{ "cells": [ { "cell_type": "markdown", "id": "a5847596", "metadata": {}, "source": [ "### Machine Learning (Background): Gram-Schmidt process\n", "$\\mathbf{u_k}\\leftarrow \\mathbf{v_k}-\\sum_{j=1}^{k-1} proj_{\\mathbf{u}_j}(\\mathbf{v_k})$\n", "
$, proj_{\\mathbf{u}_j}(\\mathbf{v_k})=\\frac{< \\mathbf{v}_k,\\mathbf{u}_j>}\n", "{< \\mathbf{u}_j,\\mathbf{u}_j>}\\mathbf{u}_j$\n", "###### by Hamed Shah-Hosseini\n", "Explanation at: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Background-Knowledge\n", "
Explanation in Persian: https://www.instagram.com/words.persian\n", "
Code that: https://github.com/ostad-ai/Machine-Learning" ] }, { "cell_type": "code", "execution_count": 51, "id": "7546b91d", "metadata": {}, "outputs": [], "source": [ "# importing the required module\n", "# درون‌بَری سنجانه نیازداشته\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 39, "id": "3d6ffd39", "metadata": {}, "outputs": [], "source": [ "# this modified method can have smaller rounding errors\n", "# این روش سنجیده‌سازی شده، میتواند دارای ایرَنگ‌های گِرد کردن کوچکتری باشد\n", "def modified_gram_schmidt(A,normalize=False): # row vectors\n", " A=A.astype('float32')\n", " n=A.shape[0] # no. of rows\n", " for j in range(n):\n", " for k in range(j):\n", " A[j]-=np.dot(A[j],A[k])/np.dot(A[k],A[k])*A[k]\n", " if normalize:\n", " for j in range(n):\n", " A[j]/=np.linalg.norm(A[j])\n", " return A" ] }, { "cell_type": "code", "execution_count": 40, "id": "78a08b83", "metadata": {}, "outputs": [], "source": [ "# The classical method which may have large rounding errors\n", "# روش سَررَده‌ای که میتواند دارای ایرَنگ‌های گِرد کردن بزرگ باشد\n", "def gram_schmidt(A,normalize=False):# row vectors\n", " A=A.astype('float32')\n", " n=A.shape[0] # no. of rows\n", " temprow=np.zeros(A.shape[1])\n", " for j in range(n):\n", " temprow.fill(0)\n", " for k in range(j):\n", " temprow+=np.dot(A[j],A[k])/np.dot(A[k],A[k])*A[k]\n", " A[j]-=temprow\n", " if normalize:\n", " for j in range(n):\n", " A[j]/=np.linalg.norm(A[j])\n", " return A" ] }, { "cell_type": "code", "execution_count": 50, "id": "c5f5d909", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Classical method:\n", " [[ 1. 0. 1. 0.]\n", " [ 0. 1. 0. 1.]\n", " [-1. 0. 1. 0.]]\n", "Modified method:\n", " [[ 1. 0. 1. 0.]\n", " [ 0. 1. 0. 1.]\n", " [-1. 0. 1. 0.]]\n" ] } ], "source": [ "# example, rows of matrix are vectors\n", "# نمونه، رجهای ماتکدان، بُردارها هستند\n", "A=np.array([[1,0,1,0],[1,1,1,1],[0,1,2,1]]) \n", "print('Classical method:\\n',gram_schmidt(A))\n", "print('Modified method:\\n',modified_gram_schmidt(A))" ] }, { "cell_type": "markdown", "id": "111a3338", "metadata": {}, "source": [ "Hint: You can check that the processed vectors are orthogonal.
\n", "نکته: میتوانید چک کنید که بُردارهای پردازش شده، فرکنجی هستند" ] }, { "cell_type": "code", "execution_count": null, "id": "55608cb7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }