yongjielv commited on
Commit
828d8d5
·
verified ·
1 Parent(s): 57bbd0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -3
README.md CHANGED
@@ -1,3 +1,92 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # README
5
+
6
+ ## Introduction
7
+ This repository hosts Ming-Freeform-Audio-Edit, the benchmark test set for evaluating the downstream editing tasks of the Ming-UniAudio model.
8
+
9
+ This test set covers 7 distinct editing tasks, categorized as follows:
10
+
11
+ + Semantic Editing (3 tasks):
12
+
13
+ + Free-form Deletion
14
+ + Free-form Insertion
15
+ + Free-form Substitution
16
+ + Acoustic Editing (5 tasks):
17
+ + Time-stretching
18
+ + Pitch Shifting
19
+ + Dialect Conversion
20
+ + Emotion Conversion
21
+ + Volume Conversion
22
+
23
+ The audio samples are sourced from well-known open-source datasets, including seed-tts eval, LibriTTS, and Gigaspeech.
24
+
25
+ ## Dataset statistics
26
+ ### Semantic Editing
27
+ | Task Types\ # samples \ Language | Zh deletion | Zh insertion | Zh substitution | En deletion | En insertion | En substitution |
28
+ | -------------------------------- | ----------: | -----------: | --------------: | ----------: | -----------: | --------------: |
29
+ | Index-based | 186 | 180 | 36 | 138 | 100 | 67 |
30
+ | Content-based | 95 | 110 | 289 | 62 | 99 | 189 |
31
+ | Total | 281 | 290 | 325 | 200 | 199 | 256 |
32
+
33
+ *Index-based* instruction: specifies an operation on content at positions $i$ to $j$. (e.g. delete the characters or words from index 3 to 12)
34
+
35
+ *Content-based*: targets specific characters or words for editing. (e.g. insert 'hello' before 'world')
36
+ ### Acoustic Editing
37
+ | Task Types\ # samples \ Language | Zh | En |
38
+ | -------------------------------- | ---: | ---: |
39
+ | Time-stretching | 50 | 50 |
40
+ | Pitch Shifting | 50 | 50 |
41
+ | Dialect Conversion | 250 | --- |
42
+ | Emotion Conversion | 84 | 72 |
43
+ | Volume Conversion | 50 | 50 |
44
+ ## Evaluation Metrics
45
+ ### Semantic Editing
46
+ For the deletion, insertion, and substitution tasks, we evaluate the performance using four key metrics:
47
+ + Word Error Rate (WER) of the Edited Region (wer)
48
+ + Word Error Rate (WER) of the Non-edited Region (wer.noedit)
49
+ + Edit Operation Accuracy (acc)
50
+ + Speaker Similarity (sim)
51
+
52
+ These metrics can be calculated by running the following command:
53
+ ```bash
54
+ # run pip install -r requirements.txt first
55
+ bash eval_scripts/semantic/run_eval.sh /path/contains/edited/audios
56
+ ```
57
+ NOTE: the directory passed to the above script should have the structure as follows:
58
+ ```
59
+ .
60
+ ├── del
61
+ │ └── edit_del_basic
62
+ │ ├── eval_result
63
+ │ ├── hyp.txt
64
+ │ ├── input_wavs
65
+ │ ├── origin_wavs
66
+ │ ├── ref.txt
67
+ │ ├── test.jsonl
68
+ │ ├── test_parse.jsonl # This is need to run the evaluation script
69
+ │ ├── test.yaml
70
+ │ └── tts/ # This is the directory contains the edited wavs
71
+ ```
72
+
73
+ Examples of test_parse.jsonl:
74
+ ``` json
75
+ {"uid": "00107947-00000092", "input_wav_path": "wavs/00107947-00000092.wav","output_wav_path": "edited_wavs/00107947-00000092.wav", "instruction": "Please recognize the language of this speech and transcribe it. And delete '随着经济的发'.\n", "asr_label": "随着经济的发展食物浪费也随之增长", "asr_text": "随着经济的发展食物浪费也随之增长", "edited_text_label": "展食物浪费也随之增长", "edited_text": "<edit></edit>展食物浪费也随之增长", "origin_speech_url": null,}
76
+
77
+ {"uid": "00010823-00000019", "input_wav_path": "wavs/00010823-00000019.wav", "output_wav_path": "edited_wavs/00010823-00000019.wav", "instruction": "Please recognize the language of this speech and transcribe it. And delete the characters or words from index 4 to index 10.\n", "asr_label": "我们将为全球城市的可持续发展贡献力量", "asr_text": "我们将为全球城市的可持续发展贡献力量", "edited_text_label": "我们将持续发展贡献力量", "edited_text": "我们将<edit></edit>持续发展贡献力量", "origin_speech_url": null}
78
+ ```
79
+ ### Acoustic Editing
80
+ For the acoustic editing tasks, we use WER and SPK-SIM as the primary evaluation metrics. These two metrics can be calculated by running the following commands:
81
+ ```bash
82
+ bash eval_scripts/acoustic/cal_wer_sim.sh /path/contains/edited/audios
83
+ ```
84
+
85
+ Additionally, for the dialect and emotion conversion tasks, we assess the conversion accuracy by leveraging a large language model (LLM) through API calls.
86
+ ```bash
87
+ # dialect conversion accuracy
88
+ python eval_scripts/acoustic/pyscripts/dialect_api.py --output_dir <保存评测结果的根目录> --generated_audio_dir <存放已生成音频文件的目录路径>
89
+ # emotion conversion accuracy
90
+ # fisrt, run: bash eval_scripts/acoustic/cal_wer_sim.sh /path/contains/edited/audios
91
+ python pyscripts/emo_acc.py
92
+ ```