{ "cells": [ { "cell_type": "markdown", "id": "20fce00f", "metadata": {}, "source": [ "# ML, Data Analysis\n", "### Probability: covariance matrix\n", "\n", "The **covariance matrix** extends the idea of variance and covariance for n-dimensional random vectors. Thus, the vocariance matrix for an n-dimensional random vector $X$ is $n\\times n$ symmetric matrix where:\n", "- diagonal elements are variance of each component of vector $X$\n", "- off-diagonal elements are covariance between componets of vector $X$\n", "\n", "Formally, the **covariance matrix** $cov(X)$, also called **auto-covariance matrix**, for a random vector $\\boldsymbol{X}=[X_1,X_2,...,X_n]^T$ is computed by:\n", "
\n", "$\\large cov(\\boldsymbol{X})=E[(\\boldsymbol{X}-E[\\boldsymbol{X}])(\\boldsymbol{X}-E(\\boldsymbol{X}))^T]$\n", "
Or equivalently:
\n", "$\\large cov(\\boldsymbol{X})=E[\\boldsymbol{X}\\boldsymbol{X}^T]-E[\\boldsymbol{X}]E[\\boldsymbol{X}]^T$\n", "
\n", "\n", "where $E[\\boldsymbol{X}]$ is the mean vector of $\\boldsymbol{X}$. In fact, it is the vector of means of the components: \n", "
\n", "$E[\\boldsymbol{X}]=[E[X_1],E[X_2],...,E[X_n]]^T$\n", "\n", "
Some properties of covariance matrix $cov(\\boldsymbol{X})$:\n", "1. **Symmetry:** $cov(\\boldsymbol{X})=cov(\\boldsymbol{X})^T$\n", "2. **Positive semi-definite:** All eigenvalues of matrix $cov(\\boldsymbol{X})$ are nonnegative. In other words, for any vector $v$, we have: \\boldsymbol{v}^Tcov(\\boldsymbol{X})\\boldsymbol{V}>=0.\n", "3. **Linear transformation:** For a matrix $A$ and random vector $X$, we have: $cov(A\\cdot \\boldsymbol{X})=A\\cdot cov(\\boldsymbol{X})\\cdot A^T$\n", "\n", "**Hint:** We can express the covariance of sum of two random vectors $\\boldsymbol{X}$ and $\\boldsymbol{Y}$ by:\n", "
\n", "$\\large cov(\\boldsymbol{X}+\\boldsymbol{Y})=cov(\\boldsymbol{X})+cov(\\boldsymbol{Y})+\n", "cov(\\boldsymbol{X},\\boldsymbol{Y})+cov(\\boldsymbol{Y},\\boldsymbol{X})$\n", "
\n", "\n", "where $cov(\\boldsymbol{X},\\boldsymbol{Y})$ is the **cross-covariance** of $\\boldsymbol{X}$ and $\\boldsymbol{Y}$ defined by:\n", "
\n", "$cov(\\boldsymbol{X},\\boldsymbol{Y})=E[(\\boldsymbol{X}-E[\\boldsymbol{X}])(\\boldsymbol{Y}-E(\\boldsymbol{Y}))^T]$\n", "
Or equivalently:
\n", "$cov(\\boldsymbol{X},\\boldsymbol{Y})=E[\\boldsymbol{X}\\boldsymbol{Y}^T]-E[\\boldsymbol{X}]E[\\boldsymbol{Y}]^T$\n", "
\n", "\n", "**Hint:** We also can show that: $cov(\\boldsymbol{Y},\\boldsymbol{X})=cov(\\boldsymbol{X},\\boldsymbol{Y})^T$.\n", "\n", "**Reminder:** For the topic on the **expected value**, see the relevent post on this repository.\n", "
\n", "\n", "In the following, we compute the covariance matrix for a sample of two-dimensional random vector.\n", "\n", "
\n", "https://github.com/ostad-ai/Machine-Learning\n", "
Explanation: https://www.pinterest.com/HamedShahHosseini/Machine-Learning/background-knowledge" ] }, { "cell_type": "code", "execution_count": 1, "id": "abc3abf4", "metadata": {}, "outputs": [], "source": [ "# Import required modules\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "id": "7c7a622d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEYCAYAAABRB/GsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWgElEQVR4nO3dfbAdd33f8fcnsrA12EXBVosl2ygPVAPYgIziOKWTUhNGDgHbBdO4M2BMoQxJDHYTRBFNoXhISKKWUMI01MVpDIXa1Gg0gjGjusVuShpsy4/CNiomY9dIJhYG+aFcgyS+/eOszNXRuVf3Sjr3nOPf+zVzRnt2f7v73T26+zn7cHZTVUiS2vVToy5AkjRaBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCLTgktyT5JVDnP6fJ/nwsKZ/tAx7PfTN6yNJLl+IeU2b5y1JXryQ89ThMQg0b0keSPJIkmdP6/f2JDfNZfyqenFVzantsHXL8iujmPd81sOR1JlkGXAx8B8OZ/wj8G+AKxZ4njoMBoEO1yLgslEXoTm5BLi+qqYWeL6bgX+Y5HkLPF/Nk0Ggw7UBeE+Spf0DkrwwyU1JdneHP87rG/70t9sk/yLJjiRPJNme5FVJ1iX5Qt84H0/y7wYVkmR1ktu7aVwLHNc3/H1JvtUNvzfJP+r6fwY4DfhikieTvHe29jPM+4Ek67t230/yn5IcN234jOuibz08kOQ9Se5O8liSa/dPZ5Y6D1p3M5T5q8D/7Kv7j5JsmvZ+Q5L/keRZMy1r1+74JPuSnDyt3+lJHk5ywvS2VfUUcBuwdrZpagxUlS9f83oBDwC/AmwEPtz1eztwE7AYuB94P/As4BzgCWDVgPFXAQ8By7v+K4GfA04G/h+wtOt/DPAI8PIBtTwLeBD45928LwT27K+ra/NGYDm9Lz6/3k375Om19E1zxvYzrIuvA6cCzwX+cto6mXVdTJ93131LN9/nAvcB7+xfZ9PeD1x3M9S4C/iFvn4nAo8Bq4F3AtuA58zx878H+LVp778EvGuGth8HPjrq/7O+Zn+5R6Aj8QHgXd0x6P3OBo4H/qCqflRVX6G3ofgnA8bfBxwLvCjJ4qp6oKq+VVUPA39Bb4MMcC7w3aq6bcA0zqa3wf1YVe2pquuAW6c3qKr/WlU7q+rHVXUt8E3grJkWar7tgU9U1UNV9T3g96Yt63zWBcDHu/l+D/gi8LJZ5jlw3c3Qdim9AJq+jI8CfwxcDawHXlNVjwEkuTTJC2aZ963AmV3bXwZexLTzD33jP9HNX2PMINBhq6qv09uwvW9a7+XAQ1X142n9HgRWDBj/fuBy4F8DjyS5JsnybvDVwJu67jcBn5mhjOXAjqqafj/1B6c3SHJxkju7wzO7gdOBk2Zarvm2p/fNfPq89y/DnNdF5zvTun9AL0QGOsS66/d94IQB/e8AzgDWV9XTy1BVn6iqb840b6YFAfBHwL+qqh/NMP4JwO5ZpqUxYBDoSH0Q+Gf8ZOO2Ezg1yfT/W6cBOwaNXFWfq6q/DzwfKOAPu0GbgJckOR14LfDZGeb/MLAiSfrmB0CS5wP/EbgUOLGqltI7lLO//QEP5JhD+0FO7Zv3zq57XuviEA56cMgs667f3cDfnd4jyRnAn9IL3H/aN+ymQ9RyK3BmkjfQOx/zuVnGfyFw1yGmpxEzCHREum+m1wLv7nrdTO/b7HuTLO6uk38dcE3/uElWJTknybHAU8AU8ONuuk8B19HbyNxSVf93hhL+CtgLvLub3+s58DDOs+ltJHd183wrvW/4+/0N8LPzaD/IbyU5JclzgX/ZrY95rYs5OKDO2dbdANcD/2DauCvoHXp6J/CbwBldbSQ5id75mP2/x/jzAdO7C3ge8G/p7U08HVJ94x8HvBy4Yd5LqwVlEOhouILeBpTuEMHr6F2p8l3g3wMXV9U3Box3LPAHXbvvAH+b3vHq/a6md+hipsNC++f3enqXSH6P3sndjdOG30tvg/VX9DamZ9A7obvfR4Df7Q4DvWcO7Qf5HPDfgL8GvgV8+DDWxaEcUCeHXnfTfRp4TZIlSf4WvWD4aFVtrqof0LsC7Pe6ti+hd+IYens6By17Vf2wa/NAVX25b/D08V8H3FRVO9FYy4GHVqXxkeQ04BvA86rq8VHXM0iSB4C3V9V/H3Uts0ny+8AjVfWxQ7S7nN4VStfT++b/kqra09fmWfSuhvrHVfW1QeNX1aYkNwNv684laYwdM+oCpEG64+q/DVwzriEwSarq/XNsegawudubeeEMbT4I/GV/CEwfv5vnL867UI2EQaCxk96tK/6G3hU25464nKZU1dtmGpbkTOBGeiefB/7IbrbxNb48NCRJjfNksSQ1buIODZ100km1cuXKUZchSRPltttu+25VLRs0bOKCYOXKlWzdunXUZUjSREny4EzDPDQkSY0zCCSpcQaBJDXOIJCkxhkEktS4oV81lGQRsJXePeNf2zfsWHo3xHo58Cjw61X1wLBrktSeTXfsYMOW7ezcPcXypUtYt3YVF6ye6dEQbVmIPYLL6D12b5C3Ad+vqp+n97Skme6nLkmHbdMdO1i/cRs7dk9RwI7dU6zfuI1NdxzOoyGeeYYaBElOAX4N+NQMTc6nd6th6N17/lV9DxiRpCO2Yct2pvbsO6Df1J59bNiyfUQVjZdh7xF8DHgvMz8wYwXdY/6qai+9h2mf2N8oyTuSbE2yddeuXUMqVdIz1c7dU/Pq35qhBUGS19K7//mgB47PS1VdWVVrqmrNsmUDfyEtSTNavnTJvPq3Zph7BK8Azuse3HENcE6S/9zXZgfd816THAM8h95JY0k6atatXcWSxYsO6Ldk8SLWrV01oorGy9CCoKrWV9UpVbUSuAj4SlW9qa/ZZuAtXfeFXRvviy3pqLpg9Qo+8vozWLF0CQFWLF3CR15/hlcNdRb8pnNJrgC2VtVm4CrgM0nup/e82YsWuh5Jbbhg9Qo3/DNYkCCoqpuAm7ruD0zr/xTwxoWoQZI0mL8slqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1bsGfUCZp7jbdsYMNW7azc/cUy5cuYd3aVT5lS0edQSCNqU137GD9xm1M7dkHwI7dU6zfuA3AMNBR5aEhaUxt2LL96RDYb2rPPjZs2T6iivRMZRBIY2rn7ql59ZcOl0EgjanlS5fMq790uAwCaUytW7uKJYsXHdBvyeJFrFu7akQV6ZnKk8XSmNp/QtirhjRsBoE0xi5YvcINv4bOQ0OS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1bmhBkOS4JLckuSvJPUk+NKDNJUl2Jbmze719WPVIkgYb5oNpfgicU1VPJlkMfDXJl6vqa33trq2qS4dYhyRpFkMLgqoq4Mnu7eLuVcOanyTp8Az1HEGSRUnuBB4Bbqiqmwc0e0OSu5Ncl+TUGabzjiRbk2zdtWvXMEuWpOYMNQiqal9VvQw4BTgryel9Tb4IrKyqlwA3AFfPMJ0rq2pNVa1ZtmzZMEuWpOYsyFVDVbUbuBE4t6//o1X1w+7tp4CXL0Q9kqSfGOZVQ8uSLO26lwCvBr7R1+bkaW/PA+4bVj2SpMGGedXQycDVSRbRC5zPV9WXklwBbK2qzcC7k5wH7AW+B1wyxHokSQOkd3HP5FizZk1t3bp11GVI0kRJcltVrRk0zF8WS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1LihBUGS45LckuSuJPck+dCANscmuTbJ/UluTrJyWPVIkgYb5h7BD4FzquqlwMuAc5Oc3dfmbcD3q+rngT8G/nCI9UiSBhhaEFTPk93bxd2r+pqdD1zddV8HvCpJhlWTJOlgQz1HkGRRkjuBR4AbqurmviYrgIcAqmov8Bhw4oDpvCPJ1iRbd+3aNcySJak5Qw2CqtpXVS8DTgHOSnL6YU7nyqpaU1Vrli1bdlRrlKTWHTIIkrwryU8fyUyqajdwI3Bu36AdwKndfI4BngM8eiTzkiTNz1z2CP4OcGuSzyc5d67H8JMsS7K0614CvBr4Rl+zzcBbuu4Lga9UVf95BEnSEB0yCKrqd4EXAFcBlwDfTPL7SX7uEKOeDNyY5G7gVnrnCL6U5Iok53VtrgJOTHI/8NvA+w5zOSRJh+mYuTSqqkryHeA7wF7gp4HrktxQVe+dYZy7gdUD+n9gWvdTwBsPp3BJ0tFxyCBIchlwMfBd4FPAuqrak+SngG8CA4NAkjQZ5rJH8Fzg9VX14PSeVfXjJK8dTlmSpIVyyCCoqg/OMuy+o1uOJGmhedM5SWqcQSBJjZvTVUPSONt0xw42bNnOzt1TLF+6hHVrV3HB6hWjLkuaGAaBJtqmO3awfuM2pvbsA2DH7inWb9wGYBhIc+ShIU20DVu2Px0C+03t2ceGLdtHVJE0eQwCTbSdu6fm1V/SwQwCTbTlS5fMq7+kgxkEmmjr1q5iyeJFB/RbsngR69auGlFF0uTxZLEm2v4Twl41JB0+g0AT74LVK9zwS0fAQ0OS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjvNeQnuYjH6U2GQQCfOSj1DIPDQnwkY9SywwCAT7yUWqZQSDARz5KLTMIBPjIR6llniwW4CMfpZYZBHqaj3yU2uShIUlqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGje0IEhyapIbk9yb5J4klw1o88okjyW5s3t9YFj1SJIGG+YPyvYCv1NVtyc5AbgtyQ1VdW9fu/9VVa8dYh2SpFkMbY+gqh6uqtu77ieA+wB/tipJY2ZBzhEkWQmsBm4eMPiXktyV5MtJXjzD+O9IsjXJ1l27dg2zVElqztCDIMnxwBeAy6vq8b7BtwPPr6qXAn8CbBo0jaq6sqrWVNWaZcuWDbVeSWrNUIMgyWJ6IfDZqtrYP7yqHq+qJ7vu64HFSU4aZk2SpAMN86qhAFcB91XVR2do87yuHUnO6up5dFg1SZIONsyrhl4BvBnYluTOrt/7gdMAquqTwIXAbyTZC0wBF1VVDbEmSVKfoQVBVX0VyCHafAL4xLBqkCQdmr8slqTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXFDC4Ikpya5Mcm9Se5JctmANkny8ST3J7k7yZnDqkeSNNgxQ5z2XuB3qur2JCcAtyW5oarundbmV4EXdK9fBP60+1eStECGtkdQVQ9X1e1d9xPAfcCKvmbnA5+unq8BS5OcPKyaJEkHW5BzBElWAquBm/sGrQAemvb+2xwcFiR5R5KtSbbu2rVraHVKUouGHgRJjge+AFxeVY8fzjSq6sqqWlNVa5YtW3Z0C5Skxg01CJIsphcCn62qjQOa7ABOnfb+lK6fJGmBDO1kcZIAVwH3VdVHZ2i2Gbg0yTX0ThI/VlUPD6umSbTpjh1s2LKdnbunWL50CevWruKC1QcdPZOkwzbMq4ZeAbwZ2Jbkzq7f+4HTAKrqk8D1wGuA+4EfAG8dYj0TZ9MdO1i/cRtTe/YBsGP3FOs3bgMwDCQdNUMLgqr6KpBDtCngt4ZVw6TbsGX70yGw39SefWzYst0gkHTU+MviMbZz99S8+kvS4TAIxtjypUvm1V+SDodBMMbWrV3FksWLDui3ZPEi1q1dNaKKJD0TDfNksY7Q/vMAXjUkaZgMgjF3weoVbvglDZWHhiSpcQaBJDXOIJCkxhkEktQ4g0CSGpfeXR4mR5JdwIOHaHYS8N0FKGdYrH+0rH+0Jr1+GM9leH5VDbyP/8QFwVwk2VpVa0Zdx+Gy/tGy/tGa9Pph8pbBQ0OS1DiDQJIa90wNgitHXcARsv7Rsv7RmvT6YcKW4Rl5jkCSNHfP1D0CSdIcGQSS1LiJDoIk5ybZnuT+JO8bMPySJLuS3Nm93j6KOgdJ8mdJHkny9RmGJ8nHu2W7O8mZC13jbOZQ/yuTPDZt3X9goWucTZJTk9yY5N4k9yS5bECbsf0M5lj/2H4GSY5LckuSu7r6PzSgzbFJru3W/81JVo6g1IHmWP/Ybn8OUlUT+QIWAd8CfhZ4FnAX8KK+NpcAnxh1rTPU/8vAmcDXZxj+GuDL9J77fDZw86hrnmf9rwS+NOo6Z6n/ZODMrvsE4P8M+P8ztp/BHOsf28+gW6fHd92LgZuBs/va/Cbwya77IuDaUdc9z/rHdvvT/5rkPYKzgPur6q+r6kfANcD5I65pzqrqL4DvzdLkfODT1fM1YGmSkxemukObQ/1jraoerqrbu+4ngPuA/gc/jO1nMMf6x1a3Tp/s3i7uXv1XrpwPXN11Xwe8KkkWqMRZzbH+iTHJQbACeGja+28z+A/hDd1u/XVJTl2Y0o6KuS7fOPulbtf5y0lePOpiZtIdclhN71vddBPxGcxSP4zxZ5BkUZI7gUeAG6pqxvVfVXuBx4ATF7TIWcyhfpiQ7c8kB8FcfBFYWVUvAW7gJ98uNHy307u3yUuBPwE2jbacwZIcD3wBuLyqHh91PfN1iPrH+jOoqn1V9TLgFOCsJKePuKR5mUP9E7P9meQg2AFMT9hTun5Pq6pHq+qH3dtPAS9foNqOhkMu3zirqsf37zpX1fXA4iQnjbisAyRZTG8j+tmq2jigyVh/BoeqfxI+A4Cq2g3cCJzbN+jp9Z/kGOA5wKMLWtwczFT/JG1/JjkIbgVekORnkjyL3smkzdMb9B3PPY/ecdRJsRm4uLty5Wzgsap6eNRFzVWS5+0/npvkLHr/18bmj7ir7Srgvqr66AzNxvYzmEv94/wZJFmWZGnXvQR4NfCNvmabgbd03RcCX6nuLOyozaX+Sdr+TOzD66tqb5JLgS30riD6s6q6J8kVwNaq2gy8O8l5wF56JzYvGVnBfZL8F3pXdZyU5NvAB+mdcKKqPglcT++qlfuBHwBvHU2lg82h/guB30iyF5gCLhqXP+LOK4A3A9u647wA7wdOg4n4DOZS/zh/BicDVydZRC+gPl9VX+r7+70K+EyS++n9/V40unIPMpf6x3b7089bTEhS4yb50JAk6SgwCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDALpCCX5he7GYscleXZ3f/qJum+O2uYPyqSjIMmHgeOAJcC3q+ojIy5JmjODQDoKuvtd3Qo8Bfy9qto34pKkOfPQkHR0nAgcT+9pYceNuBZpXtwjkI6CJJvpPSXvZ4CTq+rSEZckzdnE3n1UGhdJLgb2VNXnurtR/u8k51TVV0ZdmzQX7hFIUuM8RyBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuP+P/wVya3n3SwLAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Cov. matrix, Manual calculation:\n", " [[0.76366245 0.69698309]\n", " [0.69698309 0.70075292]]\n", "\n", "Cov. matrix, NumPy result:\n", " [[0.76366245 0.69698309]\n", " [0.69698309 0.70075292]]\n" ] } ], "source": [ "# Example dataset of 2D vectors (e.g., [x, y] coordinates)\n", "data = np.array([[1.0, 2.0],\n", " [1.5, 2.5],\n", " [2.0, 3.0],\n", " [2.5, 3.5],\n", " [3.0, 4.0]]) # Shape: (5 samples, 2 dimensions)\n", "noisy_data=data+np.random.normal(0, .15, data.shape)\n", "\n", "# Method 1: Manual calculation\n", "def manual_covariance(data,bias=False):\n", " n = data.shape[0]\n", " mean = np.mean(data, axis=0,keepdims=True)\n", " centered = data - mean\n", " cov=centered.T @ centered\n", " if bias: cov/=n # Population covariance\n", " else: cov/=(n-1) # Sample covariance\n", " return cov\n", "\n", "# Method 2: Using NumPy; rowvar=False means each row is a sample\n", "# When bias=False, sample cov. is computed (1/(n-1) is used)\n", "numpy_cov = np.cov(noisy_data, rowvar=False, bias=False)\n", "\n", "# Plot the results\n", "plt.scatter(noisy_data[:, 0], noisy_data[:, 1])\n", "plt.xlabel('x'); plt.ylabel('y')\n", "plt.title('Noisy data points $(x_i,y_i)$')\n", "plt.axis('equal'); plt.show()\n", "print('Cov. matrix, Manual calculation:\\n', manual_covariance(noisy_data))\n", "print('\\nCov. matrix, NumPy result:\\n', numpy_cov)" ] }, { "cell_type": "code", "execution_count": null, "id": "a6d476cc", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "d41ebef9", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.1" } }, "nbformat": 4, "nbformat_minor": 5 }