File size: 11,062 Bytes
bcf16ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "dedefa38",
   "metadata": {},
   "source": [
    "## Machine Learning\n",
    "### Subgradient Method for Lasso Regression and Elastic Net\n",
    "In **subgradient method**, we move in the negative of subgradient of the loss function in order to find the parameters. So, if the loss function is $L(\\boldsymbol{w})$, then we update the parameter vector $\\boldsymbol{w}$ by the subgradient of $L(\\boldsymbol{w})$, denoted by $\\partial L(\\boldsymbol{w})$:\n",
    "<br>$\\boldsymbol{w}\\leftarrow \\boldsymbol{w}-\\eta_k\\partial L(\\boldsymbol{w})$\n",
    "<br> where $\\eta_k>0$ is the **learning rate** (also called *step size*) at time step $k$.\n",
    "<br>In **Elastic Net**, we use the following loss function:\n",
    "<br>$L_{EN}(\\boldsymbol{w})=\\frac{1}{2}||\\boldsymbol{y}-X\\boldsymbol{w}||^2+\\lambda_1 ||\\boldsymbol{w}||_1+\\frac{\\lambda_2}{2} ||\\boldsymbol{w}||^2$\n",
    "<br>**Hint:** If we set $\\lambda_2$ to zero, we get to the **Lasso**:\n",
    "<br>$L_{Lasso}(\\boldsymbol{w})=\\frac{1}{2}||\\boldsymbol{y}-X\\boldsymbol{w}||^2+\\lambda ||\\boldsymbol{w}||_1$\n",
    "<br>Now, we compute $\\partial L_{EN}(\\boldsymbol{w})$ by:\n",
    "<br>$\\partial L_{EN}(\\boldsymbol{w})=-X^T(\\boldsymbol{y}-X\\boldsymbol{w})+\\lambda_1 \\partial ||\\boldsymbol{w}||_1+\\lambda_2 \\boldsymbol{w}$\n",
    "<br> such that\n",
    "<br> $\\partial ||\\boldsymbol{w}||_1=[\\partial |w_0|,\\partial |w_1|,...,\\partial |w_{q-1}| ]^T$\n",
    "<br> where $\\partial |w_i|=sign(w_i)$ if $w_i\\ne0$; otherwise $[-1,1]$ \n",
    "<br><br>**Reminder:** We have data points $(\\boldsymbol{x}_i,y_i)$ where the first components of $\\boldsymbol{x}_i$ are one. Thus, the rows of matrix $X$ are composed of $\\boldsymbol{x}^T_i$ such that the first column of $X$ is all one. Vectors are denoted here by bold symbols, and they are all column vectors.\n",
    "<br><br>In the following, we download the file *diabetes.csv*, which is our dataset, composing of 768 rows and 9 columns. Its last column holds the values of $y_i$, while the rest of columns holds the values of $\\boldsymbol{x}^T_i$. in fact, each row of the dataset is a data point $(\\boldsymbol{x}^T_i,y_i)$ \n",
    " - First we load the dataset, and then normalize each column of its input data (excluding the last column).\n",
    " - Next, the subgradient method is used for Elastic Net to estimate the parameters.\n",
    "      - For deeper discussion on subgradient method, see our post in Repository **Optimization**.\n",
    " - Finally, we measure the accuracy of the model for *binary classification*.\n",
    " \n",
    "**Hint:** There are better subgradient-based methods for *Elastic Net* and *Lasso* such as **Coordinate Descent** that we will discuss in the future. \n",
    "<hr>\n",
    "The Python code at: https://github.com/ostad-ai/Machine-Learning\n",
    "<br> Explanation: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "85af9aac",
   "metadata": {},
   "outputs": [],
   "source": [
    "# importing required modules\n",
    "import numpy as np\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "dddddcd7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The dataset has 768 rows and 9 columns\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Pregnancies</th>\n",
       "      <th>Glucose</th>\n",
       "      <th>BloodPressure</th>\n",
       "      <th>SkinThickness</th>\n",
       "      <th>Insulin</th>\n",
       "      <th>BMI</th>\n",
       "      <th>DiabetesPedigreeFunction</th>\n",
       "      <th>Age</th>\n",
       "      <th>Outcome</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>6</td>\n",
       "      <td>148</td>\n",
       "      <td>72</td>\n",
       "      <td>35</td>\n",
       "      <td>0</td>\n",
       "      <td>33.6</td>\n",
       "      <td>0.627</td>\n",
       "      <td>50</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>85</td>\n",
       "      <td>66</td>\n",
       "      <td>29</td>\n",
       "      <td>0</td>\n",
       "      <td>26.6</td>\n",
       "      <td>0.351</td>\n",
       "      <td>31</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8</td>\n",
       "      <td>183</td>\n",
       "      <td>64</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>23.3</td>\n",
       "      <td>0.672</td>\n",
       "      <td>32</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>89</td>\n",
       "      <td>66</td>\n",
       "      <td>23</td>\n",
       "      <td>94</td>\n",
       "      <td>28.1</td>\n",
       "      <td>0.167</td>\n",
       "      <td>21</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0</td>\n",
       "      <td>137</td>\n",
       "      <td>40</td>\n",
       "      <td>35</td>\n",
       "      <td>168</td>\n",
       "      <td>43.1</td>\n",
       "      <td>2.288</td>\n",
       "      <td>33</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Pregnancies  Glucose  BloodPressure  SkinThickness  Insulin   BMI  \\\n",
       "0            6      148             72             35        0  33.6   \n",
       "1            1       85             66             29        0  26.6   \n",
       "2            8      183             64              0        0  23.3   \n",
       "3            1       89             66             23       94  28.1   \n",
       "4            0      137             40             35      168  43.1   \n",
       "\n",
       "   DiabetesPedigreeFunction  Age  Outcome  \n",
       "0                     0.627   50        1  \n",
       "1                     0.351   31        0  \n",
       "2                     0.672   32        1  \n",
       "3                     0.167   21        0  \n",
       "4                     2.288   33        1  "
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# loading the csv dataset\n",
    "filepath='./diabetes.csv'\n",
    "df=pd.read_csv(filepath)\n",
    "rows,cols=df.shape\n",
    "print(f'The dataset has {rows} rows and {cols} columns')\n",
    "df.head() # showing top five rows"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "bf32a4ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "# separating pairs X_i and y_i into matrix Xs and vector ys\n",
    "# and then normalizing each data column separately, except the last column\n",
    "ys=df['Outcome'].values\n",
    "df_xs=df.drop(['Outcome'],axis=1)\n",
    "df_xs=(df_xs-df_xs.mean())/df_xs.std()\n",
    "Xs=df_xs.to_numpy()  #converting to a numpy array"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b9960049",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Subgradient method for Elastic Net (also for Lasso)\n",
    "# Xs is a matrix with n rows and q-1 columns\n",
    "# ys is a column vector of size n holding the dependent values yi\n",
    "# etta0 is the learning rate constant\n",
    "def subgradient_EN(Xs,ys,iter=1000,etta0=.01,landa1=5,landa2=1):\n",
    "    X=np.ones((Xs.shape[0],Xs.shape[1]+1))\n",
    "    X[:,1:]=Xs.copy()\n",
    "    w=.1*np.random.rand(X.shape[1]).reshape(-1,1)\n",
    "    for k in range(iter):\n",
    "        gk=-X.T@(ys.reshape(-1,1)-X@w)\n",
    "        gk+=landa1*np.sign(w)+landa2*w\n",
    "        etta=etta0/np.sqrt(np.sum(gk**2))\n",
    "        w-=etta*gk\n",
    "    return w.flatten()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fb2f43fb",
   "metadata": {},
   "source": [
    "In the following cell, we use the subgradient method with its default $\\lambda_1$ and $\\lambda_2$.\n",
    "However, you can change their values and observe the difference in parameters and/or accuracies."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "0c3a7617",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The estimated parameters:\n",
      "[ 0.3420026   0.06483115  0.18184957 -0.03265791  0.00229541 -0.00719638\n",
      "  0.09793499  0.04316883  0.02638846]\n"
     ]
    }
   ],
   "source": [
    "# example\n",
    "# estimated parameters for diabetes \n",
    "# because of L1 norm, \n",
    "# we see some (usually unneccesary) parameters are near to zero\n",
    "w_hat=subgradient_EN(Xs,ys)\n",
    "print(f'The estimated parameters:\\n{w_hat}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "dca3f94b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The accuracy of the model for classification: 0.7721354166666666\n"
     ]
    }
   ],
   "source": [
    "# measuring accuracy of the model for classification\n",
    "# we use value of .5 to thereshold output to zero or one\n",
    "X=np.ones((Xs.shape[0],Xs.shape[1]+1))\n",
    "X[:,1:]=Xs.copy()\n",
    "ys_hat=np.int16(X@w_hat.reshape(-1,1)>.5).flatten()  # estimated ys\n",
    "accuracy=np.sum(ys_hat==ys)/len(ys)\n",
    "print(f'The accuracy of the model for classification: {accuracy}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8b6d8a05",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}