File size: 3,896 Bytes
4921bca
 
 
 
 
 
 
 
 
 
1311c81
 
4921bca
 
0864b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f43a21e
 
 
 
4921bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---

license: mit
task_categories:
- image-to-text
language:
- en
tags:
- handwritten-digits
- math-education
- ocr
- optical-character-recognition
- handwriting-recognition
size_categories:
- n<1K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: session_id
    dtype: string
  - name: question_id
    dtype: string
  - name: timestamp
    dtype: string
  - name: operand_a
    dtype: int64
  - name: operand_b
    dtype: int64
  - name: operation
    dtype: string
  - name: correct_answer
    dtype: int64
  - name: difficulty
    dtype: string
  - name: ocr_prediction
    dtype: string
  - name: ocr_parsed_number
    dtype: int64
  - name: is_correct
    dtype: bool
  - name: ocr_model_name
    dtype: string
  - name: ocr_processing_time
    dtype: float64
  - name: ocr_confidence
    dtype: float64
  - name: session_duration
    dtype: int64
  - name: session_total_questions
    dtype: int64
  - name: app_version
    dtype: string
  - name: hardware
    dtype: string
  - name: handwriting_image
    dtype: image
  - name: session_accuracy
    dtype: float64
  - name: session_total_ocr_time
    dtype: float64
  - name: session_avg_ocr_time
    dtype: float64
  splits:
  - name: train
    num_bytes: 4394274.25
    num_examples: 1414
  download_size: 4239274
  dataset_size: 4394274.25
---


# CalcTrainer Dataset 🧮

Handwritten mathematical answers collected from the [CalcTrainer](https://huggingface.co/spaces/hoololi/CalcTrainer) interactive math training application.

## Dataset Fields

### Core Data
| Field | Type | Description |
|-------|------|-------------|
| `handwriting_image` | Image | Handwritten answer image (~100x100px) |
| `ocr_prediction` | string | Raw OCR output text |
| `ocr_parsed_number` | int32 | Cleaned numeric value from OCR |
| `is_correct` | bool | Whether OCR matches correct answer |

### Mathematical Context
| Field | Type | Description |
|-------|------|-------------|
| `operand_a` | int32 | First number (e.g., 7 in "7 × 3") |
| `operand_b` | int32 | Second number (e.g., 3 in "7 × 3") |
| `operation` | string | Operation: `+`, `-`, `×`, `÷` |
| `correct_answer` | int32 | Expected correct answer |
| `difficulty` | string | `Facile` (Easy) or `Difficile` (Hard) |

### OCR Metrics
| Field | Type | Description |
|-------|------|-------------|
| `ocr_model_name` | string | OCR model used (e.g., "microsoft/trocr-base-handwritten") |
| `ocr_processing_time` | float32 | Processing time in seconds |
| `hardware` | string | Hardware used for OCR |

### Session Info
| Field | Type | Description |
|-------|------|-------------|
| `session_id` | string | Unique session identifier |
| `question_id` | string | Unique question identifier |
| `timestamp` | string | When the session was completed |
| `session_duration` | int32 | Session length (30 or 60 seconds) |
| `session_accuracy` | float32 | Overall session accuracy percentage |
| `session_avg_ocr_time` | float32 | Average OCR time per image in session |

## Usage

```python

from datasets import load_dataset



dataset = load_dataset("hoololi/CalcTrainer_dataset")

train_data = dataset["train"]



# Example: Access first item

item = train_data[0]

print(f"Math problem: {item['operand_a']} {item['operation']} {item['operand_b']} = {item['correct_answer']}")

print(f"OCR predicted: '{item['ocr_prediction']}' → {item['ocr_parsed_number']}")

print(f"Correct: {item['is_correct']}")

```

## Data Source

Real handwriting samples from users solving math problems in the CalcTrainer application. Users write answers on a digital canvas during timed math sessions.

**Generated from**: [CalcTrainer Interactive Math Training](https://huggingface.co/spaces/hoololi/CalcTrainer) 🧮