{ "cells": [ { "cell_type": "markdown", "id": "20fce00f", "metadata": {}, "source": [ "### Deep Learning\n", "#### Sigmoid functions: Some examples \n", "$f(x)=\\frac{1}{1+e^{-x}}, f(x)=tanhx, f(x)=arctanx, f(x)=erf(x), f(x)=\\frac{x}{\\sqrt{1+x^2}}$\n", "
\n", "https://github.com/ostad-ai/Machine-Learning\n", "
Explanation: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Data-Visualization" ] }, { "cell_type": "code", "execution_count": 7, "id": "eed068e1", "metadata": {}, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "import numpy as np\n", "from scipy import special" ] }, { "cell_type": "code", "execution_count": 27, "id": "a72defc7", "metadata": {}, "outputs": [], "source": [ "# definition of some sigmoid function\n", "def logistic(x,k=1):\n", " return 1/(1+np.exp(-k*x))\n", "def tanh(x):\n", " return np.tanh(x)\n", "def arctan(x):\n", " return np.arctan(x)\n", "def erf(x):\n", " return special.erf(x)\n", "def xsqr(x):\n", " return x/np.sqrt(1+x**2)" ] }, { "cell_type": "code", "execution_count": 26, "id": "904c94d9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/p0lEQVR4nO3deZgdZZnw/+999t73vZN0QkIWAiQhLIogi7INsorg8g6IisrgOzPOvP5AcUZH5sJRZuYdL3EAkTeojKIoGCGKbBHZSSAhO+msvab3vc/+/P6o6s7pk9P76T693J/rqutUPfVU1d11Tt+nzlNPVYkxBqWUUnOfI9UBKKWUmh6a8JVSap7QhK+UUvOEJnyllJonNOErpdQ8oQlfKaXmCU34M4iI3CIiW0WkW0TaReRdEfmPmPlVImJE5MpUxhnPjtuISOYo9Z4Qkc2j1HGIyP0icsxe57eSGetoRMQjIt8SkTVx5TNy38cSkQvsGBMND6c6vvGy34eWVMcxl7hSHYCyiMhdwHeA7wF3Aj7gDOAzwFftag3AB4C9qYhxBM9gxdWXhHVdB9wOfA7YDdQmYZ3j4QH+GTgMbIspn6n7PpFPAwfjyppSEYiaWTThzxx3AA8aY74eU/Z7Efn2wIQxJgC8Me2RjcIY0ww0J2l1K4B2Y8wjSVpfUszUfT+M94wxO1MdhJp5tEln5sgFGuMLTcyl0ImaFUTEKyL/LSIdItIqIt8Xkb8TkdjlBn7qXywivxORXhHZLyKXiIjTXqZFROpE5KvxMYjIJ0Rkh4gERKRGRP5VRFwx809o0hGRBSKySUT6ReSwiHx+tB1gN/d8B8iLaYqoGu6nvT3/jpjpwyJyn4j8vYjU2s1ivxSR3LjlCkTkQRFpEBG/iOwTkb+zZ3fbr/8vLoZE+95px3bU3je7RORTcdvaICJbROSjIvKeve9fEZFT4up9TkR22/urRUT+HF8nGUTkHBEJi8itMWU59vv6WEzZP4jI2yLSaTev/V5Elsata7PdTPdZETkkIj0i8jP7M3mWiLxll20WkYUxyw3sy0/Z9btFpElE/nkM8eeLyEN2TH4ReU1Ezo6rMy37clYyxugwAwbgL1g/u28GCoapUwUY4MqYsv8C+oG/By4DHgdqsL8r7DoX2MtVA/8HuAR4HugC/ht4wC77L7ve2THLXmKXPWqv/2tAAHggps4tdp1Me1qAd4CjwKewmml2AHXA5hH2wSrgYaADOMcevMC3gJYE9Q1wR8z0YXubTwNXALcBPcCPYuqk2bEcw2o6usiu9z17/oX2er8TF0Oiff+vQAi4G7gUeMiu88mYOhvs93UbcCNwFfA+sBMQu8759nrust+rq4B7gQ/GrGfzSPsu7n0+HevXe+wgMfXuBTqBhfb0o/Z7kxdT5z+xPosD8Wyy/46cuJhq7dcr7f0ZsPfDdqympWvs9+SPCT7HdcCD9r77VyAK/E1MvSHvu/0+vIPVXPXXWJ/H32F9SZeOdV/O5yHlAehgvxFwmv1BNvYHfxfwL0B2TJ0hSQcowEr2/yemjtjLmpiygUTwzzFlq+yyF2PKHFi/Mv4tpuwN4KW4WL8GRIBKe/oWhib8Kzjxi2MREGb0pDXkn3y4Mrs8UcI/ALhiyv4v0Bgz/UV7/64ZZvuZ9npviSuP3/f5QG/sPrXLNwH7YqY32H/3spiya+x1rbCn/xHYOsp+eQF4YZQ6A+9zouGWmHoe4D2sL/2r7fmXj7BeJ9YXZTfw1zHlm7G+nHNiyn5lr+/8mLLb7bL0uH35p7jt/BjrS8CR6H3HOq8TjNuXLvs9//5Y9+V8HrRJZ4YwxrwHrMQ6IvkRVuL+JrBFhu/9cirWyd2NMesxwO+Hqf9CzHi1/fpizLJRrC+dCrCaLIB1wK/j1vM41pfDB4bZzlnAMWPMmzHrPgJsHaZ+Mr1kjAnHTO8GikXEbU9fBLxrjNk2ye2sBtJJvG9OFpGimLLDxpj9cTEBVNqv24C1IvKfInK+iHjiN2aMudgYc/EYY7sJODNuGPxMGGOCWEfI59vxPmyM+UPsCuymn+dEpBXrC6sP68vw5LhtbTHGdMZMV2Ml5VfiygDK45Z9Mm76t3adShL7CNZn6JCIuGKaFf8MrLfHtzHKvpzPNOHPIMaYgDHm98aYO4wxq4DPA8uwjmwSKbVf40+YDncCtSNmW8H4MlsQ60sEoBBwYzV/xBqYzh8hrkS9Qqajp0hH3HQQ68vTa08XYPW4mawy+3Us+yZRTGDvZ2PM88BnsRLwZqBFrK6pGROMbZcxZkvc0BpXZzvWF48X6wBjkN3e/ies/fZF4FysL40mjn82Rvrbuu2Dh9gyEiwb/3kYmC4jsUKsJrZQ3PBZYAFMyb6cU7SXzgxmjPmJiHwPq+dKIgMneYuAtpjyogR1J6IF6x+qOK68xH5tI7HGBMtgl/VPIA4/VjPEIBHJm8B6AFqBpaPWGt3Al0axvc4Bo+2bhIwxjwKP2r8MrsNqQ+/G6qI7Ff4O63O1B/iBiHw4JklfhvXr5WpjTC+AfTQ93Bf8RMV/Rgamh/tCbgO2AF9OMC8wMJKCfTlr6BH+DCEiJyRI+wObw4lHkQN2YCXDq2OWEeBjyYjJGBPB+gl9Q9ysT2C1g78+zKJvAyWxvSfso8Z1EwylFsgSkYqYsksmuK4XsH7ynzbM/OGORuPtxGrmSLRv3jdWV9VxM8Y0G2MexDqJv2oi6xiNiCzHOkl6N1a8Z2Gd9B+QhvX+xjaNfYLkHyBeGzd9HVayH+7aixewvqyPJvgFsyO+8nTsy9lGj/Bnjh0i8jusn9JNWCc5/xErqTyaaAFjTKuI/Bj4toiEsI7WPgtkY50US4Z/Bp4Vkf8H/BLrvMF3gB8bY4b7x9yE1WTwaxH5/7COvr7NxJt0/oj1y+AREfl3YDHwpQmu66fA3wB/Eusq3n32+k42xtxpjAmKyCHgEyKyE+sL9b34lRhj2kTk/wJ3i0gY68jzOqwT1p8cT0BiXWuRj90EAawFPkzMEamIvGBvdyzt+KclOO/TaYzZY5+XeRR4F/gPY0zU7g55j4g8Y4zZi3Vex4nVNfUnwClYn8WO8fxdY3CKiDwI/AarCeZzwN/GNQfF+inW+75ZRO7DOt9UgPWF1WiM+c+x7Mt5LdVnjXWwBuwkBNRjJZnDwP9g9+Sw61RxYtdAH1bXyk6gHfgBVu+Gjpg6F9jLrY7b5pBeLnbZZuCJuLIbsX5NBLGOvv6VoT1hbiGml45dtpDjifoIVlvwE0ygl45dfjlW76M+rCO2lfHx2/vsvrjlEsVWgNUjpMne13uB/x0z/xKsJO+3l60aZt87sb7Iaux9sxv4dNz2N2Cd2IwtG7IurC6NL2Cde/FjfQndydCulJvHsO8G3udEw/N2nbuwehcti/s7XgfeBJx22f/C6v3Sj9VT6+z4/TvMZ+WE94+4z1/M3/9p4BdYzS3N9r6UUdaVg9V9eGCf12Kd7D13rPtyPg8D/YDVHCIizwNuY8yHUx2LUvFEpAo4BHzMGPN0isOZV7RJZ5YTkQuxjr7ewepRcyNwMSe2LSul5jlN+LNfD9aFPHdhNe/sx7rI5olUBqWUmnm0SUcppeYJ7ZaplFLzxIxu0iksLDRVVVWpDkMppWaNrVu3thhjEl58OaMTflVVFVu2bEl1GEopNWuIyJHh5mmTjlJKzROa8JVSap7QhK+UUvNEUtrwReQRrEuam4wxqxPMvwDryTSH7KLfGmP+ZSLbCoVC1NbW4vf7Jxjt3OTz+aisrMTtdo9eWSk1LyXrpO0G4IdYNzcazl+MMVeOMH9MamtrycrKoqqqCuvGkMoYQ2trK7W1tSxevDjV4SilZqikNOkYY15mnPf/nii/309BQYEm+xgiQkFBgf7qUUqNaDrb8D8gIttF5A8jPUFeRG4TkS0isqW5OfEtxTXZn0j3iVJzgzGGcDRMJBpJ+rqnqx/+O8AiY0yPiFwBPIX16L4TGGMewnrqPevXr9f7PiilZryoiRKIBAhGggQjQULR0OBr/Hg4Gh4yHYqECEaDhCJ23WgQYwwXLbyIFfnDPexuYqYl4RtjumLGN4nIj0Sk0BjTMh3bT7bMzEx6enomtOznP/95vvrVr7JqVeIH8GzYsIFLLrmE8vLyMdVXSk3ewFF1f6Qff9g/mLxjX0cqC0VDSY8pFEn+Oqcl4YtIKXDMGGNE5CyspqT4hyrPCw8//PCI8zds2MDq1asHE/5o9ZVSJzLGEIgE6A310hfuwx/2W0PET3+4f3DcHz4+HTHJb0KJ5xQnbqcbj8OD2+HG7XQPfXW48TiteSUZJaOvcJyS1S3zF1hPtSkUkVqsx+K5AYwxDwAfB75sPwquH7jJzIHbdBpj+NrXvsYf/vAHRIS7776bG2+8kWg0yh133MGLL77IggULcLvd3HrrrXz84x/nggsu4L777mPt2rV87nOfY8uWLYgIt956KwsWLGDLli18+tOfJi0tjddff53LL7+c++67j/Xr1/PHP/6Rr3/960QiEQoLC3nhhRdSvQuUmlbGGPrD/fSEeugJ9dAf6qcv3EdfqI++cJ+V4O3x6LBPShw/QfA4PXid3sFXr9OL2+keHI+d73bYST0mkbsdbpwOZ9JimoikJHxjzIjP8DTG/BCr22ZSbd7XRHN3YPSK41SU5eWC5Sc8U/wEv/3tb9m2bRvbt2+npaWFM888k/PPP59XX32Vw4cPs3v3bpqamli5ciW33nrrkGW3bdtGXV0dO3fuBKCjo4Pc3Fx++MMfDib4WM3NzXzhC1/g5ZdfZvHixbS1TUunKKWmVSQaoTvYbQ2hbnpDvXQHu+kJ9VivwZ5JH4l7nV58Lh8+p896dflIc6YNjg/MG5LYHe450TFiRt88bTTN3QFq2/tTtv1XXnmFT37ykzidTkpKSvjwhz/M22+/zSuvvMINN9yAw+GgtLSUCy+88IRllyxZwsGDB/nKV77CX/3VX3HJJZeMuK033niD888/f7CffX5+/pT8TUpNtXA0TGegk65g15DXzkAn3aFuJvLj3+fyke5KJ8OdQbornTR32vFpdzpprrTBBO+Q+XuDgVmd8IuyvLNqvbHy8vLYvn07zz77LA888AC/+tWveOSRR6Z8u0pNl0g0Qkegg3Z/O23+NtoCbbT1t9EZ7BxXUs9wZ5DhziDTk0mWO2vwdSCZp7vSU95UMlvM6oQ/lmaXqXTeeefx4IMPcvPNN9PW1sbLL7/M97//fQKBAI8++ig333wzzc3NbN68mU996lNDlm1pacHj8XD99dezfPlyPvOZzwCQlZVFd3f3Cds655xzuP322zl06NBgk44e5auZIhQN0drfSlNfE819zTT3N9MeaB9TYvc4PWR7ssnx5liDJ4csTxZZHiupuxyzOk3NKLonJ+Haa6/l9ddf5/TTT0dE+N73vkdpaSnXX389L7zwAqtWrWLBggWsW7eOnJycIcvW1dXx2c9+lmjUOrF07733AnDLLbfwpS99afCk7YCioiIeeughrrvuOqLRKMXFxTz33HPT98cqZTPG0BHooKG3gYbeBpr7mmn3t2MYOblne7LJ9+WT58sj35c/mOB9Tt+caB+fDWb0M23Xr19v4h+AsmfPHlauXJmiiMaup6eHzMxMWltbOeuss3j11VcpLS2d0m3Oln2jZhdjDK3+Vup76qnvraehp4H+8PDnznwuH0VpRRSkFZDvy7eSvDcPt1Nv7DcdRGSrMWZ9onl6hD9FrrzySjo6OggGg3zzm9+c8mSvVDL1hfqo6a6hpruGo91H8YcT36fJ4/RQkl5CYVohxenFFKUXkeXO0iP2GUoT/hTZvHlzqkNQalw6A50c6DjAwc6DNPc1J2yiSXelU5ZZRnlGOWWZZRT49EaGs4kmfKXmsa5gF9Xt1VR3VNPSf+KdTjxOD5WZlSzIXkBFRgU53hxN8LOYJnyl5plwNMyhzkPsadtDbXftCfNzvbkszlnMouxFlKSXaJfHOUQTvlLzRGegkx0tO9jXto9AZOgV6nm+PE7KOYmTck8i35evR/FzlCZ8pea4hp4Gtjdv51DnoSHt8l6nl+X5y1mRv4LCtMIURqimiyb8cero6OB//ud/uP322ye0/MDN0+LvlaNUstX31PNW41vU99QPKa/IrGBVwSoW5yzWi5rmGX23x6mjo4Mf/ehHE074Sk215r5m3mh4g5rumsEyhzhYnrec04tPJ9+nV2jPV5rwx+nOO+/kwIEDrFmzhgsvvJD33nuP9vZ2QqEQ99xzD1dffTWHDx/m8ssv50Mf+hCvvfYaFRUV/O53vyMtLQ2AX//619x+++10dHTwk5/8hPPOOy/Ff5WaC/pCfbzV+BZ7WvcMNt04xcnqwtWsLV5Lujs9xRGqVJvdCX//89BzLPnrzSyBZR9JOOu73/0uO3fuZNu2bYTDYfr6+sjOzqalpYVzzjmHq666ygpt/35+8Ytf8OMf/5hPfOIT/OY3vxm8X044HOatt95i06ZNfPvb3+b5559P/t+g5g1jDLtbd/N6w+sEI0HAesbxKQWncEbJGWS4M1IcoZopZnfC7zkGHUdTtnljDF//+td5+eWXcTgc1NXVceyY9QW0ePFi1qxZA8AZZ5zB4cOHB5e77rrrEpYrNV5dwS4212we0r1yYfZCzi0/lzxfXuoCUzPS7E74mcl/BNh41vvYY4/R3NzM1q1bcbvdVFVV4fdbl6B7vcdvsex0OunvP37vkYF5TqeTcDicxMDVfLK3bS+v1L0yeFSf6c7k/MrzqcqpSm1gasaa3Ql/mGaXqRR7++LOzk6Ki4txu9289NJLHDlyZNrjUfNPOBrmlbpX2N26e7BsZf5Kzq04F4/Tk8LI1Ew3uxN+ChQUFHDuueeyevVqzjzzTPbu3cupp57K+vXrWbFiRarDU3Ncd7CbZw8/S1NfEwBprjQuWngRi7IXpTgyNRvo7ZHnEN03c1tLfwtPH3iavnAfACXpJVxadSmZnswUR6ZmEr09slKzXH1PPZsObRpsr19duJpzy8/V+9yocdGEr9QMd6jzEH86/CciJgLAB8s/yJriNakNSs1KmvCVmsGOdh3l2cPPEjVRRISLFlzE8vzlqQ5LzVKa8JWaoRp7G/nj4T8SNVEc4uCyqsu0y6WaFEeqA1BKnai1v5VnDj5DOBpGEC5ZdIkmezVpSUn4IvKIiDSJyM5h5ouI/EBEqkXkPRFZl4ztKjUX9YX6ePrg04P3rL9gwQUsyV2S4qjUXJCsJp0NwA+Bnw4z/3JgmT2cDfy3/TqvPPXUU5x88smsWrUq1aGoGSpqojx35Dl6Q70AfKD8A6wsON7V1oRCRAMBTH8/JhyGaBQTjUIkYr0OTCdiDETDYKLWazRiDWbg1QBmmFdiprFeB4cRDNPtO2oMUWPdnsSYmLXZ5QzMs28DZ+xKBogaa/mRNj1w87jjm495EkBMTOaEEU6YZxIVjsNEO77nrTiV/JOSe74mKQnfGPOyiFSNUOVq4KfG6vT/hojkikiZMaYhGdufaSKRCE7nid3lnnrqKa688kpN+GpYbza8SV1PHRjDSlPKyTVRurY/R6S9nUh7ByYYjFvCQDgAYb/9GoBIAMJBO6nHDGaYL4JRGDvBRowhGrXGBxJzdCBhG0OUmARuhibdgaRtGPY7QMWJXPHxmZnwx6ACqImZrrXLTkj4InIbcBvAwoULpyW48brmmmuoqanB7/fzt3/7t9x2221kZmbyxS9+keeff57777+fgwcPct999yEinHbaaXz5y19m48aN/PnPf+aee+7hN7/5DS+++CIPPfQQwWCQpUuX8rOf/Yz09HRuueUWsrOz2bJlC42NjXzve9/j4x//eKr/bDXFDnYe5L2jb5K3/xjF9X2sTAvTJ3H/IiYK/k7wd0CgB4I9VjKfIGMgHI0SiRrCUUMkfrATuJobZlwvHWPMQ8BDYF1pO1LdV+peoaW/JekxFKYV8qGKDw07/5FHHiE/P5/+/n7OPPNMrr/+enp7ezn77LP593//d3bt2sU999zDa6+9RmFhIW1tbeTn53PVVVdx5ZVXDibv3NxcvvCFLwBw991385Of/ISvfOUrADQ0NPDKK6+wd+9errrqKk34c1xXXztbn9lA5b4aXFHh5PxVOMX6lehIS8PpCeGMtuKMtCHZgsPjQpz5IAWIQ8AeRAQ8aeDJBHcaOL3g8mJcXnojDtr7o3QFDZ2BKF3+CN1BQwQXRhwYHCBgEECsVxH7OF0Gy+PLXE4HbqfgdgoepxOnU3A67EEEh0NwigOXAxwOcDoGygSHiHUi0eHAISAIItbtnQVwyMC0VWbVAQf2SIzY5/AmeiTvQJnYC8bWkRNGTqw32lN+J/oc4OGW8hUUTWh9I5muhF8HLIiZrrTLJqWlv+WEx7dNhx/84Ac8+eSTANTU1LB//36cTifXX389AC+++CI33HADhYXWc0Lz8xM/YWjnzp3cfffddHR00NPTw6WXXjo475prrsHhcLBq1arBWy6ruSnU1sa7P7+PjGPWv8Ti3KVkVi7Ct3QJHncbzq59EOjG6mNhP3tWBDKKIKvUurtrej54c8CXDU434UiU+g4/dR39NHb109gZwB+KHN+o1x7iiECm10WWz0WWz02ax0ma2xrSPU58bidpHicelwOP0xocDn3g+WwxXQl/I3CHiPwS62RtZzLa76fqwcsjrXfz5s08//zzvP7666Snp3PBBRfg9/vx+XwJ2+1Hcsstt/DUU09x+umns2HDBjZv3jw4L/b2yjP5fkdqckKNjbz/+MP0NlnJPr9iCVUfuwWPNMHhlyHkP17Z5YGiFZC/BPKqrCP4GO29QQ7X9XCktY/a9j5CkcSfG4cIOWku8jO9FGR4yEv3kJ1mJfhMrwunJvA5KykJX0R+AVwAFIpILfDPgBvAGPMAsAm4AqgG+oDPJmO7IzW7TJXOzk7y8vJIT09n7969vPHGGyfUueiii7j22mv56le/SkFBwWCTTuytlQG6u7spKysjFArx2GOPUVFRMZ1/ikqxUFMTLb99gtqWgwAEVi9hzRWfx3PgBeiM+QGcWQwV66D4FCvpx+jsC7G3sYv3j3XT0hN/QteSn+GhNMdHabaPshwf+RkeXE69BGc+SlYvnU+OMt8Af5OMbaXaZZddxgMPPMDKlStZvnw555xzzgl1TjnlFL7xjW/w4Q9/GKfTydq1a9mwYQM33XQTX/jCF/jBD37AE088wXe+8x3OPvtsioqKOPvss4d8Gai5LdLTQ9fTz1DTdpCIidByxmLOO+NCfO89bvW0AUjLhZMugsKThzQ4hyNRqpt7eK+2k7r2/hPWneVzsaggg6qCdBbkp+Nz6w3WlEVvjzyH6L6ZHUw0SueTT9J+ZD97WvfQtmYR+UsruKKz43jXyYozYMkFQ47o+4MR3q1pZ0dtJ33ByJB1FmZ6OLkkiyVFmRRmeiZ8AlHNfnp7ZKVmkP5t2wjW11PTdZTuJcX0ljm4qq0RHB5wumD5X0HJ8Ws1egNhth5pZ0ddJ8Hw8b70aR4nq8qyWVmWTVFWgjOwSsXRhK/UNIp0dND7xhu0+9tp90VoW5bFmu42sn0l1tH8qTdArnX9STAcZeuRdrYeaRtyArYk28fahbksK87Utng1LprwlZpGva+/jolEqOuppeWccrwdB1iXuQwcLjjtRsipxBjDrvouXjvQQm/geNNNZV4aZy3OZ2F+ujbZqAnRhK/UNAk1NBCoPkBrfystZekEojV80FOA1+GCVVdDTiXtvUGe33OM2piTscXZXs5fVsSC/PQURq/mAk34Sk2T3jfexGCo9zfSscJNejjEKWkFsOiDRAuWseVQG28ebCUctZpvsnwuzl1ayIrSLD2iV0mhCV+paRA61kSotpY2fxvNZS7CkRbOTivHnbeIrtKz+eM7tYNdLEXg9MpcPri0AK9Lu1Sq5NEzPlPkL3/5C6eccgpr1qyhv//EvtJqful/910Mhsa+Rjpzu/E5XKzyFXMg/3x+/mbNYLLPz/Bw45kLuHBFsSZ7lXR6hD8FIpEIjz32GHfddRef+cxnUh2OSrFIVxeBA9V0B7tpyu4n4gqy1l3MLtdpvPT+8VsnnFaZw/knF+HWnjdqiugnawJ+/vOfc9ZZZ7FmzRq++MUvEolEyMzM5B/+4R84/fTTuffee/nVr37FN7/5TT796U+nOlyVYv49eyFqONZTT1eRH0GI9hazua8KAJ/bycdOL+PilSWa7NWUmtVH+D1/+Qvh5uTfHtlVVEjmeeclnLdnzx4ef/xxXn31VdxuN7fffjuPPfbYkNsjA1RXVw+5FbKan4wx+PfsJhAJ0CTN9KYJWV1u9uWegREnhVlePnZaGbnpntFXptQkzeqEH25uIVQ36bssj8sLL7zA1q1bOfPMMwHo7++nuLh4yO2RlRoQqq0l2t1Dc28jrTl+mruFSsdKjqYtZllJJpesKsXj0qN6NT1mdcJ3FU3N7ZFHWq8xhptvvpl77713SPl999037tsjq7nPv3sPUROlpu0gh4oNOdE0uvLP5ZyTCjlnSb52t1TTalYn/OGaXabSxRdfzNVXX83f//3fU1xcTFtbm97lUiVkQiGChw5yqLWRWncXEVcGpc6FrF23ntWVuakOT81Dszrhp8KqVau45557uOSSS4hGo7jdbu6///5Uh6VmoODRozS29nD42H46l7rw4uC89ddSpclepYgm/Am48cYbufHGG4eU9fT0DJnesGHDNEakZqI9r2/jcHMHIdNGb14mHyxaSNWKs1IdlprHNOErNQXeOdhMzba9hEPH6MuDwhwf6066ABx6nkeljnYPUCrJdtV3suW1HTgiYUy4HsfCTIo86ZRUXZDq0NQ8NysT/kx+Sleq6D6ZGaqbenh+dxPpzQ0Y/Hjd/YSLfJxcsApJy011eGqem3UJ3+fz0draqgkuhjGG1tZWfD5fqkOZ12ra+ti0o4FoNEpWSwPFaW2E8t0Yl4Oliz6c6vCUmn1t+JWVldTW1tLc3JzqUGYUn89HZWVlqsOYtxo7/WzcXk8kavD1drEy20HdsUb6F3kp9GSSV7Yu1SEqNfsSvtvtZvHixakOQ6lBrT0BntpWRzAcRQQuzAzgdfnpD3TRV1DIyqI11rNqlUqxWdeko9RM0tkf4sl36+gPWo8ivGhFMaXdzXR0HCGU5iSc4WLpovNTHKVSFk34Sk1QbyDMb9+ppdsfBuDcpYWcWpxOqLGBjt5j9Bd4yfdmk1N0SoojVcqSlIQvIpeJyD4RqRaROxPMv0VEmkVkmz18PhnbVSpV/KEIT75bR0dfCIAzFuVxZlUeocZGgv4eegOd+PM9LC5cDQ49rlIzw6QbFkXECdwPfBSoBd4WkY3GmN1xVR83xtwx2e0plWqhSJSN2+pp7g4AsLoih/OWFSIihGpr6eiqAcCf56Gq/OxUhqrUEMk49DgLqDbGHDTGBIFfAlcnYb1KzTiRqOGZ9xqo67AeSbisJJOLVxQP3vUyWFtLR089gWwXaWkZFGvvHDWDJCPhVwA1MdO1dlm860XkPRF5QkQWDLcyEblNRLaIyBbteqlmkmjU8OyuRg619AKwMD+dy04pxeGwkn00ECDY2ECXvx1/npeqghWI9s5RM8h0NS7+HqgyxpwGPAc8OlxFY8xDxpj1xpj1RUVF0xSeUiMzxvDSvib2NVq3wi7L8fGx08txxTySMFRXT1d3HcZE8ed5WFiiR/dqZklGwq8DYo/YK+2yQcaYVmNMwJ58GDgjCdtVatq8dqCV92o7ASjM9HDN2ooTnlQVaqins7sBRAjmeams0DtjqpklGQn/bWCZiCwWEQ9wE7AxtoKIlMVMXgXsScJ2lZoWW4+08dahNgBy0txcu64Sn/vEu16G6hvo7G8hkOWiNG8hbl/2dIeq1Igm3cBojAmLyB3As4ATeMQYs0tE/gXYYozZCPxvEbkKCANtwC2T3a5S02FnXScvv98CQKbXxfXrKsn0nvhvY8JhemreJxDuJ5CTwYqi1dMdqlKjSsoZJWPMJmBTXNk/xYzfBdyVjG0pNV32H+vm+T3HAPC5nVy7roKcdHfCuuHmZro6rL4LgRw3C8rWT1ucSo2VXhGiVAIHmnvYtKMRY8DtFK5ZW05hpnfY+qGGRrr6rV8CjsIc8guWT1eoSo2ZJnyl4hxp7eWZ9xqIGoPLIVx1egVlOWkjLhNqqKfb30HE66S0bBmiV9eqGUg/lUrFqGnrY+M26zbHTofwV6eVsbAgfcRljDF0HthBOBrCn+uhvGDlNEWr1PhowlfKVt/Rz8bt9YSjBocIV5xaypKizFGXi3Z20tlyGLDa7yvLtNexmpk04SuFleyffPf4Pe0vXV3C0uKsMS0bamyku8+6KtxZlEd29sKpDFWpCdPrvtW8V9PWx8bt9QTDUQA+srKEFaVj70MfrKuj29+JcQrFC07W9ns1Y2nCV/PaoZZenrabcUSsZL+6Imdc62iv3kbEhAlkezip+NQpilSpydOEr+atvY1d/GnXMSJ2m/1lq0tZXjq2ZpwB0UCAztp9AARyPJSXrp2KUJVKCk34at4xxrD1SDt/2W/1m3c6hCtOLWNp8egnaOOFjx2ju89aj6skn+ycYW8Eq1TKacJX80o0avjz/ma2He0AwOt28LHTylmQP3LXy+EEamvoCdg3VVu0KllhKjUlNOGrecMfirBpRwNHWvsAyPK5uHpNBUVZw19BO5r2A+8SMRFC6S6Wlp+WrFCVmhKa8NW80Nwd4Pfb6+nst55BW5jl5Zo15WT5Et8bZyyMMbQfsZ7kGcx2U6FPt1IznCZ8NacZY9jd0MXmfc2D3S6XlWRyyarSE+5nP17Rnh562hsBcBfmkZFZOul4lZpKmvDVnOUPRXhx7/GnVInAB08q5MyqvMFn0E5GqLGRnmAXALmVJ016fUpNNU34ak460trL83ua6LKbcDK8Ti49pZRFBRlJ20Z79btEomFAKK7S9ns182nCV3NKXzDMy+83s6ehe7BsSVEGH11VQronuR/3tkPvARDMcFFaof3v1cynCV/NCZGoYWddJ68fbKU/GAHA43LwoaWFnFaZk5QmnFjGGLprD1rjeenk5S5J6vqVmgqa8NWsZozhQHMvr1a30NYbHCxfUpTBhSuKyZ5EL5yRRDo66O1pBSCrfKHeP0fNCprw1axkjKG6qYe3DrfR1BUYLM9Jc3PeskKWFmcm/ag+Vtfh3QQi1nbzF66Ysu0olUya8NWsEghH2NvQzfbaDlp7jh/Re90Ozl5cwOmVObicU3+03bJ/CwBGhNKlZ0759pRKBk34asYzxtDY5Wd3fRd7G7sH+9OD9XDxNQtyWbswF5/bOW0xdRzZC0A420NxqfbQUbODJnw1IxljONYV4EBzD/sauwevkB2Q5XOxdmEuqyty8LqmL9EDmGiU3sZaANKKS3C5fdO6faUmShO+mhGMMXT5w9S191PT3seR1l56A5EhdUSgqiCD0ypzqCrIwOGYujb6kfQ3HsXv7wEgRy+4UrOIJnyVEv5QhJaeAM3dARo6/dR39NPtDyesW5bjY3lpFstKssj0pv4j27TvDQwGgKKTtP+9mj1S/9+j5qxI1NDtD9HRF6KzP0RHf4iOviDN3YFhkzuA2yksyE9nSWEmVYXpk7rB2VRoO2hdcGWcQumyD6Y4GqXGLikJX0QuA/4LcAIPG2O+GzffC/wUOANoBW40xhxOxrbV9AlFogTCUQKhiPUajhIIR/CHovQFwvQEwvQFI/arNW7M6OtN9zgpz02jPDeNitw0irK8OFPUXDMW3fWHAXDm55KeWZjaYJQah0knfBFxAvcDHwVqgbdFZKMxZndMtc8B7caYpSJyE/BvwI2T3XYifcHwkLbfgZ/e9sQQsZPxicnEVTbDrwZjhq8bb+h6Rl5uaHzmhHnGGKIGosZg4l6Pl9vjUevVcLxOJGoIRwzhqCEcjRKJGkIRQyQaJRQxhCNRe54hFLbGJ8PpEHLT3RRkeCnK8lKY6aEwy0uW1zWlfeaTKRIM0N/cBEBW+aIUR6PU+CTjCP8soNoYcxBARH4JXA3EJvyrgW/Z408APxQRMfFZLAl213cNPrpOTR8R60g9w+si0+si3eMiw+sk2+cmJ81NTrp7ViX24bQc2EI0YjVH5S/SC67U7JKMhF8B1MRM1wJnD1fHGBMWkU6gADghM4vIbcBtAAsXLkxCeCqe0yE4BEQEt1NwOhz2q+B2OHA6BJdTcDkcuJxWHbfTgdflxOty4HNbr1738bI0tzNlvWamU9P7bw+Ol5x8TgojUWr8ZtxJW2PMQ8BDAOvXrx/3L4CTijLJSbNO8g09mByajOIPNGXIPBl2XvyyMsp6R9xmTMFEtiECDhF7sNYX++oQSVhHTVxHzT4AnB4vuQtPTXE0So1PMhJ+HbAgZrrSLktUp1ZEXEAO1snbpMvL8JCX4ZmKVStFz8AFVyWlOJzTe8GXUpOVjJuOvA0sE5HFIuIBbgI2xtXZCNxsj38ceHEq2u+Vmkrd7TWYDr3gSs1ekz7Ct9vk7wCexeqW+YgxZpeI/AuwxRizEfgJ8DMRqQbasL4UlJpVGva9OtiVqnCJXnClZp+ktOEbYzYBm+LK/ilm3A/ckIxtKZUqrYd2AOAQB4Unx/dLUGrm06c2KDVGnfYTrtIycvAUFKU4GqXGTxO+UmMQCvQQaLH6GWSULdDeTmpW0oSv1Bg01L2Lu8e6RXPuolUpjkapidGEr9QYNFW/zcDNLoq0/V7NUprwlRqD9pr3AfC50shctCzF0Sg1MZrwlRpFNBKmp9G6ljAjpxBHRkaKI1JqYjThKzWKtrb9ODr6AciuXKonbNWspQlfqVE01r2Lu8+6Q2beEn1guZq9NOErNYom+4Irl8NN3pLTUxyNUhOnCV+pUXTWHQIg05uNu6QkxdEoNXGa8JUaQXdXHeHWDgAy88v1hK2a1TThKzWC+sZ38XbZF1xV6QVXanbThK/UCOrqtuHyR3CKk/yl61IdjlKToglfqeEYQ+th6wlXmd5cPGXlKQ5IqcnRhK/UMDo7jxJubgcgO6NQT9iqWU8TvlLDqGt8B29nEICcBSsQjz46U81umvCVGkb9sV14u0I4HS5yl65JdThKTZomfKUSMNEoTTX7kKgh25uLp7wi1SEpNWma8JVKoKPjENGWTgCy0gtxl5WmOCKlJk8TvlIJ1De+O9h+n128BEdWVoojUmryNOErlUBtyy58HSFcDjc5S07VO2SqOUETvlJxTDTKsYYDOIMRsnx5eMrLUh2SUkmhCV+pOK2t+zCtXQBkpxfiKtOEr+YGTfhKxampfwvfQP/73IW4CgtTHJFSyaEJX6k4R1p24e0MWc+vXXgy4nSmOiSlkmJSCV9E8kXkORHZb7/mDVMvIiLb7GHjZLap1FQK9nfQ2F6DpztMtnbHVHPMZI/w7wReMMYsA16wpxPpN8assYerJrlNpaZMbf1beNsDgCEns1zb79WcMtmEfzXwqD3+KHDNJNenVEodPfYuvrYADnGSnV2Ou0KvsFVzx2QTfokxpsEebwSGu52gT0S2iMgbInLNSCsUkdvsuluam5snGZ5SY2ciYY607iWtPWh1xywtx6E3TFNziGu0CiLyPJCoIfMbsRPGGCMiZpjVLDLG1InIEuBFEdlhjDmQqKIx5iHgIYD169cPtz6lkq6p4R36+/oo6g6TW1SGp7Iy1SEplVSjJnxjzEeGmycix0SkzBjTICJlQNMw66izXw+KyGZgLZAw4SuVKofq38DXbnXHzM1ZgFsTvppjJtuksxG42R6/GfhdfAURyRMRrz1eCJwL7J7kdpVKrmiUwy27SGsPkOHNwePNxF2qPXTU3DLZhP9d4KMish/4iD2NiKwXkYftOiuBLSKyHXgJ+K4xRhO+mlE6m3fT5u8krTVIbmYp7rJyxO1OdVhKJdWoTTojMca0AhcnKN8CfN4efw04dTLbUWqqVR/5M+6+CK7+CLmlC/EsWpTqkJRKOr3SVqlImAPN20lrCZDmzSbdm42nShO+mns04at5r73hHVqC3aS1BsjPqsCZnYUzL+FF40rNaprw1bxXffRlJBzF1xEmL2cR7kWL9P73ak7ShK/mNdPfyf6WXaS1Bsnw5pDmztD2ezVnacJX89qxI3+mI+Ino8lPQU4V4nbjWbAg1WEpNSU04av5Kxpl39GXkYghvcOQn12JZ/FixDWpzmtKzVia8NW8FW7azf6+RtJaA+T6ivE4PHiXnpTqsJSaMprw1fxkDAerNxE0ETJaQhTmLEbcLjwLF6Y6MqWmjCZ8NT+1H2JX+/s4QlGyu3zkphXgqVqsV9eqOU0Tvpp/jKGl+jkawr1kNAcpylqEQxz4Vq5IdWRKTSlN+Gr+aT3A7pYdAGS1uinKLMORlYlbe+eoOU4TvppfolH6q//E3mA77l5DUbQQn9OHb8VKxKH/Dmpu00+4ml8a3mVX+37CJkpOi5eSzAoQ0eYcNS9owlfzh7+L8IEX2RlsxRl2UdyZTrY3G+9JS3Dm5KQ6OqWmnCZ8NT8YA+8/y96+Y/RFQ2R3ZFOSVoIgpK1dm+rolJoWmvDV/FD7NuGW99kaaMLpyqeoIUK+Lx93eZk+2UrNG3oNuZr7Oo7CgZfYG2yn1+GkoMFDhS8bhzhIP/vsVEen1LTRI3w1t/W2wI4nCEVDbA224PEspLCul3xfAZ6qKjz6oHI1j2jCV3NXTzNs/wWEA2wLtNCbu4DC7U2UZ5TjcDrJ+OAHUh2hUtNKm3TU3NRxFHb+FkL99EZDvJuRSd6RELl9UFBQQPoZ63EVFKQ6SqWmlSZ8NbdEo1D7NhzcDCYKwGs5+Xjr2sjZW8OC/OW4i4pIP3N9auNUKgU04au5o6sBqp+Dzjpr2uGkpnIttfveonjLQfJ8eeRkFZF16aWI05naWJVKAU34anYzBrrqoeZNaN53vDwtl+DyK9jyyq8oeWs/TiMszFlE9hWX49IHlKt5ShO+mn2MgZ5j0HYQmnZbJ2cHOJxQsY5I3ulse/qnePfuBKA8dyGFV16jvXLUvDaphC8iNwDfAlYCZxljtgxT7zLgvwAn8LAx5ruT2a6aR6JRCHRBXyv0NEFPI3TUQLB3aD1xYApXEHIvxn+gkeZdD9PSuheA9JwCTv7UbXgrNNmr+W2yR/g7geuAB4erICJO4H7go0At8LaIbDTG7J7ktpPLmGGKzbDz7BrDLz9q2QjrjUZH32aibYwl1oSzjPW3jmU5M8L2h9SLQjRi1YmG7fGINW4ix6dDAQjbQ8QPoX4IdIO/C0K9x7dhDCYcJRqKYEIRTDhC1KQTdhYSIZfw3kZMqIZQNMShjgMA9C0q5gOf+Ae8uXo1rVKTSvjGmD0AIjJStbOAamPMQbvuL4GrgSlJ+H1/+Dm9LzydeKYZdkLNFk4veDMhLQ/SCsGVhvVetgNgMBzsOUJ7eTadK8r4wKlXkKfJXilgetrwK4CamOlaYNjr2UXkNuA2gIUTer7oaEfkauYSqw3e4QaXB1xeK8G7vODygScTnCc+glC8Xpx5ubgKCtnhPsZOryHqcbE0dymr8lel4O9QamYaNeGLyPNAokOkbxhjfpfsgIwxDwEPAaxfv37cmdtdtYL0c/uGFopYw1gMqTfCMiOtL2beidWGW26MMSaqM+JyI8xzjHG5Me67hL/0HE7AAQ4HiBPEAU6X9epwWmVOl5XYHa6h20qwPvF4EI8Xh9eDeL2ILw1HRjoiws6WnWyr3QO4KPAVcMGCC0b79anUvDJqwjfGfGSS26gDYp8dV2mXTQn3yjNxrzxzqlavZqijXUf5S91fAEh3pXPFkivwOD0pjkqpmWU67qXzNrBMRBaLiAe4Cdg4DdtV80R9Tz3PHn4WYwwuh4vLF19Olicr1WEpNeNMKuGLyLUiUgt8AHhGRJ61y8tFZBOAMSYM3AE8C+wBfmWM2TW5sJWy1PfU88zBZwhFQwjCxQsvpiSjJNVhKTUjTbaXzpPAkwnK64ErYqY3AZsmsy2l4tX11PHMwWcIR8MIwkULL+Kk3JNSHZZSM5Zeaatmpf3t+3nx6ItETGQw2S/PX57qsJSa0TThq1nFGMOWY1t4u/FtwOoZdPHCizk57+QUR6bUzKcJX80awUiQP9f+mf3t+wHwOD1cuuhSFmQvGGVJpRRowlezRFNfE88deY7OQCcA2Z5srlhyBfm+/BRHptTsoQlfzWhRE2V783bebHiTqP1Ak8qsSj666KOkudJSHJ1Ss4smfDVjNfU1sblmMy39LYDVXn9O2TmsKVqjV9AqNQGa8NWM4w/7ebvxbXa27MTYN7nL8ebwkYUf0T72Sk2CJnw1Y4SjYXa07GDrsa0EI0EAHOJgXfE61pWsw+XQj6tSk6H/QSrlQtEQe1v38k7TO/SGjj/YpDyznPMrz9cTs0oliSZ8lTL94X72tO5he/N2+sP9g+V5vjzOKTuHquwqbatXKok04atpZYyhqa+Jna07qW6vJmIig/OyPdmsK1nHivwVOGQ67uun1PyiCV9Ni/5wPwc7DrK7bTfNfc1D5uX78llbvJZlecs00Ss1hTThqykTjAQ51HmI/R37qemuGfLMXBFhcc5iVhespiKzQptulJoGmvBVUnUHuznadZTDXYep7a4d0mQDkOHOYFXBKlYVrCLDnZGiKJWanzThq0kJRUI09jZS21NLTXfN4EVSsXwuHyflnMSyvGWUZZTp0bxSKaIJX41LKGol+Pqeeup76jnWd2zwlgex0l3pLMpexJLcJVRmVuJ0OFMQrVIqliZ8NayoidLmb6Opr2lwaPW3DmmLHyAIBWkFVGVXsSh7EcXpxXokr9QMowlfARCIBGjrb6PV30qbv43W/lZa+lsIRUPDLlOYVkh5Zrk1ZJTjc/mmMWKl1Hhpwp9HjDH0h/vpDHTSGeykzd82mNxjr3BNxO1wU5ReRHF6MaXppZRllundKpWaZTThzzFRE6U31EtPsIeuYNdgcu8IdNAZ6By8R81I3A43+b58CtMKKU4vpji9mDxfnvaRV2qW04Q/ixhjCEQC9IZ66Qv10RXqoifYM5jce0I99IR6EraxJyIi5HpzKfAVkO/LpyDNes32ZGv7u1JzkCb8GSAcDeMP+/FH/PSF+ugN9VpJPdxHX6iPvnDfYJKP79c+FpnuTHK8OeR6c8nx5gyOZ3uytfeMUvOIJvwkMsYQNmGCkSCBSIBAOEB/pN9K5vbQH+4fWhbxj6mZZTiCkO5OJ8uTRZYni0x35pDxbG82boc7iX+lUmq20oQfIxKNEIqGCEVDBCNBazwSspJ3NEAwEsQf9h9P6JHAkPFAJJCwT/pEeZwe0l3pZLgzSHenk+GyXtPdVlmmO5NMd6YepSulxmTOJfwOfwet/tbBZB2MBhOOJyqbSHPJeDjFSZorDZ/LN/jqc1rjA9PprvTBpK5H5kqpZJpUwheRG4BvASuBs4wxW4apdxjoBiJA2BizfjLbHUl1RzVvNb41VatHRPA6vUMGj9Mz5DV28Ll8VoJ3puFyuPRkqFIqZSZ7hL8TuA54cAx1LzTGnHijlSRzO088KhYR3A43HocHt9NtjTs9uB3Hx10OV8Jyt8M9JIFr0lZKzVaTSvjGmD3AjEqAy3KXUZFZMSRpO8U5o2JUSqlUmK42fAP8SUQM8KAx5qHhKorIbcBtAAsXLhz3hgbav5VSSg01asIXkeeB0gSzvmGM+d0Yt/MhY0ydiBQDz4nIXmPMy4kq2l8GDwGsX79+bFcQKaWUGtWoCd8Y85HJbsQYU2e/NonIk8BZQMKEr5RSampM+c1RRCRDRLIGxoFLsE72KqWUmkaTSvgicq2I1AIfAJ4RkWft8nIR2WRXKwFeEZHtwFvAM8aYP05mu0oppcZvsr10ngSeTFBeD1xhjx8ETp/MdpRSSk2e3u9WKaXmCU34Sik1T8hY752eCiLSDByZ4OKFwJRf2TsBGtf4aFzjo3GNz1yMa5ExpijRjBmd8CdDRLZM5T17JkrjGh+Na3w0rvGZb3Fpk45SSs0TmvCVUmqemMsJf9j79aSYxjU+Gtf4aFzjM6/imrNt+EoppYaay0f4SimlYmjCV0qpeWJWJ3wRuUFEdolIVETWx827S0SqRWSfiFw6zPKLReRNu97jIuKZghgfF5Ft9nBYRLYNU++wiOyw6yV8VGSS4/qWiNTFxHbFMPUus/dhtYjcOQ1xfV9E9orIeyLypIjkDlNvWvbXaH+/iHjt97ja/ixVTVUsMdtcICIvichu+/P/twnqXCAinTHv7z9NdVz2dkd8X8TyA3t/vSci66YhpuUx+2GbiHSJyN/F1ZmW/SUij4hIk4jsjCnLF5HnRGS//Zo3zLI323X2i8jNEwrAGDNrB6xn6S4HNgPrY8pXAdsBL7AYOAA4Eyz/K+Ame/wB4MtTHO+/A/80zLzDQOE07rtvAf84Sh2nve+WAB57n66a4rguAVz2+L8B/5aq/TWWvx+4HXjAHr8JeHwa3rsyYJ09ngW8nyCuC4Cnp+vzNNb3BeseW38ABDgHeHOa43MCjVgXJ037/gLOB9YBO2PKvgfcaY/fmegzD+QDB+3XPHs8b7zbn9VH+MaYPcaYfQlmXQ380hgTMMYcAqqx7sE/SKxnHl4EPGEXPQpcM1Wx2tv7BPCLqdrGFDgLqDbGHDTGBIFfYu3bKWOM+ZMxJmxPvgFUTuX2RjGWv/9qrM8OWJ+li+33esoYYxqMMe/Y493AHqBiKreZRFcDPzWWN4BcESmbxu1fDBwwxkz0Cv5JMdaDn9riimM/Q8PloUuB54wxbcaYduA54LLxbn9WJ/wRVAA1MdO1nPgPUQB0xCSXRHWS6TzgmDFm/zDzBx4DuVWsxzxOhzvsn9WPDPMzciz7cSrdinU0mMh07K+x/P2DdezPUifWZ2ta2E1Ia4E3E8z+gIhsF5E/iMgp0xTSaO9Lqj9TNzH8QVcq9hdAiTGmwR5vxLqlfLyk7LfpeqbthElyHrE4pcYY4ycZ+eh+zI+BTEZcwH8D38H6B/0OVnPTrZPZXjLiGthfIvINIAw8Nsxqkr6/ZhsRyQR+A/ydMaYrbvY7WM0WPfb5maeAZdMQ1ox9X+xzdFcBdyWYnar9NYQxxoj17O8pMeMTvpnYIxbrgAUx05V2WaxWrJ+TLvvILFGdpMQoIi7gOuCMEdaR9MdAjnXficiPgacTzBrLfkx6XCJyC3AlcLGxGzATrGM6Hps5lr9/oE6t/T7nYH22ppSIuLGS/WPGmN/Gz4/9AjDGbBKRH4lIoTFmSm8UNob3ZUo+U2N0OfCOMeZY/IxU7S/bMREpM8Y02M1bTQnq1GGdZxhQiXXuclzmapPORuAmuwfFYqxv6rdiK9iJ5CXg43bRzcBU/WL4CLDXGFObaKak4DGQce2m1w6zvbeBZWL1ZvJg/RzeOMVxXQZ8DbjKGNM3TJ3p2l9j+fs3Yn12wPosvTjcl1Sy2OcIfgLsMcb8xzB1SgfOJYjIWVj/61P6RTTG92Uj8Nd2b51zgM6Y5oypNuyv7FTsrxixn6Hh8tCzwCUikmc3v15il43PVJ+VnsoBK1HVAgHgGPBszLxvYPWw2AdcHlO+CSi3x5dgfRFUA78GvFMU5wbgS3Fl5cCmmDi228MurKaNqd53PwN2AO/ZH7iy+Ljs6SuweoEcmKa4qrHaKrfZwwPxcU3n/kr09wP/gvWFBOCzPzvV9mdpyTTsow9hNcW9F7OfrgC+NPA5A+6w9812rJPfH5yGuBK+L3FxCXC/vT93ENO7bopjy8BK4DkxZdO+v7C+cBqAkJ27Pod1zucFYD/wPJBv110PPByz7K3256wa+OxEtq+3VlBKqXlirjbpKKWUiqMJXyml5glN+EopNU9owldKqXlCE75SSs0TmvCVUmqe0ISvlFLzxP8PU78DlBSEKVUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xs=np.linspace(-10,10,200)\n", "fs=[logistic,tanh,arctan,erf]#,xsqr]\n", "for f in fs:\n", " ys=f(xs)\n", " plt.plot(xs,ys,label=f.__name__,lw=2.5,alpha=.5)\n", "plt.title('Sigmoid functions: Examples',fontsize=15)\n", "plt.legend(); plt.show()" ] }, { "cell_type": "code", "execution_count": 18, "id": "e8065e3d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'logistic'" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "f.__name__" ] }, { "cell_type": "code", "execution_count": null, "id": "5ceb7829", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }