2r27WtA0PUdKjstRhjis4m3RiOUwBDz0Kkep46V5F8UfAuhnwu0+h6oDeWriVbdrlX3r3weu4deT696a5e4nc+duprR0HWrzw9rVrqlhKY7i3kDqQevsfUe1MfVtVBZJNQvB2KtM3+NaXhXTvEGt6jHp2jG9bJ3MsDsFUdycdPrQlG+/9feDbsfVvh3xzd681mD4U1q3iuFVvtboggAIzuBLbivocV2VcF4dGv/ZrPSNS8EWcOmjaskv2uOQcD77IQCzcdcZrsLfRtLtJlmttNs4ZVzh44FVh+IFJ8o9S7RWc3h/RWYs2kWBYnJJtk5/SpZ9I0y5EYuNOtJREuyMSQK2xfQZHA9qLR7/194alyio4LeG1hWG3hjhiX7qRqFUfQCpKkYUUUUAFFFFABRRRQBm65/yD4v8Ar8tf/R8daVZuuf8AIPi/6/LX/wBHx1pVb+Ber/Qn7Rm6H/yD5f8Ar8uv/R8laVZuh/8AIPl/6/Lr/wBHyVpUVPjYR+FFHVdN/tWy+yNeXVtGzDzTbMqtIndCxBIB7lcN6EVz/wDwiA0LwvrdloNzqJa4jlktLVbkRrA5LuI4SAvlqWYjOc4P3hgY66ioKOL8GaR4g0bV7231Sa9u7Q2dsqXd1emYPMqnzCqEkrksQeFGEU/MSTXaUUUAFFFFAFHVdH07XLP7HqlnFd2+4N5cq5GR3rAT4beFLMmSx0gWknXdayMh/niutooA8u1r4U6Fqd01zPpmsXE7cl/Ntzk+5LAn86fpfh/xJ4Zt/svh3ThbwE8rJHbAt/vMGya9Oop3YrHL6RJ41a7iGp2+kraZ/eFXbzMewHGa6iiikMKKKKACiiigAooooAKKKKACiiigDN1z/kHxf9flr/6PjrSrN1z/AJB8X/X5a/8Ao+OtKrfwL1f6E/aM3Q/+QfL/ANfl1/6PkrSrN0P/AJB8v/X5df8Ao+StKip8bCPwoKKKKgoKrajF52mXcX2f7TvhdfI37PMyp+Xd2z0z2zVmori3iu7WW2nXfDMhjdckZUjBGR7UAUPDdr9i8Naba/2d/ZvlW6J9i8/zvIwPub/4sdM961Kq6bp1rpGm22nWMXlWltGIoo9xbaoGAMkkn8atUAFFV729t9Os5Lu7k8uCMZd8E47dBzXOSfEjwsrbU1JZG7BVIP8A49igDS8Wf8itqH/IW/1X/MH/AOPvqP8AVf7X9M1qwf8AHvF/rPuD/Wfe6d/euXvdcg8RaTcWVnBrkYnXb9osGSOVPdWLcGtm01G4ZERtI1GPaAN0zQkn3OJDQBp0UxXY4zE4+pH+NPoAxvFll/aHhbULT+yf7W82Lb9h+0+R5/I+XzP4fXPtWrAuy3iXZ5eEA2Zzt46Z71X1bSrLXNKuNM1GHz7O4XZLHvZdwznqpBHTsatRosUaxoMKoCgegFADqKKKACiiigAooooAKKKKAM3XP+QfF/1+Wv8A6PjrSrN1z/kHxf8AX5a/+j46XXn1CPRbmXTGAu413oCu7djkjHqRnHvWiXMkvP8AyJbs2xND/wCQfL/1+XX/AKPkrSrgfh7qusarLctcSJ9hiZ2OIwC0rsXOD+JP4iu+qsRTcKjiyaUlKCaCiiisTQKKKKACiiigCrqE81tYSzW9m95KoysCMFL89MniuMm8Sa07Ms3w+uYl/wCekksUgP4Jk12t6l29nItjNDDckfJJNGZFB91BBP51wPie+8XeGdHuNX1DxBYi1gGSsEAjZz2VQyvyaAK801tdn/TNF0m3z18/SLlsfjsC/rTY9P0uVgsXijTtPJ/gtd9uw+mXB/SvFtX+M/iq9uWNnqNxbQZ+UeZ82PcqAPyAroPBvxS07UpxYeMbW6uS/CXCXDnJ9GUt+o/KnYVz2TTfD6RzRyJ441SfawOz7arq3sd2T+tdrXmOl3nw6kvoVttBnFxvAR5NLlOGzwdxUjr3zXp1IYUUUUAFFFFABRRRQAUUUUAFNcOY2EbKr4O0sMgH3GRn86dRQBz2sQ6uLKIy31iyfa7bhbN1OfOTHPmnvj/63WtS4i1Npiba8s44uyy2rOw/ESL/ACqLXP8AkHxf9flr/wCj460q1cnyp+vT0IUVdmRYaTcaZprW1nNZRStM0pYWrbPm5I2+ZnPvnoAMVat4tTWYG5vLOSLusVqyMfxMjfyrjvijqklho2/S9Ruk1uzX7bDaW0pw0aMrPJKgIJjCo6/MdpLYwW2407O/ay8JwX2gM2uJM7SSXd/ftEmAG3yl3DbUymAqLt+YEALk1Lm3e41FLY2TDrWTjUNPA7ZsX/8AjtTTxam3l/Z7u0jwoD+Zas+W7kYkGB7c/Wo9D1J9Y0Gw1KS0ktHuoEma3kOWjLAHBPf9PoOlaFLnf9JD5UU44tTEEoku7Rpjjy3W1ZVX1yvmEn8xUcUOriVDLfWLRgjcqWbqSPY+acfka0KKOZ/0g5UUJodWaZjDe2SRk/Kr2bsQPciUZ/IU94tTNvGsd3aLOM+Y7WrFW9ML5gI/M1coo5n/AEgsjHvbe5bTLpNV1aCC3ZP9fbq9q0Zz13+YcfpXz18WYrCxsbOOPxPJr6yu5kSK+3+SRjaW3NIecn06V9I6q9vHpk7XVo93AAN0CReYX5/u968s8XW/hbXdBudOXwtfWUsgzHcJYrE0bjofceopqbv/AMATifNED2Kx4uLe4kfPWOdUGPoUP86VJLRb1HSC4EQxhPPG/d/vbMfpWtqfg3WNNn2G381D914yDx7+n412XgL4Sajrc0d9eXlhawoQyRSSh3c+6KcgfUii7DQ9v8M6r41mstNNxodo1m0EeZHm2SkFR8x689zwPwrrXh1kuxS/sAueAbJyQPr5tYVloHi+CWPz/F8TwowzFHpyDI9MsSa29Q1qLTtX0rTntriR9Skkjjkj27IyiFzvywPIBxgHpzjIyc7vf9EHLoTzxamwj+z3dpGQuJPMtWfc3qMSDA9ufrT7RL1A/wBsuLeYnG3yYGjx65y7Z/SrNFLmdrDsFFFFSMKKKKACiiigAooooAzdc/5B8X/X5a/+j460q4H4h6hrOlvay2txiwkZSV8tTtlRg45I74Bx/smus0D+0G0S2k1STfeSLvf5Au3PIXAA5Axn3zW86TjSjO+5lGd5uNjSrJ8QaEviCyjtX1C8s0SVZT9mEZ8zHRWEiMrLnnGOoFa1FYGpW0+zNhYQ2rXVxdGNcGe5YNI/uxAAz9AKs0UUAFFFFABRRRQBW1Br1LGVtPjhkuwP3aTMVQn3I5rk5L34hFiG0bRgn96G6Z2/JlA/Wusv7aW7sZYILuW0kcYWeIKWT3G4EfmK8x8afaPCGi3Gq3XjjULh4+I7V2VTKx6LhNv50Abby+JH/wCPy1vhnr9nsbdwPxaTP6Vn3VpoU2f7Yu9XTPVZNNUD844z/OvnTVvH/iHVLppTfzQoT8sccjYH5kmun8C/E9bC6Wz8Q6TZ6pbyHCyyIokQ/XByPr+dOwrnsemaV8Nra8ha21Ix3O8FA97LFls8fKSAee2Kd8RbXW77VfO0+0uJrPTrICdIrdne4S4lCTLCenmCKNucMQH4AJBrS0rxGrzxxw+A9VtVZgPNEEQQA987gcfhXc0hnn+t+IJPBvhzQxoGkLb2SKZrjT5oCJYrOMAyuMP8rAMCd2SS3POa6bwxql3rFhd3lw1s8JvriK0a3UgNBHIUUkljuJKk5GAQRwKsXeg6dfakuoXMLyXC2z2nMz7DE/31KZ2nOBkkZ4HoKn0zTbPR9MttO0+AQWltGI4owSdqj3PJ+p5oAt0UUUAFFFFABRRRQAU11LxsodkJBAZcZHuM8U6igDFvPDx1CJYbzVb2eJXWQI8cGMqcj/lnV24sbieYyR6reW6n/lnEsRUf99IT+tXa4vX/ABJrum+M9N0O0TTXTVo5VtTIGLwtGEYySfMNy7fNwigElB8wycX7SRPKjqPsVx9l8n+1LvzN27z9sW/HpjZtx+Gfekt7G4gmEkmq3lwo/wCWcqxBT/3ygP61Db6zZnVk0OW9hl1dLbz5Y4o2UYG0M3UheXU7SxOGHXrWnS5mOxmnTbskn+3NQHsEg/8AjVTT2VxN5ezVLuDaoU+WsR3n1O5Dz9MD2q5RRzv+kg5UU47K4SCWNtUu5HfG2Vli3J9MIB+YNRxafdRyo7azfSKpBKOkGG9jiMH8jWhRRzP+kHKihNp9zJMzprF7ErHIREhIX2GYyfzNPeyuHt44l1S7R0zulVYtz/XKEfkBVyijmf8ASCyMubRFvLSe01C9uL62mTa0U6RbRzkH5UHIx3yPavB/jX4UsvCmlaZLYW8lxbzySLL57EJGwC7cBNoBOW656V9GVkeJ/Ddh4s0G40jUUzDMMq4+9Gw6MvuP5ZHempu//AE4nxBBdQwx7XsLeY5zvkaQH/x1gP0pUuI2vEkWxgx0EQaTbn1+9nP416ZrPwB8X2WoPFpkUGo2ufkmWZIyR7qxBB/Me5rrfh38B7my1KHVfFRiHkMHjsVIfcR/fI4x7DOe+O5d/wBWA9c8K2d4nh/SJrm/uy/2KIvbSLHtVjGMjOzdwfVs8ck1fbTbssSNbv1BPQJBx/5CrRoo53e/6IOVWKc9lcSiMJql3DsXaTGsR3n1O5Dz9MD2p9pbS2wfzb64ut2MecsY2/TYq/rmrNFLmdrDsFFFFSMKKKKACiiigAooooAKwL/wV4f1N5HvrF55JJxcM73EpbcAygBt2QmHcbB8nzHjmt+igDm7uy16TxzZalFbaadLtraW2Je7kEzCVoWZtvlleDFgDdznOR0rpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=""]" 若有需要,取重力加速度 $g = 10 m/s^2$ 及 重力常数 $G = 6.67 \times 10^{-11} N m^2/\mathrm{kg}^2$(若没有特别注明,取所有摩擦力为零)。