File size: 4,047 Bytes
d298258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d5820
 
585f8e5
 
 
 
 
 
 
 
 
d298258
c9d5820
f397931
c9d5820
585f8e5
 
 
c9d5820
585f8e5
c9d5820
585f8e5
 
 
 
 
 
 
 
 
d475225
 
585f8e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f397931
585f8e5
 
 
 
 
 
 
 
 
f397931
585f8e5
 
 
 
 
 
 
 
 
c0a7639
c9d5820
 
 
 
17410d0
585f8e5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
dataset_info:
  features:
  - name: id
    dtype: string
  - name: department_name
    dtype: string
  - name: chm
    dtype:
      array2_d:
        shape:
        - 256
        - 256
        dtype: float16
  - name: no_data_percentage
    dtype: float32
  - name: crs
    dtype: string
  - name: transform
    dtype: string
  - name: bounds
    dtype: string
  - name: resolution
    dtype: float32
  - name: chm_mean_year
    dtype: int16
  - name: rgbnir_ndvi_1
    dtype:
      array3_d:
        shape:
        - 5
        - 256
        - 256
        dtype: uint8
  - name: rgbnir_year_1
    dtype: uint16
  - name: rgbnir_ndvi_2
    dtype:
      array3_d:
        shape:
        - 5
        - 256
        - 256
        dtype: uint8
  - name: rgbnir_year_2
    dtype: uint16
  - name: rgbnir_ndvi_3
    dtype:
      array3_d:
        shape:
        - 5
        - 256
        - 256
        dtype: uint8
  - name: rgbnir_year_3
    dtype: uint16
  splits:
  - name: train
    num_bytes: 880058054404
    num_examples: 785392
  download_size: 730412322573
  dataset_size: 880058054404
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: apache-2.0
pretty_name: PrediTree
tags:
- remote-sensing
- multi-temporal
- multi-spectral
- canopy-height-prediction
- 3-pg
- infrared
- rgb
- model
---

# 🌳 PrediTree: A Multi-Temporal Multi-Spectral Sub-Meter Canopy Height Maps Dataset 

[![Dataset](https://img.shields.io/badge/πŸ€—-Dataset-blue.svg)](https://huggingface.co/datasets/hiyam-d/vhr_canopy_height_allier_50cm_small)
[![Paper](https://img.shields.io/badge/πŸ“„-Paper-green.svg)](https://arxiv.org/)
[![License](https://img.shields.io/badge/License-Apache--2.0-yellow.svg)](https://www.apache.org/licenses/LICENSE-2.0)

![Sample Panels](./sample.png)

## πŸ“– Overview
**PrediTree** is a large-scale **multi-temporal, multi-spectral canopy height dataset** designed for 🌍 **remote sensing, forestry monitoring, and environmental analysis**.  
All imagery and canopy height products are **spatially aligned** at **0.5 m resolution**, enabling fine-grained tree growth prediction and ecological studies.

---

## ✨ Key Highlights
- πŸ“Š **Multi-Temporal**: 3 yearly acquisitions (RGB + NIR + NDVI)  
- 🌈 **Multi-Spectral**: High-resolution optical imagery including RGB, NIR, and derived NDVI  
- 🌲 **Canopy Height Models (CHM)**: LiDAR-based data  
- πŸ“ **Resolution**: 0.5 m 
- 🌍 **Coverage**: France-wide dataset with departmental splits  
- πŸ“¦ **Scale**: 785k training patches, ~880 GB of data  

---

## πŸ“‚ Dataset Structure
Each sample contains:
| Column | Description |
|--------|-------------|
| `chm` | 🌲 Canopy Height Model (m) |
| `rgbnir_ndvi_[1-3]` | πŸ“Έ RGB + NIR + NDVI imagery for three years (5 bands, 256Γ—256) |
| `rgbnir_year_[1-3]` | πŸ“… Acquisition year for imagery |
| `chm_mean_year` | 🏞️ Average canopy height across years |
| `no_data_percentage` | ❌ % missing pixels |
| `crs`, `transform`, `bounds`, `resolution` | πŸ—ΊοΈ Geospatial metadata |

---

## πŸ“Š Dataset Specs
```yaml
splits:
  train:
    num_examples: 785,392
    256_256px_subtile_examples: 3,141,568
    size: 880 GB
resolution: 0.5 m
dataset_size: 880 GB
license: apache-2.0
```

---

## πŸ”¬ Scientific Context
PrediTree is the **first CHM dataset to offer multi-temporal sub-meter CHM-aligned imagery specifically designed for training and evaluating tree height prediction models**.

![Comparison with Existing Datasets](./comparison.png)

---

## πŸ“œ Citation
If you use this dataset, please cite:

```bibtex
@inproceedings{debary2025preditree,
  title={PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps},
  author={Debary, Hiyam and Fiaz, Mustansar and Klein, Levente},
  booktitle={GAIA},
  year={2025},
  url={https://huggingface.co/datasets/hiyam-d/PrediTree}
}
```

---

## πŸ”– Tags
`remote-sensing` Β· `multi-temporal` Β· `multi-spectral` Β· `canopy-height-prediction` Β· `infrared` Β· `rgb` Β· `model`