File size: 4,216 Bytes
bcf16ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a5847596",
   "metadata": {},
   "source": [
    "### Machine Learning  (Background): Gram-Schmidt process\n",
    "$\\mathbf{u_k}\\leftarrow \\mathbf{v_k}-\\sum_{j=1}^{k-1} proj_{\\mathbf{u}_j}(\\mathbf{v_k})$\n",
    "<br>$, proj_{\\mathbf{u}_j}(\\mathbf{v_k})=\\frac{< \\mathbf{v}_k,\\mathbf{u}_j>}\n",
    "{< \\mathbf{u}_j,\\mathbf{u}_j>}\\mathbf{u}_j$\n",
    "###### by Hamed Shah-Hosseini\n",
    "Explanation at: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Background-Knowledge\n",
    "<br>Explanation in Persian: https://www.instagram.com/words.persian\n",
    "<br>Code that: https://github.com/ostad-ai/Machine-Learning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "7546b91d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# importing the required module\n",
    "# درون‌بَری سنجانه نیازداشته\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "id": "3d6ffd39",
   "metadata": {},
   "outputs": [],
   "source": [
    "# this modified method can have smaller rounding errors\n",
    "# این روش سنجیده‌سازی شده، میتواند دارای ایرَنگ‌های گِرد کردن کوچکتری باشد\n",
    "def modified_gram_schmidt(A,normalize=False): # row vectors\n",
    "    A=A.astype('float32')\n",
    "    n=A.shape[0] # no. of rows\n",
    "    for j in range(n):\n",
    "        for k in range(j):\n",
    "            A[j]-=np.dot(A[j],A[k])/np.dot(A[k],A[k])*A[k]\n",
    "    if normalize:\n",
    "        for j in range(n):\n",
    "            A[j]/=np.linalg.norm(A[j])\n",
    "    return A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "id": "78a08b83",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The classical method which may have large rounding errors\n",
    "# روش سَررَده‌ای که میتواند دارای ایرَنگ‌های گِرد کردن بزرگ باشد\n",
    "def gram_schmidt(A,normalize=False):# row vectors\n",
    "    A=A.astype('float32')\n",
    "    n=A.shape[0] # no. of rows\n",
    "    temprow=np.zeros(A.shape[1])\n",
    "    for j in range(n):\n",
    "        temprow.fill(0)\n",
    "        for k in range(j):\n",
    "            temprow+=np.dot(A[j],A[k])/np.dot(A[k],A[k])*A[k]\n",
    "        A[j]-=temprow\n",
    "    if normalize:\n",
    "        for j in range(n):\n",
    "            A[j]/=np.linalg.norm(A[j])\n",
    "    return A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "id": "c5f5d909",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Classical method:\n",
      " [[ 1.  0.  1.  0.]\n",
      " [ 0.  1.  0.  1.]\n",
      " [-1.  0.  1.  0.]]\n",
      "Modified method:\n",
      " [[ 1.  0.  1.  0.]\n",
      " [ 0.  1.  0.  1.]\n",
      " [-1.  0.  1.  0.]]\n"
     ]
    }
   ],
   "source": [
    "# example, rows of matrix are vectors\n",
    "# نمونه، رجهای ماتکدان، بُردارها هستند\n",
    "A=np.array([[1,0,1,0],[1,1,1,1],[0,1,2,1]]) \n",
    "print('Classical method:\\n',gram_schmidt(A))\n",
    "print('Modified method:\\n',modified_gram_schmidt(A))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "111a3338",
   "metadata": {},
   "source": [
    "Hint: You can check that the processed vectors are orthogonal.<br>\n",
    "نکته: میتوانید چک کنید که بُردارهای پردازش شده، فرکنجی هستند"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55608cb7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}