Datasets:

Modalities:
Image
Size:
< 1K
Libraries:
Datasets
License:
File size: 5,726 Bytes
38bc440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "3b26d339-8e2d-4f7e-8dbf-24c649932de4",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "%pip install -q huggingface-hub plotly numpy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b7aebf99-b8fb-4892-90e2-2261202ac576",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import plotly.graph_objects as go\n",
    "import numpy as np\n",
    "\n",
    "# Setting the time scale\n",
    "time = np.arange(0, 24, 0.1)  # 24 hours, in increments of 0.1 hour\n",
    "\n",
    "# Generating usage patterns\n",
    "np.random.seed(42)\n",
    "low_usage = (np.random.poisson(70, len(time)) * (np.random.rand(len(time)) < 0.15).astype(int))//2 \n",
    "bursty_usage = np.random.poisson(70, len(time)) * (np.random.rand(len(time)) < 0.15).astype(int)\n",
    "bursty_usage = np.random.poisson(100, len(time)) * (np.random.rand(len(time)) < 0.2).astype(int)//1.4\n",
    "\n",
    "high_volume = np.random.normal(loc=15, scale=2, size=len(time))*1.75\n",
    "\n",
    "# Applying smoothing\n",
    "smooth_low_usage = np.convolve(low_usage, np.ones(50)/50, mode='same')\n",
    "smooth_bursty_usage = np.convolve(bursty_usage, np.ones(50)/50, mode='same')\n",
    "smooth_high_volume = np.convolve(high_volume, np.ones(50)/50, mode='same')\n",
    "total_usage = smooth_low_usage + smooth_bursty_usage + smooth_high_volume\n",
    "\n",
    "# Plotting using Plotly\n",
    "fig = go.Figure()\n",
    "fig.add_trace(go.Scatter(x=time, y=smooth_low_usage, mode='lines', name='Low Usage', line=dict(color='#B0C4DE')))  # Light Steel Blue\n",
    "fig.add_trace(go.Scatter(x=time, y=smooth_bursty_usage, mode='lines', name='Bursty Usage', line=dict(color='#FFB6C1')))  # Light Pink\n",
    "fig.add_trace(go.Scatter(x=time, y=smooth_high_volume, mode='lines', name='High Volume', line=dict(color='#98FB98')))  # Pale Green\n",
    "fig.add_trace(go.Scatter(x=time, y=total_usage, mode='lines', name='Total Usage', line=dict(color='#2F4F4F', width=3)))  # Dark Slate Gray\n",
    "\n",
    "fig.update_layout(\n",
    "    title={\n",
    "        'text': 'Comparison of Usage Models and Total Impact',\n",
    "        'y': 0.9,\n",
    "        'x': 0.5,\n",
    "        'xanchor': 'center',\n",
    "        'yanchor': 'top',\n",
    "        'font': {\n",
    "            'size': 24  # Adjust the font size as needed\n",
    "        }\n",
    "    },\n",
    "    xaxis_title='Time (hours)',\n",
    "    yaxis_title='Requests',\n",
    "    legend_title='Usage Pattern',\n",
    "    xaxis=dict(\n",
    "        title_font_size=28,  # Larger axis title font size\n",
    "        tickfont_size=16  # Larger tick label font size\n",
    "    ),\n",
    "    yaxis=dict(\n",
    "        title_font_size=28,  # Larger axis title font size\n",
    "        tickfont_size=16  # Larger tick label font size\n",
    "    ),\n",
    "    legend=dict(\n",
    "        x=0.5,  # Horizontal position, 0 is left\n",
    "        y=-0.1,  # Vertical position, negative values to move it down\n",
    "        orientation=\"h\",  # Horizontal layout\n",
    "        xanchor='center',  # Anchor the legend at the center\n",
    "        yanchor='top'  # Anchor the legend at the top\n",
    "    ),\n",
    "    template='plotly_white'\n",
    ")\n",
    "\n",
    "\n",
    "fig.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fc54b448-2eb3-44cc-8304-983e27138296",
   "metadata": {},
   "source": [
    "# Push Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ef615e2-ab36-43f1-b310-cac8b17d29b7",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "image_out = \"multi-lora-serving-pattern.png\"\n",
    "fig.write_image(image_out, width=1920, height=1080, scale=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13d8ee16-65ec-4a32-84e9-e6b99aab92af",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from huggingface_hub import HfApi\n",
    "\n",
    "api = HfApi()\n",
    "api.upload_file(\n",
    "    path_or_fileobj=image_out,\n",
    "    path_in_repo=f\"blog/multi-lora-serving/{image_out}\",\n",
    "    repo_id=\"huggingface/documentation-images\",\n",
    "    repo_type=\"dataset\",\n",
    "    commit_message=\"Updating title\",\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81e6b86b-c439-4acd-a072-2ef3ab782f90",
   "metadata": {},
   "source": [
    "# Push Notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "adca7ec0-25c3-42e3-84b7-f7f9342e4e4f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import HfApi\n",
    "\n",
    "api = HfApi()\n",
    "api.upload_file(\n",
    "    path_or_fileobj=\"multi-lora-serving-pattern.ipynb\",\n",
    "    path_in_repo=\"blog/multi-lora-serving/multi-lora-serving-pattern.ipynb\",\n",
    "    repo_id=\"huggingface/documentation-images\",\n",
    "    repo_type=\"dataset\",\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}