{
"cells": [
{
"cell_type": "markdown",
"id": "b4454654",
"metadata": {},
"source": [
"### Machine Learning: naive Bayes classifier for continuous data from scratch in Python\n",
"$P(C_k|\\textbf{x})\\propto P(C_k) P(\\textbf{x}|C_k)$\n",
"###### by Hamed Shah-Hosseini\n",
"Explanation at: https://www.pinterest.com/HamedShahHosseini/\n",
"
https://github.com/ostad-ai/Machine-Learning"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "50b8a8b6",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from math import pi,sqrt,exp"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "31065e4c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of samples in dataset:150\n",
"Number of classes: 3\n",
"Features:['Sepal-length', ' Sepal-width', 'Petal-length', 'Petal-width']\n"
]
}
],
"source": [
"# Reading dataset\n",
"iris=pd.read_csv('./datasets/iris-uci.csv')\n",
"print(f'Number of samples in dataset:{len(iris)}')\n",
"print(f'Number of classes: {iris[\"Class\"].unique().shape[0]}')\n",
"print(f'Features:{iris.columns[:-1].to_list()}')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "d8583f14",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Sepal-length | \n",
" Sepal-width | \n",
" Petal-length | \n",
" Petal-width | \n",
" Class | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 5.1 | \n",
" 3.5 | \n",
" 1.4 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" 1 | \n",
" 4.9 | \n",
" 3.0 | \n",
" 1.4 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" 2 | \n",
" 4.7 | \n",
" 3.2 | \n",
" 1.3 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" 3 | \n",
" 4.6 | \n",
" 3.1 | \n",
" 1.5 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
" 4 | \n",
" 5.0 | \n",
" 3.6 | \n",
" 1.4 | \n",
" 0.2 | \n",
" Iris-setosa | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Sepal-length Sepal-width Petal-length Petal-width Class\n",
"0 5.1 3.5 1.4 0.2 Iris-setosa\n",
"1 4.9 3.0 1.4 0.2 Iris-setosa\n",
"2 4.7 3.2 1.3 0.2 Iris-setosa\n",
"3 4.6 3.1 1.5 0.2 Iris-setosa\n",
"4 5.0 3.6 1.4 0.2 Iris-setosa"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# The first five rows of dataset\n",
"iris.head()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "37b96427",
"metadata": {},
"outputs": [],
"source": [
"# Naive Bayes for continuous data\n",
"class NBContinuous:\n",
" def __init__(self):\n",
" pass\n",
" def fit(self,data_frame,class_column):\n",
" df=data_frame\n",
" self.groups_m_v=df.groupby(class_column).agg(['mean','var'])\n",
" self.features=df.columns.to_list()\n",
" self.features.remove(class_column)\n",
" self.priors=(pd.value_counts(df[class_column])/len(df)).to_dict() #prior \n",
" self.cNames=df[class_column].unique() #class categories\n",
" def gaussian(self,x,mean,var):\n",
" return (1./sqrt(2*pi*var))*exp(-(x-mean)**2/(2*var))\n",
" def predict(self,query,with_priors=True):\n",
" probs_classes=dict() \n",
" for cName in self.cNames:\n",
" if with_priors:\n",
" prob=self.priors[cName]\n",
" else:\n",
" prob=1.\n",
" for q,feature in zip(query,self.features):\n",
" mean=self.groups_m_v.loc[cName][feature]['mean']\n",
" var=self.groups_m_v.loc[cName][feature]['var']\n",
" prob*=self.gaussian(q,mean,var) \n",
" probs_classes[cName]=prob\n",
" predict=max(probs_classes,key=probs_classes.get)\n",
" return predict,probs_classes"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "15ae913b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy:% 96.67\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Iris-setosa | \n",
" Iris-versicolor | \n",
" Iris-virginica | \n",
"
\n",
" \n",
" \n",
" \n",
" Iris-setosa | \n",
" 13 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Iris-versicolor | \n",
" 0 | \n",
" 8 | \n",
" 1 | \n",
"
\n",
" \n",
" Iris-virginica | \n",
" 0 | \n",
" 0 | \n",
" 8 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Iris-setosa Iris-versicolor Iris-virginica\n",
"Iris-setosa 13 0 0\n",
"Iris-versicolor 0 8 1\n",
"Iris-virginica 0 0 8"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Experiment with the Naive Baye's Classifier\n",
"classCol='Class'\n",
"class_names=list(iris[classCol].unique())\n",
"# Splitting dataset into training and test sets\n",
"iris_train=iris.sample(frac=.8)\n",
"iris_test=iris.drop(iris_train.index)\n",
"Nts=iris_test.shape[0] #number of test samples\n",
"columns=iris.columns.to_list()\n",
"classCol_inx=columns.index(classCol)\n",
"nbayes=NBContinuous()\n",
"# Training with training set\n",
"nbayes.fit(iris_train,classCol)\n",
"# Testing with test set\n",
"accuracy=0.; actuals=[]; predicteds=[]\n",
"for n in range(Nts):\n",
" query=iris_test.iloc[n].to_list()\n",
" #remove the value of class column\n",
" class_q=query.pop(classCol_inx)\n",
" actuals.append(class_q)\n",
" predicted=nbayes.predict(query)[0]\n",
" predicteds.append(predicted)\n",
" accuracy+=predicted==class_q\n",
"accuracy/=Nts \n",
"print('Accuracy:%',round(100*accuracy,2))\n",
"#-Computing confusion matrix\n",
"Nclasses=len(class_names)\n",
"confusion_mat=pd.DataFrame(0,index=class_names,\n",
" columns=class_names)\n",
"for n in range(Nts):\n",
" confusion_mat.loc[actuals[n],predicteds[n]]+=1\n",
"confusion_mat\n",
"#--Could use pd.crosstab for confusion matrix"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da82c766",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}