Datasets:
File size: 3,896 Bytes
4921bca 1311c81 4921bca 0864b69 f43a21e 4921bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: mit
task_categories:
- image-to-text
language:
- en
tags:
- handwritten-digits
- math-education
- ocr
- optical-character-recognition
- handwriting-recognition
size_categories:
- n<1K
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: session_id
dtype: string
- name: question_id
dtype: string
- name: timestamp
dtype: string
- name: operand_a
dtype: int64
- name: operand_b
dtype: int64
- name: operation
dtype: string
- name: correct_answer
dtype: int64
- name: difficulty
dtype: string
- name: ocr_prediction
dtype: string
- name: ocr_parsed_number
dtype: int64
- name: is_correct
dtype: bool
- name: ocr_model_name
dtype: string
- name: ocr_processing_time
dtype: float64
- name: ocr_confidence
dtype: float64
- name: session_duration
dtype: int64
- name: session_total_questions
dtype: int64
- name: app_version
dtype: string
- name: hardware
dtype: string
- name: handwriting_image
dtype: image
- name: session_accuracy
dtype: float64
- name: session_total_ocr_time
dtype: float64
- name: session_avg_ocr_time
dtype: float64
splits:
- name: train
num_bytes: 4394274.25
num_examples: 1414
download_size: 4239274
dataset_size: 4394274.25
---
# CalcTrainer Dataset 🧮
Handwritten mathematical answers collected from the [CalcTrainer](https://huggingface.co/spaces/hoololi/CalcTrainer) interactive math training application.
## Dataset Fields
### Core Data
| Field | Type | Description |
|-------|------|-------------|
| `handwriting_image` | Image | Handwritten answer image (~100x100px) |
| `ocr_prediction` | string | Raw OCR output text |
| `ocr_parsed_number` | int32 | Cleaned numeric value from OCR |
| `is_correct` | bool | Whether OCR matches correct answer |
### Mathematical Context
| Field | Type | Description |
|-------|------|-------------|
| `operand_a` | int32 | First number (e.g., 7 in "7 × 3") |
| `operand_b` | int32 | Second number (e.g., 3 in "7 × 3") |
| `operation` | string | Operation: `+`, `-`, `×`, `÷` |
| `correct_answer` | int32 | Expected correct answer |
| `difficulty` | string | `Facile` (Easy) or `Difficile` (Hard) |
### OCR Metrics
| Field | Type | Description |
|-------|------|-------------|
| `ocr_model_name` | string | OCR model used (e.g., "microsoft/trocr-base-handwritten") |
| `ocr_processing_time` | float32 | Processing time in seconds |
| `hardware` | string | Hardware used for OCR |
### Session Info
| Field | Type | Description |
|-------|------|-------------|
| `session_id` | string | Unique session identifier |
| `question_id` | string | Unique question identifier |
| `timestamp` | string | When the session was completed |
| `session_duration` | int32 | Session length (30 or 60 seconds) |
| `session_accuracy` | float32 | Overall session accuracy percentage |
| `session_avg_ocr_time` | float32 | Average OCR time per image in session |
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("hoololi/CalcTrainer_dataset")
train_data = dataset["train"]
# Example: Access first item
item = train_data[0]
print(f"Math problem: {item['operand_a']} {item['operation']} {item['operand_b']} = {item['correct_answer']}")
print(f"OCR predicted: '{item['ocr_prediction']}' → {item['ocr_parsed_number']}")
print(f"Correct: {item['is_correct']}")
```
## Data Source
Real handwriting samples from users solving math problems in the CalcTrainer application. Users write answers on a digital canvas during timed math sessions.
**Generated from**: [CalcTrainer Interactive Math Training](https://huggingface.co/spaces/hoololi/CalcTrainer) 🧮 |