{
"cells": [
{
"cell_type": "markdown",
"id": "58525ac6",
"metadata": {},
"source": [
"### Machine Learning (Background): Inner products\n",
"$\\mathbf{u}\\cdot\\mathbf{v}=\\sum_{i=1}^n u_i v_i \\,\\rightarrow \\lVert \\mathbf{u} \\rVert_{canonical}=\\sqrt{\\mathbf{u}\\cdot\\mathbf{u}}$
\n",
"$_F=tr(A^HB) \\, \\rightarrow\\lVert A \\rVert_F=\\sqrt{_F}$\n",
"###### by Hamed Shah-Hosseini\n",
"Explanation at: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Background-Knowledge\n",
"
Explanation in Persian: https://www.instagram.com/words.persian\n",
"
Code that: https://github.com/ostad-ai/Machine-Learning"
]
},
{
"cell_type": "code",
"execution_count": 98,
"id": "ddd68127",
"metadata": {},
"outputs": [],
"source": [
"# importing the required module\n",
"# درونبَری سنجانه نیازداشته\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 99,
"id": "b12e168b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"vector 1: [2 1 1 3]\n",
"vector 2: [1 2 4 3]\n",
"dot product: 17\n",
"1-norm of vector 1: 7.0\n",
"1-norm of vector 2 10.0\n",
"2-norm of vector 1: 3.872983346207417\n",
"2-norm of vector 2 5.477225575051661\n",
"canonical norm of vector 1: 3.872983346207417\n",
"canonical norm of vector 2 5.477225575051661\n"
]
}
],
"source": [
"# dot product and p-norms, example\n",
"# فرآورد خجک و پ-هنجارها: نمونه\n",
"vec1=np.random.randint(1,5,4)\n",
"vec2=np.random.randint(1,5,4)\n",
"print('vector 1:',vec1)\n",
"print('vector 2:',vec2)\n",
"print('dot product: ',np.dot(vec1,vec2))\n",
"print('1-norm of vector 1:',np.linalg.norm(vec1,ord=1))\n",
"print('1-norm of vector 2',np.linalg.norm(vec2,ord=1))\n",
"print('2-norm of vector 1:',np.linalg.norm(vec1,ord=2))\n",
"print('2-norm of vector 2',np.linalg.norm(vec2,ord=2))\n",
"print('canonical norm of vector 1:',np.sqrt(np.dot(vec1,vec1)))\n",
"print('canonical norm of vector 2',np.sqrt(np.dot(vec2,vec2)))"
]
},
{
"cell_type": "code",
"execution_count": 102,
"id": "1a0b718b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The matrix:\n",
" [[3 2 2]\n",
" [3 1 4]\n",
" [1 3 2]]\n",
"---------------------\n",
"Eigenvalues of matrix: [ 6.92434399 1.21506597 -2.13940996]\n",
"Trace of matrix: 6\n",
"sum of eigenvalues: 5.999999999999998\n",
"-------------\n",
"Determinant of matrix: -18.000000000000004\n",
"Product of eigenvalues: -18.0\n",
"------------------\n",
"Frobenius norm of matrix: 7.54983443527075\n",
"Norm using Frobenius inner product: 7.54983443527075\n"
]
}
],
"source": [
"# Example for trace, determinant, and norm of a matrix\n",
"# نمونه برای رآس، بَریهنده، و هنجار یک ماتکدان\n",
"M=np.random.randint(1,5,(3,3))\n",
"eigs=np.linalg.eigvals(M)\n",
"detM=np.linalg.det(M)\n",
"print('The matrix:\\n',M)\n",
"print('---------------------')\n",
"print('Eigenvalues of matrix:',eigs)\n",
"print('Trace of matrix:',np.trace(M))\n",
"print('sum of eigenvalues:',np.sum(eigs))\n",
"print('-------------')\n",
"print('Determinant of matrix: ',detM)\n",
"print('Product of eigenvalues: ',np.prod(eigs))\n",
"print('------------------')\n",
"print('Frobenius norm of matrix:',np.linalg.norm(M,ord='fro'))\n",
"print('Norm using Frobenius inner product:',np.sqrt(np.trace(M.T@M)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0df1d5e9",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}