\n",
"https://github.com/ostad-ai/Machine-Learning\n",
" Explanation: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/background-knowledge"
]
},
{
"cell_type": "markdown",
"id": "6c88da5f",
"metadata": {},
"source": [
"For set operaions in Python, see our repository for Python\n",
" https://github.com/ostad-ai/Python-Everything"
]
},
{
"cell_type": "markdown",
"id": "9b279ce8",
"metadata": {},
"source": [
"For indepedent events $A_1$, $A_2$,...,$A_m$ we have: \n",
"$P(A_1,A_2,...,A_m)=P(A_1)P(A_2)...P(A_m)$ \n",
"**Special case:** for two independent events $A$ and $B$: \n",
"$P(A,B)=P(A)P(B)$"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "93a7d14f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Experiment: rolling a die\n",
"Probability of A={1, 3, 5} is 0.5\n",
"Probability of B={2, 3, 5} is 0.5\n",
"Probability of A and B: is 0.3333333333333333\n",
"Two events A={1, 3, 5} and B={2, 3, 5} are not independent.\n"
]
}
],
"source": [
"#probability of event A with sample space SS\n",
"def prob(A,SS):\n",
" return len(A)/len(SS)\n",
"\n",
"# event of intersection A and B \n",
"def intersection(A,B):\n",
" return A&B\n",
"\n",
"# Experiment: rolling a die (dice)\n",
"SS=set(range(1,7))\n",
"A={1,3,5} # odd numbers in first roll\n",
"B={2,3,5} #prime numbers in first roll\n",
"pA=prob(A,SS)\n",
"pB=prob(B,SS)\n",
"p_AB=prob(intersection(A,B),SS)\n",
"p_A,p_B=prob(A,SS),prob(B,SS)\n",
"print('Experiment: rolling a die')\n",
"print(f'Probability of A={A} is {p_A}')\n",
"print(f'Probability of B={B} is {p_B}')\n",
"print(f'Probability of A and B: is {p_AB}')\n",
"if p_AB==p_A*p_B:\n",
" print(f'Two events A={A} and B={B} are independent.')\n",
"else:\n",
" print(f'Two events A={A} and B={B} are not independent.')"
]
},
{
"cell_type": "markdown",
"id": "cb243ee6",
"metadata": {},
"source": [
"Let's examine the probability of systems to work if they are composed of several independent components: \n",
"- **Series system:** Components are connected in a series form\n",
"- **Parallel system:** Components are connected in a parallel from"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d8c05267",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"We have 3 components with probs. [0.6, 0.3, 0.5] to work correctly.\n",
"Probability of series network to work: 0.09\n",
"Probability of parallel network to work: 0.86\n"
]
}
],
"source": [
"def prob_sys_series(ps):\n",
" result=1\n",
" for p in ps:\n",
" result*=p\n",
" return result\n",
"\n",
"def prob_sys_parallel(ps):\n",
" result=1\n",
" for p in ps:\n",
" result*=(1-p)\n",
" return 1-result\n",
"\n",
"# check with what probabilty a system works \n",
"# if it has two components with the following probabilities to work\n",
"ps=[.6,.3,.5] #prob. of components\n",
"print(f'We have {len(ps)} components with probs. {ps} to work correctly.')\n",
"print(f'Probability of series network to work: {prob_sys_series(ps)}')\n",
"print(f'Probability of parallel network to work: {prob_sys_parallel(ps)}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74ae0061",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}