File size: 4,397 Bytes
bcf16ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "58525ac6",
   "metadata": {},
   "source": [
    "### Machine Learning (Background): Inner products\n",
    "$\\mathbf{u}\\cdot\\mathbf{v}=\\sum_{i=1}^n u_i v_i \\,\\rightarrow \\lVert \\mathbf{u} \\rVert_{canonical}=\\sqrt{\\mathbf{u}\\cdot\\mathbf{u}}$ <br>\n",
    "$<A,B>_F=tr(A^HB) \\, \\rightarrow\\lVert A \\rVert_F=\\sqrt{<A,A>_F}$\n",
    "###### by Hamed Shah-Hosseini\n",
    "Explanation at: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Background-Knowledge\n",
    "<br>Explanation in Persian: https://www.instagram.com/words.persian\n",
    "<br>Code that: https://github.com/ostad-ai/Machine-Learning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "id": "ddd68127",
   "metadata": {},
   "outputs": [],
   "source": [
    "# importing the required module\n",
    "# درون‌بَری سنجانه نیازداشته\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "id": "b12e168b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "vector 1: [2 1 1 3]\n",
      "vector 2: [1 2 4 3]\n",
      "dot product:  17\n",
      "1-norm of vector 1: 7.0\n",
      "1-norm of vector 2 10.0\n",
      "2-norm of vector 1: 3.872983346207417\n",
      "2-norm of vector 2 5.477225575051661\n",
      "canonical norm of vector 1: 3.872983346207417\n",
      "canonical norm of vector 2 5.477225575051661\n"
     ]
    }
   ],
   "source": [
    "# dot product and p-norms, example\n",
    "# فرآورد خجک و پ-هنجارها: نمونه\n",
    "vec1=np.random.randint(1,5,4)\n",
    "vec2=np.random.randint(1,5,4)\n",
    "print('vector 1:',vec1)\n",
    "print('vector 2:',vec2)\n",
    "print('dot product: ',np.dot(vec1,vec2))\n",
    "print('1-norm of vector 1:',np.linalg.norm(vec1,ord=1))\n",
    "print('1-norm of vector 2',np.linalg.norm(vec2,ord=1))\n",
    "print('2-norm of vector 1:',np.linalg.norm(vec1,ord=2))\n",
    "print('2-norm of vector 2',np.linalg.norm(vec2,ord=2))\n",
    "print('canonical norm of vector 1:',np.sqrt(np.dot(vec1,vec1)))\n",
    "print('canonical norm of vector 2',np.sqrt(np.dot(vec2,vec2)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "id": "1a0b718b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The matrix:\n",
      " [[3 2 2]\n",
      " [3 1 4]\n",
      " [1 3 2]]\n",
      "---------------------\n",
      "Eigenvalues of matrix: [ 6.92434399  1.21506597 -2.13940996]\n",
      "Trace of matrix: 6\n",
      "sum of eigenvalues: 5.999999999999998\n",
      "-------------\n",
      "Determinant of matrix:  -18.000000000000004\n",
      "Product of eigenvalues:  -18.0\n",
      "------------------\n",
      "Frobenius norm of matrix: 7.54983443527075\n",
      "Norm using Frobenius inner product: 7.54983443527075\n"
     ]
    }
   ],
   "source": [
    "# Example for trace, determinant, and norm of a matrix\n",
    "# نمونه برای رآس، بَریهنده، و هنجار یک ماتکدان\n",
    "M=np.random.randint(1,5,(3,3))\n",
    "eigs=np.linalg.eigvals(M)\n",
    "detM=np.linalg.det(M)\n",
    "print('The matrix:\\n',M)\n",
    "print('---------------------')\n",
    "print('Eigenvalues of matrix:',eigs)\n",
    "print('Trace of matrix:',np.trace(M))\n",
    "print('sum of eigenvalues:',np.sum(eigs))\n",
    "print('-------------')\n",
    "print('Determinant of matrix: ',detM)\n",
    "print('Product of eigenvalues: ',np.prod(eigs))\n",
    "print('------------------')\n",
    "print('Frobenius norm of matrix:',np.linalg.norm(M,ord='fro'))\n",
    "print('Norm using Frobenius inner product:',np.sqrt(np.trace(M.T@M)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0df1d5e9",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}