File size: 4,047 Bytes
d298258 c9d5820 585f8e5 d298258 c9d5820 f397931 c9d5820 585f8e5 c9d5820 585f8e5 c9d5820 585f8e5 d475225 585f8e5 f397931 585f8e5 f397931 585f8e5 c0a7639 c9d5820 17410d0 585f8e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
dataset_info:
features:
- name: id
dtype: string
- name: department_name
dtype: string
- name: chm
dtype:
array2_d:
shape:
- 256
- 256
dtype: float16
- name: no_data_percentage
dtype: float32
- name: crs
dtype: string
- name: transform
dtype: string
- name: bounds
dtype: string
- name: resolution
dtype: float32
- name: chm_mean_year
dtype: int16
- name: rgbnir_ndvi_1
dtype:
array3_d:
shape:
- 5
- 256
- 256
dtype: uint8
- name: rgbnir_year_1
dtype: uint16
- name: rgbnir_ndvi_2
dtype:
array3_d:
shape:
- 5
- 256
- 256
dtype: uint8
- name: rgbnir_year_2
dtype: uint16
- name: rgbnir_ndvi_3
dtype:
array3_d:
shape:
- 5
- 256
- 256
dtype: uint8
- name: rgbnir_year_3
dtype: uint16
splits:
- name: train
num_bytes: 880058054404
num_examples: 785392
download_size: 730412322573
dataset_size: 880058054404
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
pretty_name: PrediTree
tags:
- remote-sensing
- multi-temporal
- multi-spectral
- canopy-height-prediction
- 3-pg
- infrared
- rgb
- model
---
# π³ PrediTree: A Multi-Temporal Multi-Spectral Sub-Meter Canopy Height Maps Dataset
[](https://huggingface.co/datasets/hiyam-d/vhr_canopy_height_allier_50cm_small)
[](https://arxiv.org/)
[](https://www.apache.org/licenses/LICENSE-2.0)

## π Overview
**PrediTree** is a large-scale **multi-temporal, multi-spectral canopy height dataset** designed for π **remote sensing, forestry monitoring, and environmental analysis**.
All imagery and canopy height products are **spatially aligned** at **0.5 m resolution**, enabling fine-grained tree growth prediction and ecological studies.
---
## β¨ Key Highlights
- π **Multi-Temporal**: 3 yearly acquisitions (RGB + NIR + NDVI)
- π **Multi-Spectral**: High-resolution optical imagery including RGB, NIR, and derived NDVI
- π² **Canopy Height Models (CHM)**: LiDAR-based data
- π **Resolution**: 0.5 m
- π **Coverage**: France-wide dataset with departmental splits
- π¦ **Scale**: 785k training patches, ~880 GB of data
---
## π Dataset Structure
Each sample contains:
| Column | Description |
|--------|-------------|
| `chm` | π² Canopy Height Model (m) |
| `rgbnir_ndvi_[1-3]` | πΈ RGB + NIR + NDVI imagery for three years (5 bands, 256Γ256) |
| `rgbnir_year_[1-3]` | π
Acquisition year for imagery |
| `chm_mean_year` | ποΈ Average canopy height across years |
| `no_data_percentage` | β % missing pixels |
| `crs`, `transform`, `bounds`, `resolution` | πΊοΈ Geospatial metadata |
---
## π Dataset Specs
```yaml
splits:
train:
num_examples: 785,392
256_256px_subtile_examples: 3,141,568
size: 880 GB
resolution: 0.5 m
dataset_size: 880 GB
license: apache-2.0
```
---
## π¬ Scientific Context
PrediTree is the **first CHM dataset to offer multi-temporal sub-meter CHM-aligned imagery specifically designed for training and evaluating tree height prediction models**.

---
## π Citation
If you use this dataset, please cite:
```bibtex
@inproceedings{debary2025preditree,
title={PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps},
author={Debary, Hiyam and Fiaz, Mustansar and Klein, Levente},
booktitle={GAIA},
year={2025},
url={https://huggingface.co/datasets/hiyam-d/PrediTree}
}
```
---
## π Tags
`remote-sensing` Β· `multi-temporal` Β· `multi-spectral` Β· `canopy-height-prediction` Β· `infrared` Β· `rgb` Β· `model` |