{ "cells": [ { "cell_type": "markdown", "id": "20fce00f", "metadata": {}, "source": [ "### Deep Learning\n", "#### Logistic function \n", "$f(x)=\\frac{1}{1+e^{-x}}$\n", "
\n", "https://github.com/ostad-ai/Machine-Learning\n", "
Explanation: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/Data-Visualization" ] }, { "cell_type": "code", "execution_count": 1, "id": "eed068e1", "metadata": {}, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "id": "a72defc7", "metadata": {}, "outputs": [], "source": [ "# definition of logistic function\n", "def logistic(x,k=1):\n", " return 1/(1+np.exp(-k*x))" ] }, { "cell_type": "code", "execution_count": 3, "id": "904c94d9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEXCAYAAAC9A7+nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABUQklEQVR4nO2dd3ycxbW/n9lV773YklzlDrjiAg6u2KbYJDRDEgJJIISYQMol5EcChJRLSHJJuCEQSkK5oYUEMAQMNrYxNuAG2LjIltxlW93qbcv8/pjVaiWtpJW0Kiuf5/NZ71vmnffsever2TNnzlFaawRBEITAx9LfBgiCIAj+QQRdEARhkCCCLgiCMEgQQRcEQRgkiKALgiAMEkTQBUEQBgki6IIgCIMEEXRBEIRBggi6IPQxSqlrlFKblVLVSqmj/W2PMHgQQReEvucM8Gfgnv42RBhciKALvYJSaoFSapNSqkwppZVSDyilJiml7Eqpxd3sc4VSqlEple1ve/sSrfVarfVLwLH+tkUYXCjJ5SL4G6XUWOAL4DPgaaAW+Ah4HAjVWl/Ug753Ase01l/xh639iVLqCuCPWuvh/WyKMEgI6m8DhEHJt4Bg4Gqt9XEApdRsYDFwRQ/7/hPwrFJqotZ6bw/7EoRBhbhchN7gQiC3Scxd3AaUAG/3sO9/Y0b8t/awH0EYdIigC35DKfULpZQGZgPZLt+5VkpdjRmZr9Na21pdE66UyldKHVdKhbY695RSyqGUWtl0TGtdDXwIXNXrL0gQAgxxuQj+5B2gGngIeJHm0fhxIArY1voCrXWdUuo+4CnMKP5hAKXUf2NcN99zTSB68jGwRCk1Tmud07pPpZQFSOiC3WVaa2cX2vcIpZQV45IKNrsqDNBa64a+skEYnIigC35Da/2JUmqIa/cfWuv/ACilbnIdO9TOpc8APwB+qpR6Evg2cDdwn9b6L17aN/UzEWgj6EAWcKQLpo8AjnahfU/5OvB3j/06TMTL8D60QRiEiKAL/maq6/lTj2PJrucybxdorR1KqbuBN4E3gPnA/2qtH2jnHqWu55R2zhdgJmB9paALbXuM1voZzB8xQfArIuiCv5kKFGqtT3sca4qNVe1dpLV+Syn1GbAAeAm4o4N7NPXjNeZWa10PrPPZYkEYJIigC/5mCi1H5wDFrud2/dpKqWuB81y7VbrjBRJN/RR7O+nyUSd7O9cOxVprRxfaC8KARARd8Bsu/3kaZkGRJ3tcz15XeCqlLgaeA14DbMA3lVIPa633t3Or0a36bU0mfvChuyJ2Bg1a63Z/IQmDAxF0wZ9485+DEfhKYFbrC5RSMzGx5VuArwIZwJXAf9P+IqRZGLfOgXbO+8WHLgIoBBoi6II/aRL0FiN016Tnv4ErlFKhTeF5SqkJmNDGg8AVruOHlFJPA7cqpS7QWm/x7EspFQXMBf7WnhFniw/dNZGcp7V+tb9tEQYGsrBI8CdTgHKt9WEv5x4D4oDLAJRSWcC7mMyDy7TWlR5tf4kJ5XvISz9XAhHAX/1ndsAyGfi8n20QBhCSnEvoM5RSa4BIrfXcHvTxKXB0MCTn6ilKqW3ATGAFcB1mYdY7wHIgHpOi9yta64p+M1LoU0TQhT5DKTUR2AVcorV+rxvXXwG8AkzUWuf62bz27nkN8H3MaLhkoGRGVEpFAGuBzUAjZhGWUym1HFgJpAPXaa37NMZe6F9E0AWhA1y52xOBVOAHvgi6Umo4sLEn4u+aK/A2D/CU1voppdQs4FXgfa31NzyuS8espF2utR708whCS8SHLggd0NvFKJRSX1ZKbVdKlSul9iqlFrjuW621nuXl8ZTr0snAfa4+rnI9xwL/h/lF8a3esFcY2IigC0I/oZT6DiYZ2fcwi6V+BbzcOutkO0zGTIjeDNzsCv98EbjHJfoxSqlpvWG3MHARl4sg+EBXqgv54nJxjaZPYFwjGz2OlwJztdb7emaxcDYiceiC4AeUUn8BrnftWoAopVS5R5PLtNabPfbnY1IKv65Ui/VLoZiQTUHoMiLoguAHtNa3YcIGfZ0UTQQ+7El9VUFojfjQBaEDlFJWVwEKdzEKH33cnbEDmKaUWqgMYUqp2UqpkX7oWzhLEUEXhI75OsYF8gqmcEYd0F4OGZ/RWu8Cbgf+AlRh/On3Y2LKBaFbyKSoIAjCIEFG6IIgCIOEfpsUTUpK0sOHD++v2wuCIAQkO3fuLNFaey3g0m+CPnz4cHbs2NFftxcEQQhIlFLtrloWl4sgCMIgQQRdEARhkCCCLgiCMEgYUCtFbTYb+fn51NfX97cp/UZYWBgZGRkEBwf3tymCIAQYA0rQ8/PziY6OZvjw4bTKb3FWoLWmtLSU/Px8RowY0d/mCIIQYHTqclFK/U0pVaSU2tPOeaWUekQplaeU2q2UmuqtnS/U19eTmJh4Voo5gFKKxMTEs/oXiiAI3ceXEfozmNqEz7VzfhmQ7XrMxBQDntldg85WMW/ibH/9g4E+XX19Fi709un9DYAV8JYgq9/77FTQtdabXNnj2mMF8Jw27/InSqk4pVS61vq0v4wUhIFEeWEtuTsKOXmwnOqyehrq7DgdGqfdaZ6dA19MhP4lyFbJd56+wu/9+iPKZSgmsVAT+a5jbVBK3aKU2qGU2lFcXOyHW/ufo0ePMmnSpC5ft3PnTs455xxGjx7N97//fa+jiJycHGbPnk1oaCi///3v/WGu0Mfs3pDPC/d/wrY3j3DywBkqiuuor7bRWGfHbnOKmAv9Sp9OimqtnwCeAJg+ffqg+uR/97vf5cknn2TmzJlccsklrFmzhmXLlrVok5CQwCOPPMLrr7/eP0YKPWLH20fZuvqwez9hSCQJ6ZGERgZjtSosQRYsVoXFqnrkOnOUltKQl0vjsRPYiwp9cKu4GlgsqNBQVEgIKijIPKxWlNUKVisqyArWIJTFAhYFKFDmoVzPADZtp85RT529jnpnAw2OBuodjdicnSeC1N142QoLFmUeSimUyy6FwqJAodzHzfvacl+hPPpybbtei/vfpsPe/m0+bfa1E6Wd4HSA02G2tQO0E5xO487xPOb5H+Sx2dFbYQ1yAFd09a3qFH8I+kkg02M/w3Us4Dl8+DBXXnklTzzxBDNmzGi33enTp6msrGTWrFkA3HDDDbz++uttBD0lJYWUlBT+85//9Krdgv+pqWhg+3+OABAeE8Ilt55D2shYv/WvGxupfG8tZ156kbodO722Cc7MJHTsGEIyMglOTyMoPZ3g9HSCkpOxxsSgwsO7/IekwdHA7uLdbC/YzudFn3PgzAHK6st8vj4yOJLk8GSSwpOID4snOiSa6OBo8+x6xIbGEhkcSVhQGOHWcEKDQgmzhhEWFEaoNZQgSx+NK50OqCqA8uNQcQLKj0H5CaguNMeri6CmCJx2/9/bEgQhURAabR6RSf6/B/4R9NXAKqXUS5jJ0Ap/+M9/8eZe9p2q7LFxrZkwJIb7Lp/YabsDBw6wcuVKnnnmGcLCwpg8ebLXdhs3buTkyZNkZGS4j2VkZHDy5KD4mya42Lf5FE6HGX4tvXmS38Rca03lW/+h+OGHsZ061eJc6LhxRF14AZEXXEDYpElYo6P9cr+cshw2ntjI1oKt7C7ejc1pa7d9UngSWdFZZERnkBmdSWZ0JqkRqSRHJJMcnkxEcESPbfIrDrsR6pJcKM2FkoNw5qgR7op86OC1dog1BMITIDy+5SPCYzs0xvWIcol3lNkPiYKgUPevht6kU0FXSr0IzAOSlFL5wH2Y6i1orR8H3gYuAfKAWuAmfxi271QlW4/4PlLwJ8XFxaxYsYJ///vfTJgwAYDPP/+8X2wR+h+H3cmeTeYPdHJWNOmj/SPmtpMnOf3zn1Pz0cfuY9a4OGKv/Arx115LSFaWX+4DkFOWw+pDq1l/fD0nq70PNkbGjmRi4kTGJoxlXMI4xsaPJS4szm82+BWtjUAX7oGCL8yj5CCUHuqaaEckQvQQiEqB6DTzHNX0nGqORSabUXUARKD5EuVyXSfnNfA9v1nkYsKQGH936XO/sbGxZGVlsXnzZiZMmMCBAwe49tprvbbduHEjQ4cOJT8/330sPz+foUO9zgsLAcjRL0qorTD+43PmZfgltLT6ww85+aMf46w0v0KtiYkkr/oesV/5CpZQf1S4gxpbDW/kvcHrea+zv2x/m/Oj40YzI20GM9JmMC11GglhCX65b69QcRLyt8GJ7VCw2wh4fXnn14XFQeIoiMvyeAyD2EyIy4SQyN62vE8ZUCtFPfHFLdJbhISE8Nprr7FkyRKioqK4/vrrOxyhx8XFERMTwyeffMLMmTN57rnnuP322/vOYKFXKTxsRNdiUWRPT+lxf2defJGCB37pjpWOu/oqUu66yy8uFYCSuhL+sf8fvJzzMlW2KvdxhWJa6jQWDVvE/Mz5DIka4pf7+R2HHQp2wYltcGKrEfHK/I6vicuClAmQlA2J2ZA0xmxHJAbEyNpfDFhB728iIyN56623WLx4MVFRUSxfvrzD9n/5y1+48cYbqaurY9myZe4J0ccffxyAW2+9lYKCAqZPn05lZSUWi4U//vGP7Nu3j5iY3vk1IviHstM1AMSmRhAU0rPFIKXPPEPRg78FQIWHM+S/f0PM0qU9thGgoqGCJ3c/yYs5L9LoEZEyNGooV4y+ghWjVpAele6Xe/mdssNwaAMcWg9HPoSGCu/tLMGQOgHSzoHUc1zPEyE8rk/NHaiIoLdi+PDh7NljshzExcWxfft2n66bPn26+zpPbr31Vvd2WlpaC9eMEBg0CXpCes9+nlesXu0Wc2tsLJlPPUX4OV1f89Aam8PGizkv8tfdf6WysTmQYErKFG6aeBMXZV6ERQ2wxKq2eji8EQ6+Y4S8vJ2aDZEpkHk+ZM40z+mTITisLy0NKETQBaEDGuvtVJWa3DoJ6d2P6Kj99FNO3/MzACwxMWQ99yxhY8f22L59pfv42ZafkXsm131sWuo0vj/l+0xN7XZapd6hvhJy34OctyB3LTRWt20TmQwj58HI+TD8AuPvPotcJj1FBF0QOuBMQa17O2FIVLf6cJSXc/KHP0LbbBAcTMb//m+PxdzmsPH47sd5+ouncWgHAMNjhvODaT9gfub8gZMTyN4Ieetg98tw4B1wNLQ8bw2FYXNg1Hwj4qmTwDLAfk0EECLogtABZadq3NvdcblorTn983uxFxQAkPb/fkrkzPN7ZFNBTQE/2vgjdpfsBiBIBXHzuTdz8zk3E2wdIHn0T30Gn/0D9vwL6lqFH4fGQPbFMP4yGL3IhAQKfkEEXRA6oMl/brEqYlPDu3x91dq1VK1dC0DUwoXErVzZI3u2F2znxx/82L2ac1zCOH55wS8ZlzCuR/36BVsd7H0Ntj8FJ1utdg2OhPGXwzlXwYgvmYU2gt8RQReEDmgaocelRmC1ds0V4KytpfC/HwTMJGj6Lx/okSvklQOv8Jutv3G7WK4Zcw13n393/4/KK/Jh6+Pw2f9B3Znm48pi/OHnroRxl5qVk0KvIoIuCB1wxjVCj0/rurul5IknsJ82WTCSf/RDghK6v3DnqS+e4k+f/gmAEEsIP5v1M76c/eVu9+cXig/Clj8Z/7jn6syoVJj6DZj2DYjNaP96we/I7EMrejN97saNG4mNjWXy5MlMnjyZBx54wB8mC72Edmqqz5gIl9jkrrlb7GVllD33PABh55xD3FVXdc8GrXl458NuMY8LjePvS//ev2J+8lN46avw6Pnw+f81i/mwC+Cqv8Ode2DBPSLm/YCM0P2EL+lzAebOnctbb73VDxYKXaWx3u4ufBMW1TW3RulTT6NrTYRMyg/uNClru4jWmoe2P8T/7f8/AJLDk3ny4icZFTeqy335hZJceP8B2L/a46AyvvEL74Sh0/rHLsGNjNA74PDhw0yZMqXTxUWe6XOVUu70uUJgU1/T7EYIi/Rd0O2lpZx54QUAIqZPJ2L27G7d/+k9T7vFfGjUUJ5d9mz/iHnFSVh9Ozw6s1nMLcEw5WvwvW1w7fMi5gOEgTtCf+duk4DH36SdA8se7LRZb6XP/fjjjznvvPMYMmQIv//975k4sf9y1ggdU1/TnBe7KyP0My+/jHYV+k5atapbE6Gv5b7mdrOkRabxzNJnSItM63I/PaKxFjY/DB89AvamwuUKzlsJ834K8cP61h6hUwauoBd8Acc298uteyt97tSpUzl27BhRUVG8/fbbXHHFFeTm5nZ+odAvtBihR/j2VdGNjZS/+BIAoRPGE9GNmPNN+Zv4xce/ACAmJIbHFz3et2KuNRx42wyqKo43Hx+zDBb+3OROEQYkA1fQ087pt357K32uZxKuSy65hNtuu42SkhKSknqneonQM+qrPQTdxxF65bvvYXfVy0342te7PDo/WnGUuzbdhUM7CLWG8ueFf+5bN0vZYXjnJ2aJfhPp58HS38Kw7rmOhL5j4Aq6D26R3qK30ucWFBSQmpqKUopt27bhdDpJTEzsxVci9ISG2q770M+8ZEbn1oQEYi69pEv3q7PX8cMPfkiNzYRK/nbub5mSMqVLfXQbpwM+eQzW/7LZvRIWCwvvhWk3gaVnWSaFvmHgCno/0xvpc1999VUee+wxgoKCCA8P56WXXho4OTeENniO0EN9cLk0Hj9O3U6zQjL2y1d0qVCF1ppfffIrd5Ktb036FguHLeyixd2k7DC8fhscb66cxJSvwaJf9FrtS6F3EEFvRW+mz121ahWrVq3yj6FCr9M0KRoSHoTFh1WiFW80h/PFXXFFl+7179x/s/qQuX5G2gxWTemDz4nTCTuehrX3gs2VhCx+BFzxF5MwSwg4RNAFoR2aJkXDIjv/mmitqXjjDdN+4kRCs7N9vs/xyuM8uM24GJPDk3noSw8RZOnlr2ZNKbx2i8mE2MSMm2HxLwZdWbazCRF0QWiHBregd+4/r/vsc2yuifHYFSt8vodTO7n3o3updxi/9YNzHyQpvJfdHMc/gX/eBFWnzH5sJqz4s8m7IgQ0IuiC0A71XRD0poyKKEXMJW1XCLfHywdeZmeh8buvHLuS89N7llq3Q7SGj/4X1t0PrgRfTPwKXP5HMwEqBDwi6ILQDk2CHtqJoGut3YIePm0qQT6GoeZX5fPwzocBsxL0B9N+0ANrO6GuHF7/rokvB7CGwJLfwIxvS0WgQYQIuiC0Q9OkaGcj9IYDB9zuluhFi3zqW2vN/R/fT529DoD759xPRHD3S9x1SNkReOFaKDlg9uOGwTXPwpA+CokU+gwRdEHwgtPhpLGuSdA7/ppUvbfWvR29aLFP/a87vo6tp7cCcNWYq5iVPqublnbCsY/hpeubqwaNvQSueAzC43rnfkK/Ism5WtHd9Ln33HMPmZmZREVJEv/BQEOt73lcqjZsAMxS/5CMtiuE2/TtaOAPO/4AmHS4d069s/uGdsTnL8Jzy5vF/II74dp/iJgPYkTQ/cTll1/Otm3b+tsMwU945nEJjWhf0O0lJTTs3w9A9Lx5PvX9/L7nOVltkrd9b/L3iA3184Sk1vD+L+H1W8HRaDIjrnjUhCRKAeZBjfzvdoCv6XMBZs2aRXp6eh9YJfQFvmZarNmyxb0decEFnfZbXFvMk7ufBGB03GiuGtO9whft4nTAW3fCh783++HxcMPrZuWnMOgZsD703277LTllOX7vd1zCOH5y/k86bdeV9LlxcXH+NVLod3zNhV692Qi6JSqK8HPP7bTfRz57hFq7WZX5XzP+y78LiOyN8Np3YO+/zX78CPjavyCxnwpiCH3OgBX0nLIcdhTu6Jd791b6XCFwaJFpsZ1JUe10ukfokbNnoYI79rXnncnjjTyzmvSijIuYM8SPy+sba+GVGyDPNUGbMhG+/m+I7uMc6kK/MmAFfVzCuH7rt6vpc2WEPvjwJdNiQ04OjjIz4Rh5wYWd9vn47sfRaCzKwg+n/dA/hgLUV5iwxKbkWhkz4PpXIKL7RamFwMQnQVdKLQX+BFiBp7TWD7Y6nwU8C8S52tyttX67J4b54hbpLbqaPlcYfDSFLAKEhHn/mtRsbZ4Ej5zTca7w3DO5vHfU5BhfNmIZI+NG+sFKoL4Snv8ynDSrTRk5z0SyhEq01dlIp5OiSikr8CiwDJgAXKeUmtCq2c+AV7TWU4CVwF/8bWhf05Q+9+GHH2b16tWdtr/rrrvIyMigtraWjIwM7r///t43Uug1bI1OAIKCLSiL95WUtTuMSzAoLY3gzMwO+3t8V/Po/Dvnfsc/RjZUwz+uahbzcZeZkbmI+VmLLyP084E8rfVhAKXUS8AKYJ9HGw00leOJBU7508i+pLvpcx966CEeeuih3jRN6EPsjSbXSVCI98IO2umkziXoETNmdJjXPvdMLu8dM6PzS0ZcwojYET03sLEWXlwJJ8ziJMZeClc/A1bfa58Kgw9fBH0ocMJjPx+Y2arN/cB7SqnbgUjAt/XPgjBAaRZ07z9iG3LzcFRUABAxfXqHfT226zEA/43ObfXw0nVw9EOzn30xXP13EXPBb3Ho1wHPaK0zgEuA55VSbfpWSt2ilNqhlNpR7Kq7KAgDEXuTy6WdEXrtjuZfbhEzZrTbz+Hyw6w9ZiJPLh1xKcNjh/fUMHj5a3B4o9kfOR+ueR6CfK+OJAxefBH0k4CngzDDdcyTbwGvAGitPwbCgDYp57TWT2itp2utpycnJ3fPYkHoA5pG6MGh7Qm6cbdYExMJGTG83X6e3/+8e/vmc2/umVFOJ7zxvebQxOFzYeULEBzWs36FQYMvgr4dyFZKjVBKhWAmPVvPEh4HFgIopcZjBF2G4ELA4p4U9eJy0VpTt/NTACKmTWvXf15WX8abh94EYF7GvJ77zt+/H754xWwPnQ7XvQQhvZShUQhIOhV0rbUdWAW8C+zHRLPsVUo9oJRqqpz8I+BmpdQu4EXgRq217i2jBaG36WhS1F5QgL2oCIDwKe2noH3lwCs0OBoAuGHiDT0z6JPHYcufzHbCKIlmEbziUxy6K6b87VbH7vXY3gd0nshCEAIEu0fYYmvqdu12b4efd57X6xscDbyY8yIA4xPGMz2144nTDtn7Gqy522xHppgVoJGJ3e9PGLRIcq5WdCd9bm1tLZdeeinjxo1j4sSJ3H333b1kndBXdDRCr9u1y2wEBRE2YbzX698+/DZl9WYV6Q0Tb+gwrLFDjm6Bf98CaAiJgq/+E+KHd68vYdAjgu4nfvzjH5OTk8Nnn33Gli1beOedd/rbJKEH2JomRb340Ot2mxF62LhxWMLaTkhqrXlu33MApESksGTYku4ZUXYYXv6qKwVuEFz7PAyZ3L2+hLMCEfQO8DV9bkREBPPnzwdM2oCpU6eS7ypJJgQm7YUtapuNetfCs/ayK24r2EZeeR4A14+7nuDuxIfXV8ILK6HujNlf/mcYtaDr/QhnFQM2OVfBb35Dw37/p88NHT+OtP/3/zpt1930ueXl5bz55pvccccdfrJY6A/ac7nUHzyIbjATneGTvfvPXz34KgAhlhCuzL6y6zd3OuBf326uAXrBHTD5uq73I5x1DFhBb9ifQ62Py+79TXfT59rtdq677jq+//3vM3Kkn5IvCX2Ow+HE6TBBWq3DFuu/+MK97W2EXlpXyrrj6wC4ePjFxIXFdd2A938Bue+a7ewlsPC+rvchnJUMWEEPHd876XN96be76XNvueUWsrOzufPOO/1osdDXOFzuFmi7sKh+r0lhZImOJnjYsDbXvnHoDexOk6nx6jFXd/3mu15uDk9MHgdXPgUW74ubBKE1A1bQfXGL9BbdSZ/7s5/9jIqKCp566qm+MVLoNZomRMGLy2XvXgDCxo9vE7ni1E63u2VU7CimpLQfo+6Vkzth9e1mOzwernsRwmI6vkYISOptDsKC/f+HesAKen/TlD538eLFREVFsXz58nbb5ufn8+tf/5px48YxdepUAFatWsW3v/3tvjJX8CN2jxG6p8tFNzZSn5sLQNiE1hmkYevprZyoMnnsrh57dddCFWvL4JVvgKMBlBWufhYSxG03WCitbuCTw2V8dKiEjw+VkpUYwTM3ne/3+4igt6I76XMzMjKQhbGDB7vnCN1jFNWQlwc2U8kobGJbQf/nwX8CEGoN5bKRl/l+Q6fTxJpXuJKaXvxLGHlRNywXBgpV9Ta2HSnjo0OlbMkrIaegqsX5gsp6bA4nwVb/BhqKoAtCK9obode53C3QdoReUlfChuMbAFgyfAmxobG+33DzH5oTbk1YAbNu64bVQn/SaHfy2fEzbM4rYXNeCbvzK3A42w7yQoMsTB8ez5xRSTTaRdAFodfxHKEHe/jQ6/eZCVEVEUHI8OEtrvnP4f9g12Yy9KoxV/l+s8MbYcNvzHbCKBNv3t1VpUKfobXmYGE1H+YWsyWvhK1Hyqj1+Nw0EWRRnJcZx5xRicwelcjUrPhe8Z2779drPQtCgNLepGiToIeNG4eytvxSNmVVHBYzjMnJk327UeUpePVboJ0QFG5Wgsok6IClsLKezbkl7lF4cVWD13bj02O4cHQic0YnMWN4AlGhfSezIuiC0ApvLhftdNJw4CBgBN2TA2UHOHDGLAK6fOTlvk2GOuzw6jehtsTsX/YwpE70g/WCv6husLPtSCkf5pawObeE3KJqr+2GxIZxYXYSF4w2j6So/is2IoIuCK1o4XJxxaHbTpxA19cDEDp2bIv2TaNzgMtG+TgZuukhOP6x2Z76DVkJOgCwO5zsyq9gS54R8E+Pn8HuxQ8eHRrErFGJzHWJ+MikyO4nX/MzIuiC0Aq7F5dL/cGD7mOhY7Kb2zrt/OfIfwCYkTaDoVFDO7/BsY9g0+/MdsoEWPZbP1gtdIdT5XVsOljMBweL2ZxXQlW9vU2bIItiSlYcF45O5sLsJM7LiCXIz5OZ/kIEvRVHjx7lsssuc4cu+so999zDc889x5kzZ6iubv5p1tDQwA033MDOnTtJTEzk5ZdfZnirCTVhYGHz4nJpcMWfA4RmNwv6J6c/oaTOuE0uH3l5553XnYF/3Wz85tZQuPJpCA73k+VCZ9TbHGw/WsYHB4yIt+dGyU6J4oLRSczNTmLmyMQ+9YP3hMCwMgC4/PLLWbVqFdkeX3aAp59+mvj4ePLy8njppZf4yU9+wssvv9xPVgq+0DIO3SXoB42gBw8ZgjWquVLQ6jxTjTHMGsbiYYs77lhrePMOqHRl4lzya0htG88u+A+tNUdLa/ngQBEfHCzm48Ol1NucbdolRIYwNzuJudnJXDg6ibTYwKzTKoLeAYcPH+bKK6/kiSeeYEYHld0BZs2a5fX4G2+8wf333w/AVVddxapVq9BaDxifm9CWpklRS5DCYm05QvccnVc1VrH+xHoAFmQtICqkk5Jwnz0P+94w22OWwQxZSdwb1DTY+fhQKR+4XCnHy2rbtLEomJoVz0VjkrlobDKThsRisQT+d3LACvqHrxyk5IT3n0M9ISkzirnXjOm0XXfT57bm5MmTZGZmAhAUFERsbCylpaUkJSV1x3yhD7C7i1sY/7mzsZHGo0cBCB3T/Nl5//j77pqhl4/qxN1Skgvv/MRsR6XBikcl3txPaK3JKajig4PFbDpYzPajZdgcbScz02LC3AJ+wagkYiO6kad+gDNgBb3kRDWncsv75d7dTZ8rDA7cudBd7pbGQ4fAYY55CvqaI2sASAhLYFa6919oADhs8O+bwVYLKPjKX6UmaA+pbrCzObeY9TnGlVJY2TYmPMRqYcYI1yh8TApjUqMG/S/jASvoSZm9U9Hcl367mz7XG0OHDuXEiRNkZGRgt9upqKggMVG+zAMZW6tqRS0mRF0RLmX1ZXxy+hMAFg9bTJClg6/Sh/8Dpz4z27O/ByPn+d/os4AjJTWszyliQ04RW4+Ueh2FD0+McI/CZ41MJCJkwEpcrzBgX60vbpHeojvpc9tj+fLlPPvss8yePZtXX32VBQsWDPpRQqDTulpRQ1PIYlAQoSNGALDu2Doc2rRbNmJZ+52d+szEnAMkj4cFP+8dowchjXYn246UGRE/UMSRkpo2bUKDLFwwOol5Y5P5UnYyw5Mi+8HSgcOAFfT+pivpcwHuuusuXnjhBWpra8nIyODb3/42999/P9/61rf4+te/zujRo0lISOCll17qo1cgdBe3Dz3UuFyaUuaGDB+GCgkBYM1R425JiUhpP++5rR5euxWcdlPk+St/heDAjJ7oK4oq69lwoIj1OUVszi2hxkt+lKFx4SwYl8KCcSnMHpXYq7lRAg0R9FZ0J30uwEMPPcRDDz3U5nhYWBj//Oc//Wqj0Lu0LhDdFLIY5vKfF9UWsaNgB2AyK1pUO4tMNvwKil11cS/6CaR7r0F6NuN0anafrHC7Ur44WdGmjdWimJYVz4LxRsSzUwa/L7y7iKALQitsHi4XR2Ul9tOngeYJ0bXH1qIx/ttlw9txtxzdAh/92WwPnQYX/rB3jQ4gKuttfHiwxDWhWURJdWObNvERwcwbm8L8cSlclJ08KCNSegMRdEFoRfMI3WKKWrhoikF/58g7AAyNGsqkpEltO2iohte/C2gICoMrHgfr2f1VO1FWy9p9hazbX8i2I2Vec6RMSI9hwTgj4pMz47AOgrjwvmbAfcrO9kU3Uvmo//GcFG1okcNlDKeqT7GreBcAS4cv9f5Zff8BKD9mthfdD8n9N8HfXzidml355azbX8i6fUUcKKxq0yY82MqF2UlGxMemBOzqzIHEgBL0sLAwSktLSUxMPCtFXWtNaWkpYWHywe5PmkbowcEWt/9cRUQQPHQoa/c/7263dMTSthcf/wS2PWG2s+bA+d/pdXsHCnWNDrbklRgR319ESXXb2PChceEsGp/CgvGpzByRIBOafmZACXpGRgb5+fkUFxf3tyn9RlhYGBkZGf1txlmNtxF66OjRKIuF9cfNUv+MqAzGxrdMo4utHt5YhdvVsvx/wTIws/L5i+KqBtbnFLJ2XxGb84q95kk5LyOWReNTWTQhlXFp0WflYK2vGFCCHhwczAhXnK8g9AfaqbG7RMkabPHI4TKa0rpSPisyC4QWZi1sK0wfPAilrkVI834KSaP7zO6+QmtNblG12x/++YlyWnsJQ4IsXDg6iUXjU1k4PoXUGPnF2VcMKEEXhP7GYW8eYVodDTgqTBhd6OhsPsj/wB3dsiBrQcsLT30OWx4x2+mTYfaqPrC2b7A5nGw/Wsa6fUWs21/oNdlVYmQIC8alsGhCKnOzk866FZoDBZ/edaXUUuBPgBV4Smv9oJc21wD3AxrYpbW+3o92CkKfYPdwGejyUvd26KiRrD/+CmByt5yX7BFT7rAZV4t2mAVEKx4N+KiW6gY7G3KMgG/IKaLSS+GH7JQoFk1IZdH4VIlKGSB0+qlTSlmBR4HFQD6wXSm1Wmu9z6NNNvBT4AKt9RmlVEpvGSwIvYnnCF2faRZ0R2YaH282JePmZ87HavGYzNv8Ryj8wmzP/RGkeQllDADO1DSybn8ha/YU8GFeCY32lv5wq0UxY3i88YePTz3rl9kPRHwZRpwP5GmtDwMopV4CVgD7PNrcDDyqtT4DoLUu8rehgtAXODxH6CWFAKjQULY6D9PoNAtgWrhbinI8crWMM4IeQBRW1vPe3gLW7C3gk8NlOFrFh0eFBnHR2GQWj09l3thk4iJC+slSwRd8EfShwAmP/XxgZqs2YwCUUlswbpn7tdZrWneklLoFuAUgKyurO/YKQq/i6XJxFhtBDxkxgvWnNgIQERTBzHTXx9/pgNWrwNEIymJcLUH9V/HdV46X1vLu3gLe2XOaT4+XtzmfEBnCxRNSWTIpjTmjEgkNktDCQMFfjr4gIBuYB2QAm5RS52ityz0baa2fAJ4AmD59uqygEQYcniN0Z8FJAIJHDGfTiU0AXDj0QkKtLtHe/jTku3L9zLoNMqb3qa2+0hSZsmZPAWv2FLDvdGWbNumxYSyZmMbSSWlMHxY/YIsgCx3ji6CfBDI99jNcxzzJB7ZqrW3AEaXUQYzA+5bZShAGCC186CXGc1icEkKVzax0dLtbKk+ZFaEAccNg/j19amdnaK3ZnV/Bmr0FvLungMNeUs8OT4xg6aR0lk1K49yMWIkPHwT4IujbgWyl1AiMkK8EWkewvA5cB/xdKZWEccEc9qOdgtAneLpcLE4bALsjzORokApibsZcc3LN3dDoWs5+6f9ASESf2ukNh1Oz42iZW8RPVdS3aTM+PYalrpH42VDB52yjU0HXWtuVUquAdzH+8b9prfcqpR4AdmitV7vOXayU2gc4gP/SWpe236sgDEwcLQTdhOq9r8xq0fPTzycmJAYOvtdc7HnilyF7UZ/b2USj3clHh0p4d28B7+0tpLSmbebCKVlxLJ2YxpKJaRKZMsjxyYeutX4beLvVsXs9tjXwQ9dDEAIWR6sRulaKvRFlgGJB5gJorIW3XZEsoTGwtM2SjF6nrtHBBweLeXdvAev2F1LVKkbcalHMHJHA0klpXDwhTZJenUUE9uoHQfAzdntzhRyL00ZdcjS2YLMycl7mPPjgt1B+3DRYeC9Ep/WJXZX1NtbvL2LNngI2HixqkzMlxGrhwuwklk5MY9GEVBIiJbzwbEQEXRA8aMq0CGB12jgabwT+nKRzSK0uhY89ilZM/2av2lJS3cC6fYWs2VvAlrySNkWRI0KszB+bwpJJacwfm0x0mBSBONsRQRcED1q7XHJjawErCzLnw1t3mvqgygqX/REs/o/PPlVex7t7TXjh9qNltK4DERMWxKIJqSyblM7c7CRJPyu0QARdEDzwDFu0OO2cTDRRIAuqK+HEVnNi1nch/Vy/3fNISY0rRvw0u/Lb1tRMigplycRUlk5KY9bIRIIlRlxoBxF0QfCgddjiySTF8KhMRm76kzkYk2FS4/YArTX7T1e5wwu9VfMZGhfO0kkmvHBqVrwkvhJ8QgRdEDxwu1y0E6UdnEywcm2DA+pdI+dLHoLQqC7363RqPs8vd6/W9JaCdnRKlDtGfOKQGIkRF7qMCLogeNAk6BannapwqI5QLDj2qTk59lIYd6nPfdkdTrYdcS302VtAYWXbkmyThsawbFI6SyamMjol2i+vQTh7EUEXBA/s9iZBt5GfBMlOmNTQCMGRZnTeCfU2U1dzzR4TI36m1tbivFIwfVg8S1wLfTIT+n+FqTB4EEEXBA8cNhOmaHHaOJWoWFBdhQVg/v+DWO+1Xmsa7Gw8UMyavQVsyCmiuqHlQp8gi2L2qESWTEzj4omppETLQh+hdxBBFwQPbNV1QHOEy/LaOkg7B2be2qJdeW0j61wLfTblFrcpBhEaZOFLY5JZOjGNheNTJI+40CeIoAuCB7byasCM0MviNTPqGuCrfwJrEEVV9by3t5B39xbw8aFS7K2CxCNDrCwYn8qySWlcNCaZyFD5egl9i3ziBMGDxqpqIAyL00ZmRD31427k2SPxrHnzI3YeP9Omwn18RDCLJ5gY8TmjZKGP0L+IoAuCBzUV5UAaStuZYLUwZ9sFVLG/RZvUmFCTvXBSGucPT5BiEMKAQQRdOOvRWrPnZCVr9p4mvqoGwsFmsfFe5VVUYaJQshIiWDbJiPjkjDgsstBHGICIoAtnJQ6n5tPjZ3jnCxMjfrK8julqH5c4EwFwBtk5mriMO85JZ+mkNMalRctCH2HAI4IunDXYHE4+PlTKGlcxiJLq5oU+wdj5RvjfKNX/z+xHRfHuDy/qL1MFoVuIoAuDmnqbg00Hi90LfSpbFYOwKDh/RAL/FfEWOw/UEWQxX4m4pNT+MFcQeoQIujDoqKq3sT6niHf3FrAhp5g6m6PF+WCr4oLRzcUgkhpPov/yFP+qi2ekxeQUj0iI7w/TBaFHiKALg4LS6gbW7S9kzZ4CtuSV0uhoudAnPNjKvLHJLJ2UxvxxKcQ0FYPQGl77MXnKQVi5BadL0EPiY/r6JQhCjxFBFwKW0xV1vLfXiPjWI6VtikFEhwWxaHwqSyaahT7hIV5ixPf+Gw69z/q4GIaUgj3RCHpQmKzsFAIPEXQhoDhaUsMaV0Wfz0+UtzmfFBXC4gkmBe3skYmEBHUQI15XDu/cDcD7UdHcVKo5kmwE3RosseVC4CGCLgxotNYcKKxy5xHPKWhbDGJIbBhLJqWxdGIa04cn+F4MYt39UFPEaauVnCAL6WWaw66yckEi6EIAIoIuDDiaikG8u8fEiB8tbVsMYmRSpLuizzlDY7seI358K+z8OwDrs84hqbyUIGfz18Ha0cheEAYoIujCgMDmcLL1cBnvuopBFFW1LQYxIT3GLeLZKVHdX+jjsJmCzwDWUDYkDmXIoRL3hCiIy0UITETQhX7DHSO+t4D39xdRUde2GMTUrHhTIHliOlmJfioG8dEjULQPgPILb2fHiX+xpBScluavg7hchEBEBF3oUyrqbGxwxYhvPNA2RrxFMYgJqaTE+LkYRNlh+MBVeSh5HJuGTsRx/BWGlmkcMkIXAhwRdKHXKa5qYO2+QtbsLeDjQyXYHC3jC8OCLVw0xsSILxibSmxEcDs99RCt4a0fgr3e7F/2R94/9BIAWWXWli4X8aELAYgIutArnCirdfvDdxxrm0c8xhUjfnFHMeL+5otX4fAGsz31G9QOOY8tH94OGEG3ictFCHBE0AW/oLUmt6iaNa7IlL2nKtu0SY4O5WJXMYhZIxMJ7ss84rVl8O5PzXZkMiz+BZtPbqbB0UBknSa8qoGGmOYRepAUqhACEBF0ods4nZpd+eW86yrLdqSkpk2brIQIlk5KY8nEVKZkxvdfHvF190FNsdle+iCEx7Pu+DoARlaEArUS5SIEPD4JulJqKfAnwAo8pbV+sJ12VwKvAjO01jv8ZqUwYLA5nGw/UuZOQVtQWd+mzbi0aJZMTBs4ecSPfQSfPme2Ry2ASVfS6GhkU/4mAOY5soFdLaJcRNCFQKRTQVdKWYFHgcVAPrBdKbVaa72vVbto4A5ga28YKvQf1Q12Nh0s5r29BazPKWqTghZgalacaySexrDEyH6wsh3sjfDmnWY7KAwu/QMoxSenP6HGZn5RnFvnKmoR3BxRIz50IRDxZYR+PpCntT4MoJR6CVgB7GvV7pfAb4H/8quFQr9QVFnP2v2FrN1XyEdeshc2hRde7AovTPV3eKG/+PD3UHLAbF90FySMBGDdMeNuCbGEkFZspw6wJDfnQJcoFyEQ8UXQhwInPPbzgZmeDZRSU4FMrfV/lFIi6AGI1pq8omre21fIe/sK2eUl8VVEiJWLxiRz8cRU5o9NIS5igGckLNgDH/7BbKdOgtkmosXutLPhhIl2mTN0Do6jeQBYUtPBFRYvLhchEOnxpKhSygL8D3CjD21vAW4ByMrK6umthR7icGp2HjvD2n0FrN1X6DVnSnJ0qAkvnJDK7FGJhAVK9IfDDqtXgdMOygor/gxB5g/Qp4WfUt5QDsCi9Hk0usRdJaZAkblcXC5CIOKLoJ8EMj32M1zHmogGJgEbXZNfacBqpdTy1hOjWusngCcApk+f3ioyWegL6hodfJhbzHv7ClmfU0RZTWObNqNTorh4QiqLJ6RyXqBWuP/kUTj1mdmeczsMmeI+tfbYWgCsysoFjKLYYYblKj7JLegyQhcCEV8EfTuQrZQagRHylcD1TSe11hVAUtO+Umoj8GOJchk4lFQ3sH5/Ee/tK2RzXjH1tpb+cKVg+rB4Fk9IZfGENEYkDaBJze5QkgcbfmO2E0fDvLvdp5zayfrj6wGYkTaDkPzi5utiEwDzK0UEXQhEOhV0rbVdKbUKeBcTtvg3rfVepdQDwA6t9ereNlLoOkdKali7z4QW7jzedqVmWLCFudnJLJ6QysJxKSRGhfaPof7G6YTVt7uW9ytY/mcIDnef/qLkC4rqzDB8UdYiGjcebr42OhaoRSkC81eJcNbjkw9da/028HarY/e203Zez80SuorN4WTnsTO8v7+Q93OKOFzcdpFPQmQIC8elsHhCKnOz+2i5fV+z42k4/pHZPv9mGDa7xen3j70PgEKxIGsBDYd/B0BQcjJOZb4O1iBL/8fOC0I3kJWiAUx5bSMfHCxm3f4iPjjgPT58eGIEF09MY/GEVKZmxftezScQKT9hqhABxGbBwvtanNZau/3nk1MmkxyRzOGDuQCEZmdjbzSuqKDQQfiHTjgrEEEPILTWHCqucY/Cdx47g6NVZWSLK4f4wvGpLBqfwuieFIIIJLQ2RSsaq83+5X+E0KgWTQ6cOUB+dT4AC7MWou12Gg8dAiB0zBjsjWZyNChE/OdCYCKCPsBptDvZfrSMdftNVMoxL6GF0aFBfGlsMgvHpTBvbAoJkQM8Prw3+PwfkGcWCzH5azB6YZsma46scW8vGraIxmPH0DZTVCM0OxtbqRmhBw9GV5RwViCCPgApq2lkQ04R63OK2HSwmKoG766UhePNhOb04QkdV7cf7JQfh3dckSxRabDkV22aaK1Zc9QI+nnJ5zE0aiiVH77jPh86Zgz2TU0jdBF0ITARQR8AaK05WFjN+zmFvL+/iE+9RKVYLYrpw+JZOD6FheNTGZkUeXa4UjrD6YTXb4PGKrO//H8hPL5Nsy9KvuBktVk+sXT4UgAaco3/HKUIHT0K+9r9gLhchMBFBL2fqGmwsyWvhA0HivngQBGnKtpmLYwJC2Le2BQWjk/hojHJA3+pfX+w7a9w9EOzPfUbMOZir82aRucKxcXDTZv6gwcBCM7KxBIejq1RXC5CYCOC3kc05UrZeKCYjQeL2HakrE0pNoBRyZFuV8q0YfEE9WURiECj+GBzVEvcMFjya6/NnNrJu0ffBWBa6jRSIlKA5hF6aHY2gMekqAi6EJiIoPcitY12PsorZePBIjbkFHOyvK5Nm5AgC7NGJjJ/bDLzxqYE/irNvsJhh9e+07yA6MuPQ2i016afFX1GUa1ZTLRsxDIAnLW12I6bnHNhY8YASJSLEPCIoPsRrTWHS2rMKPxAEVsPl7VJOwuQmRDO/LEpzBubzOyRSYNzgU9vs/l/4NSnZnv292DYnHabvnPETH5alZVFwxYB0HDoEE0TFaFuQXfFocv/hxCgiKD3kLpGB58cLmXDgSI2HijmeFnbsMIQq4WZIxO4aEwy88elyIRmT8nfARtdRbOSx8GCn7fb1O60uxcTzUyfSUJYAgANrgVF4M3lIiN0ITARQe8iWmsOFFbx4cESNuUWs+1IGQ32tqPwoXHhzBubzPyxKcwelUhkqLzVfqG+Ev71LdAOsATDl/8Kwe0X19h2ehtl9WVAc3QLQINrQlQFBxMybBggI3Qh8BGV8YGS6ga25JWw6WAJH+YWU1TV0KZNsFUxY3iC25Vy1qzQ7Gve/jGcOWq2F90HQyZ32Hz1YZM7LsQSwsJhzYuNmiZEQ0aNQgUF4XA4cbpW3UqUixCoiKB7odHuZMexMj7MNQK+52Sl13YZ8eHMzU5m3thkLhidRJSMwnuXXS/D7pfN9qgFMOt7HTavsdW4k3HNz5pPTEiM+1x9rhmhh45pcrc0/8oSl4sQqIgC0Zwj5cPcYj7MLeGTw6XUuvypnkSGWJk9KpEvjUlmbnYywxMjZBTeV5Qdgf/8yGxHJMEVj4OlY+Fde2wt9Q4T37981HL3cfuZMziKSwCPCJeG5v9vcbkIgcpZK+jltY1sySt1i7i3kEKl4JyhsczNTuJL2clMyYo/u5fY9xcOG/zr282rQa94DKJTO74GePPQmwAkhCUwZ0hzFIy3CVGbxx/wYBmhCwHKWSPo9TYHO4+dYUteCVsOlfJFfjlOL0XwUmNC+VJ2MnPHJHPh6KSzM9HVQGP9r+CkqwDWzO+2uxrUk1PVp9hWsA2AS0deSpCl+aPeNCEKbUMWQUboQuAyaAXd7nDyxckKPjpUypa8EnYcO0Ojl2iUsGALM0ckmlH4mGSyZTJzYJHzNmz5o9lOPQcW3e/TZW8dfsu97elugWZBt0RHE5SWBjSHLIIIuhC4DBpB11qTW1RtRuB5pWw9XOo1S6FSMCE9hgtGGzfK9OHxgVPJ/myj7Ai8dqvZDo2Ba57tMESxCa21292SHZ/N2PixLc7X5+SYLseMcf/xbino4nIRApOAFvT8M7V8lFfKlkMlfHSolGIv4YQAI5IimTMqkQtGJzF7ZCLx4kYZ+Njq4ZUboKHC7K94FBJH+XTp7pLdHK08CsDykctb/OLSNhsNBw4AEDZxgvu4uFyEwUBACXpdo4P3cwrZklfKR4dKvBZ7AEiJDuWC0UluER8SF+61nTCAeecuKNhttmevggnLO27vwasHXwXMUv9LR17a4lzDoUPoxkYAwiY0C3rLSVERdCEwCSxBtzlY9cJnbY5HhwUxe6QR7wtGJzIqWfzgAc3nL8Cnz5rtzFk++80BKhsr3ZWJ5mXOIzkiucX5+r373Nuegi5x6MJgIKAEPSEyhIlDYsgrqmbG8ATmjE7kglFJTBoaO7iLH59NnPoM3vqB2Y5Mhqv/DtZgny9/69Bb7tjzq8Zc1eZ8/T4j6CosjNCRI93HZVJUGAwElKADPPbVaaTEhMpE5mCkqgBevN6kxFUWuPIpiBni8+Vaa/558J8ADI0a2iL2vIkmQQ8bOxYV1Pzxt8mkqDAICDhBz0qM6G8ThN7AVg8vfRWqTpn9Jb+BkfO61MWu4l3klecBcGX2lVhUS2HWDoc7wsVzQhRkUlQYHMhQROh/tIY372hePDTl6zDz1i530zQ6D1JBfDn7y23ONx45gq4zK4I9/efQ7HKxBlmwiPtOCFBE0IX+56NHYPdLZjtzFlz6B7NgoAtUNFS4y8zNz5pPUnhSmzZ1u3a7t8MmTWpxrjl1rnwlhMBFPr1C/3LwXVh7n9mOzYRr/w+CQrvczet5r9PgMOsQvE2GAtTt2gWAiohw53BpQuqJCoMBEXSh/zi5E/55I6AhOAJWvgBRyZ1d1Qa7084/9v8DgOExw5mVPstru7rdZoQePmkSytpSuJsEPThUBF0IXETQhf6h9BD84xqw1ZqIlq88CenndqurdcfWcbrmNABfn/D1NpOhAM6aGncOl/Dzzmtz3iYuF2EQIJ9eoe+pLob/uxJqTU5yLvkdjL+sW11prXl2r1mEFBca1yYRVxN1e/aC04h2+OS2gu52uUg4rBDAiKALfUtDNbxwNZw5Yvbn/hhmfLvb3X1e/Dl7SvcAcO3YawkL8p68q273Lvd2+LltfwlIgWhhMODTp1cptVQpdUAplaeUutvL+R8qpfYppXYrpd5XSg3zv6lCwOOwGZ/5KVf6hslfhQU/61GXz+19DoBgSzArx61st13d50bQg4cMISi5rZ/eJgWihUFAp4KulLICjwLLgAnAdUqpCa2afQZM11qfC7wKPORvQ4UAx2GHf30L8taa/dGL4fI/dTk80ZMTVSd4/7ipGXrZyMu8hioCaKeTup07AQifMsVrG/ekqIzQhQDGl0/v+UCe1vqw1roReAlY4dlAa71Ba92U+vATIMO/ZgoBjdMBr30H9r1h9odOh6uf6VKOFm88/cXTaEzZqa9P+Hq77RoPHcJRXg5AxIwZXtvYZYQuDAJ8EfShwAmP/XzXsfb4FvCOtxNKqVuUUjuUUjuKi4t9t1IIXJxOeGMV7DEpbUk/D772LwiN6lG3+VX5vJFn/kDMy5xHdnx2u21rtm93b0fMmO61jcShC4MBv/6+VEp9DZgO/M7bea31E1rr6Vrr6cle/JjCIMPphLfuhF0vmP3USfD11yE8rsddP/nFk9i1qUj13fO+22Hbuh0mpYA1IYEQjwyLnjSN0INDxeUiBC6+JOc6CWR67Ge4jrVAKbUIuAe4SGvtvXSQcPbgdMLbP2rOa548Dm54AyISetz1iaoTrM5bDcD8zPlMSGw9pdOM1to9Qo+YPt1rnnynU+Owi8tFCHx8GY5sB7KVUiOUUiHASmC1ZwOl1BTgr8ByrXWR/80UAgqHzfjMd/zN7CeOhhtWQ6T3Scuu8uRu30fnjUeP4ig28e4R0zt2t4DEoQuBTacjdK21XSm1CngXsAJ/01rvVUo9AOzQWq/GuFiigH+6RkDHtda+1wwTBg+2OvjnTXDQNY2SPM64WaJT/dL9iaoTrD5kxhMLMhcwPnF8h+1rPv7YvR1xvvcJ0cY6j/JzYSLoQuDiUz50rfXbwNutjt3rsb3Iz3YJgUh9Jbx4HRzbbPaHTDUToH5wszTxyKeP4NBGgL87uePROUDN5i0AWJOTCB071mub+hqbezsssmeRN4LQnwRcgQthgFJTAv+4qnnR0PC5cN2LEBrtt1t8Wvgpa46aeqFLhy9lXMK4DtvrxkZqP/kEgKg5F7RbZ7ahhaDLV0IIXOTTK/Scov3wwjVQftzsj70Ervo7BHtfht8dnNrJb7f/FoBQayg/nPbDTq+p27ULZ61ZHhF54YXttmsxQo+SEboQuIigCz0jdx28ehM0VJr9866H5Y/0eNFQa1YfWs2+UlMP9MaJN5Ield7pNdUudwtA5JzZ7bbzFPTQCBF0IXARQRe6z9YnYM1PQLvqcS68Fy78YY+W83ujxlbDnz79EwAp4Sl8c9I3fbquetMmwJSbC0pMbLedjNCFwYIIutB17A2w5qew42mzHxQOX34cJl7RK7d77PPHKKkzoYd3TruTiODOC4U35ufTsH8/AFHz53fYtr7GhEBagy0ESxy6EMCIoAtd48wxV8bET81+VJqZ/Bw6tVdut6t4F8/vfx6Ac5PP5dKRl/p0XdXade7t6MUdB2E1TYqGRcjXQQhs5BMs+E7O2/D6rVBfYfaHTIFr/wGxHaX26T4NjgZ+vuXnOLWTYEswD8x5wGs1Im9UrTOCHpyZ2W64YhNNLhdxtwiBjgi60DkOG7z/AHz0SPOx878DF/+yWwWdfeWxzx/jSIUphHHb5NsYFTfKp+vsJSXUfWp+QUQvWtRuuGITTYIuE6JCoCOCLnRM0X547VY4/bnZD4mGFf8LE7/cq7fdW7KXZ/Y+A8CExAncOPFGn6+tfGcNaJNWtzN3CzT70GWELgQ6IuiCd5wO+PjPsP5X4Gg0x1LPgWuehUTfRsrdpbKxkh9/8GMc2kGQJYhfXfArgiy+f1Qr3jBpdYOHDiV88uRO27tdLrJKVAhwRNCFtpQegte/Cye2mn1lgTm3w7z/59fFQt7QWvOzzT8jvzofgNun3N5hrvPWNOTlUb/H1BiNXbEcZenY5661pqG6SdDl6yAENvIJFpqx1Rs/+Yd/AHu9OZYwyoQkZp7fJyb8fe/f2XBiA2AKV9w08aYuXd80OgeIXbGig5YGW4MDp9O4Z0JlhC4EOCLogiF3Lbz9X3DmSPOxmbfCwvsgpPO4b3+wvWA7j3xqJl6HRg3l1xf+utMJTU90YyPlr78OmNqhIcM6r1VeXy2JuYTBgwj62c6Zo/DuPZDzVvOx1Elwye9hWPvL5f1N7plc7thwBw7tIMQSwv/M+x9iQmK61EflmjXu3Odx11zj0zUNtXb3tgi6EOiIoJ+tVBfDpt+ZIhRO1yg1NAbm3wMzvg3WvvtoFNQUcOu6W6lqrALgvjn3dViFyBtaa8qeMwuQrImJxFx6iU/XyQhdGEyIoJ9t1Fea6JWP/gy2mubj514Li3/pt0IUvlLRUMF31n6HolpT6OrOqXeyfFTXa6PUffaZezI0/tprsYSE+HSd5EIXBhMi6GcLdWdg21Ow9TGoLW0+PuIiWHQfDJ3W5yaV1Zdx69pbOVxxGICvjv+qz4m3WlPy50cBUMHBxK281ufrWmRalCgXIcCRT/Bgp/I0fPIo7Pg7NFY3H0+fDIvuh1EdJ67qLQprCrl57c3ulaDLhi/jrhl3dWkStInaHTuo+egjwPjOg1NSfL5WRujCYEIEfbBy6jMzIv/ileaFQQBp58DcH8H4FdBJjHZvcbzyOLesvYWT1ScBuHzk5Txwge95WjzRWlP0xz8CoEJDSfzOLV26vknQg0OtWIP65/0QBH8hgj6YsNXBnn/D9qeasyE2MexCmPsDGLXQ7/nKu8KWk1u4a9NdVDaaghgrx67kpzN/2i0xB6h86z/U7dgJQPx113VpdA5QVWri7SPjei8njSD0FSLogY7WkL8ddr8MX7wK9eXN55QVxl0Cc77fZwuD2kNrzdN7nuaRTx9BYxby3HzOzdw+5fZuuVkAHNXVFD5kytJZk5JIuq3zotGtKTtlJobj0/om1l4QehMR9ECl9BB88U8j5GWHW56LSoVpN8LUb/RaatuuUFhTyC8+/gUfnvwQgPCgcH4x5xcsG7GsZ/3+6tfuuPPU//ox1piuxa3bGx1UlNQBkDAkske2CMJAQAQ9UNAaCr6A/W+aRUBF+1qeVxYYtQAmfxXGX+73mp7dQWvN63mv87vtv6PKZmLMM6MzeXjew4xN6DhHeWdUvPUfKlyrQiPnzCZmeddDHc8U1OL6sSCCLgwKRNAHMg3VcPRDyHsfct+F8uNt26SdC+ethElX9XkMeUfsL93PH3b8ga0FW93HLh95OT85/yfEhsb2qO+6vXs5fe+9AFjj40l/8MFuuW3KTjfH4SekR/XIJkEYCIigDyRs9WYy89hHcGiDyXbotLVtl34ejLvcjMRTxvW9nR1wqvoUj37+KG8eetPtK08OT+be2fcyL3Nej/u3nTxJ/ndvQ9fWglKk//dvujwR2kSToCuLIj5VfOhC4COC3p/UlsGJbXD8Yzj+iRFzzxDDJqwhkDULxl4C4y6FuKy+t7UTDpQd4Jm9z7DmyBrs2uRHCVJBXDP2Gm6bfFuPR+UAjceOceymm7AXmVWlqXf/hOh587rdX9OEaGxyONZgCVkUAh8R9L6iuhhO7zKVf07vgoLdJjFWeySONiGGoxfC8AshZOD5eOvt9bx//H1ey32thWsFYFHWIu6cdifDYjrPeOgLtTt2kH/HnThKzSrXhG9+k/gbbuhRn00jdPGfC4MFEXR/U1MCxQeg5IB5Lj4AxTlQdbr9a5TFLPjJmu16zILotL6zuQs0OBrYenor64+v572j77knOwEsysLFwy7mxkk3MjFxol/up202Sp9+muI/Pwp2M/JPvPU7JN9xR7fDHQFsjQ4qmyJc0kXQhcGBCHpXcdigIh/Kj8GZY2aUXe56LjsCdWWd9xGbBennmuX3Q6eaGPHQ6F42vHs4tZPcM7nsKNzB9oLtfHzqY2rttS3axIXGcdnIy7h+/PVkRmf65b5aa2o2b6Hod7+j4eBBwORpSbvvXuKuuqrH/R/+rNgd4ZKcOTDfe0HoKiLoTWhtfNrVBWY0XVXQ/Kj22K48BdrhW59BYZCUDUljIW2SmcxMnwwRCb36UrqL1prC2kIOlB0gpyyHvaV72Vm4072q05MQSwhzhsxh+ejlzMuYR7CfwiSd9fVUrV1H2fPPU797d/P9Ro9iyH8/SPg5k/xyn93rTwAQHhPCsEmJfulTEPobnwRdKbUU+BNgBZ7SWj/Y6nwo8BwwDSgFrtVaH/WvqT6gNdhqTbhfQxU0Vpnnhioj1nVlLZ9bH3PaO79Ha5TVLN6JHw5xwyBpDCSPNc9xWWCx+v1l9gSndlJWX0ZhbSEnqk5wovIEJ6pOcLzqOHnleVQ0VLR7bXJ4Muenn8/8zPlcOPRCIoP946qwnTpF9ebN1GzeQs1HH+Gsbk4iZomMJPHmb5PwzW/6nBK3MwqOVFB0zLiKJs4dIhOiwqChU0FXSlmBR4HFQD6wXSm1WmvtubLlW8AZrfVopdRK4LeA7zlMfcXphNWrmkW60SXcngKunf69Z2is8WdHp0J0OsQMhfhhzQIem9Evi3gcTgcNjgbqHfVUN1ZT1VhFRWMFVY1VLR5nGs5QUltCcV0xxbXFlNaX4vDxF8aQyCFMTpnMjLQZzEibQVZ0Vo+W6dtOncJeUIDt1Gls+SeozzlAfU4OjpKSNu2tcXHEX3898V/7KkEJ/vtFU1Fcx/vP7AfAYlFMmtv/K2kFwV/4MkI/H8jTWh8GUEq9BKwAPAV9BXC/a/tV4M9KKaW11n60FSwW3nyvEO0EjRVNLBALNIlMs9ho3C5Sj2PKJKayBIMlyDxbg9CufW0NMeJsCWnedlqgXEN5Ux8aKDMP/anrHrr5pk3R19psObVG40RrjXY2bTtxulpqp9M866a2TdsOHNqB0+nAoZ04tAOH02mOOx3uGG9PlPtQS9FNBJKIZjzRwMg214VaQggPiiAqOJKYkGiiQ2KICokmxBIMh02nBXo7BWwHp0Y77Gi7AxwO97Z22MHuQDscaJsNZ30DuqHOPNfVo21e4umVFUIngktTVXg4ISNHEjZ+HKGjs6kPsnJ6Vw1Qg9dPko+fLq01DbV2Sk9Wc2JfGXab+aM/ad5QScolDCp8EfShwAmP/XxgZntttNZ2pVQFRkfaDr16SL7t2zitPfgSasDhegxgLK5Hn+AAbFBfB/VAUU/7U0C469FVGoFdwK7DnbXsEVMuzmL2FaN69R6C0Nf06aSoUuoW4BaArKyBtzhGGMQoiIoLZejYeMaen0bmhIE5MS0IPcEXQT8JeMaiZbiOeWuTr5QKwvhBSlu1QWv9BPAEwPTp07vljplzfThaa5TLraBcebSVch1xexsUymJBuVuaNrjbKY9zCmVpdtt49qVc/bjONB9ztWvap6lP94UKqwrCqlSz39nT/+yxrVqfc92nZYN22irVoqn7nGrdJ+37v912ex7z+H3gNl+BsmAJCYagINd1vvvUvTb1ckx5O9hOW1/vExQiBSyEwY8vgr4dyFZKjcAI90rg+lZtVgPfAD4GrgLW+91/7uK8+fN6o1tBEISAp1NBd/nEVwHvYsIW/6a13quUegDYobVeDTwNPK+UysPMGK7sTaMFQRCEtvjkQ9davw283erYvR7b9cDV/jVNEARB6AriVBQEQRgkiKALgiAMEkTQBUEQBgki6IIgCIMEEXRBEIRBguqlcPHOb6xUMXCsm5cn0QtpBfyA2NU1xK6uM1BtE7u6Rk/sGqa1TvZ2ot8EvScopXZoraf3tx2tEbu6htjVdQaqbWJX1+gtu8TlIgiCMEgQQRcEQRgkBKqgP9HfBrSD2NU1xK6uM1BtE7u6Rq/YFZA+dEEQBKEtgTpCFwRBEFoxYAVdKXW1UmqvUsqplJre6txPlVJ5SqkDSqkl7Vw/Qim11dXuZaWUfyoMt7zHy0qpz12Po0qpz9tpd1Qp9YWr3Q5/2+HlfvcrpU562HZJO+2Wut7DPKXU3X1g1++UUjlKqd1KqdeUUnHttOuT96uz16+UCnX9H+e5PkvDe8sWj3tmKqU2KKX2uT7/d3hpM08pVeHx/3uvt756wbYO/1+U4RHX+7VbKTW1D2wa6/E+fK6UqlRK3dmqTZ+9X0qpvymlipRSezyOJSil1iqlcl3P8e1c+w1Xm1yl1De6ZYDWekA+gPHAWGAjMN3j+ARMkbJQYARwCLB6uf4VYKVr+3Hgu71s7x+Ae9s5dxRI6sP37n7gx520sbreu5FAiOs9ndDLdl0MBLm2fwv8tr/eL19eP3Ab8LhreyXwch/836UDU13b0cBBL3bNA97qq8+Tr/8vwCXAO5hSJLOArX1snxUowMRp98v7BXwJmArs8Tj2EHC3a/tub597IAE47HqOd23Hd/X+A3aErrXer7U+4OXUCuAlrXWD1voIkIcpZO1GmTI6CzAFqwGeBa7oLVtd97sGeLG37tELuIt/a60bgabi372G1vo9rbXdtfsJpvpVf+HL61+B+eyA+SwtVF0p0dQNtNantdafurargP24y2gPeFYAz2nDJ0CcUiq9D++/EDikte7ugsUeo7XehKkJ4Ynn56g9LVoCrNVal2mtzwBrgaVdvf+AFfQO8Fa0uvUHPhEo9xAPb238yVygUGud2855DbynlNqpTF3VvmCV62fv39r5iefL+9ibfBMzmvNGX7xfvrz+FsXPgabi532Cy8UzBdjq5fRspdQupdQ7SqmJfWRSZ/8v/f2ZWkn7g6r+eL+aSNVan3ZtFwCpXtr45b3r0yLRrVFKrQPSvJy6R2v9Rl/b4w0fbbyOjkfnF2qtTyqlUoC1Sqkc11/yXrELeAz4JeYL+EuMO+ibPbmfP+xqer+UUvcAduAf7XTj9/cr0FBKRQH/Au7UWle2Ov0pxq1Q7ZofeR3I7gOzBuz/i2uObDnwUy+n++v9aoPWWiulei20sF8FXWu9qBuX+VK0uhTzcy/INbLy1sYvNipTFPsrwLQO+jjpei5SSr2G+bnfoy+Cr++dUupJ4C0vp3x5H/1ul1LqRuAyYKF2OQ+99OH398sLfit+7m+UUsEYMf+H1vrfrc97CrzW+m2l1F+UUkla617NWeLD/0uvfKZ8ZBnwqda6sPWJ/nq/PChUSqVrrU+7XFBFXtqcxPj6m8jAzB92iUB0uawGVroiEEZg/tJu82zgEooNmILVYApY99aIfxGQo7XO93ZSKRWplIpu2sZMDO7x1tZftPJbfrmd+7mLf7tGNysx721v2rUUuAtYrrWubadNX71fvrz+puLn0MvFz5tw+eifBvZrrf+nnTZpTb58pdT5mO9xr/6h8fH/ZTVwgyvaZRZQ4eFq6G3a/ZXcH+9XKzw/R+1p0bvAxUqpeJeL9GLXsa7RFzO/3XlghCgfaAAKgXc9zt2DiVA4ACzzOP42MMS1PRIj9HnAP4HQXrLzGeDWVseGAG972LHL9diLcT309nv3PPAFsNv1YUpvbZdr/xJMFMWhPrIrD+Mn/Nz1eLy1XX35fnl7/cADmD84AGGuz06e67M0sg/eowsxrrLdHu/TJcCtTZ8zYJXrvdmFmVye0wd2ef1/aWWXAh51vZ9f4BGd1su2RWIEOtbjWL+8X5g/KqcBm0u/voWZd3kfyAXWAQmuttOBpzyu/abrs5YH3NSd+8tKUUEQhEFCILpcBEEQBC+IoAuCIAwSRNAFQRAGCSLogiAIgwQRdEEQhEGCCLogCMIgQQRdEARhkCCCLgiCMEj4/7LiOAfEnx9UAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "xs=np.linspace(-10,10,200)\n", "ks=[.1,.5,1,2,10]\n", "for k in ks:\n", " ys=logistic(xs,k)\n", " plt.plot(xs,ys,label=f'k={k}',lw=2.5)\n", "plt.title(r'$f(x)=\\frac{1}{1+e^{-kx}}$',fontsize=18)\n", "plt.legend(); plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "e8065e3d", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }