File size: 5,473 Bytes
bcf16ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "20fce00f",
   "metadata": {},
   "source": [
    "# ML, Data Analysis\n",
    "### Probability: law of total expectation \n",
    "\n",
    "The Law of Total Expectation is a fundamental rule in probability that relates the expected value of a random variable to its conditional expectations. For two random variables $X$ and $Y$, the law states that:\n",
    "<br>$E[X]=E[E[X|Y]]$\n",
    "<hr>\n",
    "\n",
    "For a **discrete random variable** $Y$, the law of total expectation becomes:\n",
    "<br>$E[X]=∑_y P(Y=y)\\cdot E[X|Y=y]$\n",
    "<br>where $P(Y=y)$ is the probability of the random variable $Y$ takes the value $y$. Moreover, $E[X|Y=y]$ is the expected value of $X$ given that $Y=y$.\n",
    "<hr>\n",
    "\n",
    "For a **continuous random variable** $Y$, the law of total expectation becomes:\n",
    "<br>$E[X]=\\int_{-\\infty}^{\\infty} E[X|Y=y]\\cdot f_Y(y)dy$\n",
    "<br>where $f_Y(y)$ is the probability (density) function (PDF) of $Y$.\n",
    "<hr>\n",
    "\n",
    "**Contents:**\n",
    " - Using the law of total expectation for a discrete random variable $Y$\n",
    " - Using the law of total expectation for a continuous random variable $Y$\n",
    "<hr>\n",
    "https://github.com/ostad-ai/Machine-Learning\n",
    "<br> Explanation: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/background-knowledge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f0c89242",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import thr required module\n",
    "import numpy as np\n",
    "# Import the required function for integration\n",
    "from scipy.integrate import quad"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ac135579",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Expected number of ice creams sold a day: 36.5\n"
     ]
    }
   ],
   "source": [
    "# Example: discrete random variable\n",
    "# Y represents the type of weather: sunny, cloudy, rainy, or snowy.\n",
    "# X represents the number of ice creams sold in a day, which depends on the weather.\n",
    "# We want to compute the expected number of ice creams sold E[X]\n",
    "\n",
    "# Define the probabilities of each weather type\n",
    "weather_probabilities = {\n",
    "    \"sunny\": 0.5,  # Probability of sunny weather\n",
    "    \"cloudy\": 0.3,  # Probability of cloudy weather\n",
    "    \"rainy\": 0.1,   # Probability of rainy weather\n",
    "    \"snowy\": 0.1    # Probability of snowy weather\n",
    "}\n",
    "\n",
    "# Define the conditional expectations E[X | Y = y] for each weather type\n",
    "conditional_expectations = {\n",
    "    \"sunny\": 55,  # Expected ice creams sold if sunny\n",
    "    \"cloudy\": 25, # Expected ice creams sold if cloudy\n",
    "    \"rainy\": 10,  # Expected ice creams sold if rainy\n",
    "    \"snowy\": 5    # Expected ice creams sold if snowy\n",
    "}\n",
    "\n",
    "# Compute the total expectation E[X] using the Law of Total Expectation\n",
    "total_expectation = 0\n",
    "for weather, prob in weather_probabilities.items():\n",
    "    total_expectation += prob * conditional_expectations[weather]\n",
    "\n",
    "# Print the result\n",
    "print(f\"Expected number of ice creams sold a day: {total_expectation}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7dd1a6a5",
   "metadata": {},
   "source": [
    "<hr style=\"height:5px; background-color:green\">"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d70cec57",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Expected number of ice creams sold a day: 40.00000000382662\n"
     ]
    }
   ],
   "source": [
    "# Example: continuous random variable\n",
    "\n",
    "# X is the number of ice creams sold, which depends on the temperature Y. \n",
    "# The relationship is given in function conditional_expectation.\n",
    "# Y is a continuous random variable representing the temperature\n",
    "# (in Celsius) on a given day, with a uniform distribution between 0 and 30.\n",
    "\n",
    "# Define the PDF of Y\n",
    "def pdf_Y(y):\n",
    "    return 1/30 if 0 <= y <= 30 else 0\n",
    "\n",
    "# Define the conditional expectation E[X | Y = y]\n",
    "def conditional_expectation(y):\n",
    "    return 10 + 2 * y\n",
    "\n",
    "# Define the integrand for the Law of Total Expectation\n",
    "def integrand(y):\n",
    "    return conditional_expectation(y) * pdf_Y(y)\n",
    "\n",
    "# Compute the expected value using numerical integration\n",
    "expected_value, _ = quad(integrand, -np.inf, np.inf)\n",
    "\n",
    "print(f\"Expected number of ice creams sold a day: {expected_value}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d47e820d",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}