File size: 11,747 Bytes
2e77130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
%% Step 2 Oddball

clear all; clc
addpath('Z:\EXPERIMENTS\mTBICoBRE\EEG\');

savedir='Z:\EXPERIMENTS\mTBICoBRE\EEG\3AOB Processed\';



load('Z:\EXPERIMENTS\mTBICoBRE\EEG\BV_Chanlocs_60.mat');



% ########## For Cavanagh data

datadir='Z:\EXPERIMENTS\mTBICoBRE\EEG\3AOB Preproc\';

[D_DAT,D_HDR,D_ALL]=xlsread('Z:\EXPERIMENTS\mTBICoBRE\ANALYSIS\QUALITY_CHECK.xlsx','ODDBALL_ICAs');

FILEENDER='_3AOB.mat';



% % % ########## For Quinn data

% % datadir='Z:\EXPERIMENTS\mTBICoBRE\EEG\QUINN 3AOB Preproc\';

% % [D_DAT,D_HDR,D_ALL]=xlsread('Z:\EXPERIMENTS\mTBICoBRE\ANALYSIS\QUINN_QUALITY_CHECK.xlsx','ODDBALL_ICAs');

% % FILEENDER='_QUINN_3AOB.mat';



cd(datadir);



% ############# Set Params

srate=500;

tx=-2000:1000/srate:1998;

B1=find(tx==-300);  B2=find(tx==-200);

T1=find(tx==-500);  T2=find(tx==1000);

tx2disp=-500:2:1000;

% #############





for si=1:length(D_DAT)

    for sess=1:size(D_DAT,2)-1 % should be '2' for Quinn data, '3' for Cavanagh data

        

        subno=D_DAT(si,1);

        skip=0;

        

        INFO=D_ALL{si+1,sess+1};  % +1's b/c of subno column and header row
        disp(['TRYOUT ',num2str(subno),' S',num2str(sess)]);
        
        if isnumeric(INFO), bad_ICAs_To_Remove=INFO; end
        if isnan(INFO), skip=1; end     % not done yet
        if strmatch('BAD',INFO), skip=1; end  % Bad data
        if ~isnumeric(INFO), bad_ICAs_To_Remove=str2num(INFO); end
        
        % Don't repeat if already done
        if exist([savedir,num2str(subno),'_',num2str(sess),'_3AOB_TFandERPs_L.mat'])==2, skip=1; end
        
        if skip==0
            
            load([num2str(subno),'_',num2str(sess),FILEENDER]);  disp(['DOING: ',num2str(subno),'_',num2str(sess),'_3AOB.mat']);
            
            % Remove the bad ICAs:
            disp(['BAD ICAS:  ', num2str(bad_ICAs_To_Remove)]);
            EEG = pop_subcomp( EEG, bad_ICAs_To_Remove, 0);

           % Get the good info out of the epochs
            for ai=1:size(EEG.epoch,2)
                % Initialize
                EEG.epoch(ai).EEG=NaN;
                for bi=1:size(EEG.epoch(ai).eventlatency,2)
                    % Get STIMTYPE
                    if EEG.epoch(ai).eventlatency{bi}==0 && isempty(strmatch(EEG.epoch(ai).eventtype{bi},'N999')); % If this bi is the event
                        % Get StimType
                        FullName=EEG.epoch(ai).eventtype{bi};
                        EEG.epoch(ai).EEG=str2num(FullName(2:end)) ;
                        
                        clear FullName
                        VECTOR(ai,1)=EEG.epoch(ai).EEG;  All_STIM={'S201','S200','S202'};   % Std, Target, Novel
                    end
                end
            end
            
            % Only as many STD as NOV
            N_n=sum(VECTOR(:,1)==202);
            temp_idxs=find(VECTOR(:,1)==201);
            temp_idxs=shuffle(temp_idxs);
            VECTOR(temp_idxs(N_n+1:end),1)=999;  clear temp_idxs;
            % Save trial counts
            TRL_ct(1)=sum(VECTOR(:,1)==201);
            TRL_ct(2)=sum(VECTOR(:,1)==200);
            TRL_ct(3)=sum(VECTOR(:,1)==202);
      
            
            %%
            % $$$$$$$$$$$$$$$$$$$$$$$           $$$$$$$$$$$$$$$$$$$$$$$
            % $$$$$$$$$$$$$$$$$$$$$$$ Time-Freq
            % $$$$$$$$$$$$$$$$$$$$$$$           $$$$$$$$$$$$$$$$$$$$$$$
            
            % Setup Wavelet Params
            num_freqs=50;
            frex=logspace(.01,1.7,num_freqs);
            s=logspace(log10(3),log10(10),num_freqs)./(2*pi*frex);
            t=-2:1/EEG.srate:2;
            
            % Definte Convolution Parameters
            dims = size(EEG.data);
            n_wavelet = length(t);
            n_data = dims(2)*dims(3);
            n_convolution = n_wavelet+n_data-1;
            n_conv_pow2 = pow2(nextpow2(n_convolution));
            half_of_wavelet_size = (n_wavelet-1)/2;
            
            % For Laplacian
            X = [BV_Chanlocs_60.X]; Y = [BV_Chanlocs_60.Y]; Z = [BV_Chanlocs_60.Z];
            
            % Pick channel
            chans=[36,33,56];    % FCz, F5, F6
            
            for REFi=1:2
                if REFi==1, TAG='V';
                elseif REFi==2, TAG='L';
                    [EEG.data,~,~] = laplacian_perrinX(EEG.data,X,Y,Z,[],1e-6);
                end
                
                % Get FFT of data
                for chani=1:3
                    EEG_fft(chani,:) = fft(reshape(EEG.data(chans(chani),:,:),1,n_data),n_conv_pow2);
                end
                
                for fi=1:num_freqs
                    
                    wavelet = fft( exp(2*1i*pi*frex(fi).*t) .* exp(-t.^2./(2*(s(fi)^2))) , n_conv_pow2 );  % sqrt(1/(s(fi)*sqrt(pi))) *
                    
                    % convolution
                    for chani=1:3
                        temp_conv = ifft(wavelet.*EEG_fft(chani,:));
                        temp_conv = temp_conv(1:n_convolution);
                        temp_conv = temp_conv(half_of_wavelet_size+1:end-half_of_wavelet_size);
                        EEG_conv(chani,:,:) = reshape(temp_conv,dims(2),dims(3));
                        clear temp_conv;

                        % Common pre-EEG baseline
                        temp_BASE(chani,:) = mean(mean(abs(EEG_conv(chani,B1:B2,:)).^2,2),3);
                    end
                    
                    for idx=1:3
                        
                        if     idx==1,  idx_V=VECTOR(:,1)==201;  % STD
                        elseif idx==2,  idx_V=VECTOR(:,1)==200;  % TARG
                        elseif idx==3,  idx_V=VECTOR(:,1)==202;   % NOV
                        end
                        
                        for chani=1:3
                            temp_PWR = squeeze(mean(abs(EEG_conv(chani,T1:T2,idx_V)).^2,3));
                            
                            POWER(chani,fi,:,idx)   = 10* (  log10(temp_PWR') - log10(repmat(temp_BASE(chani,:),size(tx2disp,2),1))  );

                            ITPC(chani,fi,:,idx)    = abs(mean(exp(1i*(  angle(EEG_conv(chani,T1:T2,idx_V))  )),3));

                            if     chani==1, seed=1; targ=2;

                            elseif chani==2, seed=1; targ=3;

                            elseif chani==3, seed=2; targ=3;

                            end

                            ISPC(chani,fi,:,idx) = abs(mean(exp(1i*(  angle(EEG_conv(seed,T1:T2,idx_V)) - angle(EEG_conv(targ,T1:T2,idx_V))  )),3));

                            

                            clear temp_PWR;

                        end

                        clear idx_V ;

                    end

                    clear wavelet idx_V temp_BASE EEG_conv;

                end

                

                %%

                % $$$$$$$$$$$$$$$$$$$$$$$            $$$$$$$$$$$$$$$$$$$$$$$

                % $$$$$$$$$$$$$$$$$$$$$$$ Theta Topo

                % $$$$$$$$$$$$$$$$$$$$$$$            $$$$$$$$$$$$$$$$$$$$$$$

                

                topofrex=4.5;

                s=logspace(log10(3),log10(10),num_freqs)./(2*pi*topofrex);

                wavelet = fft( exp(2*1i*pi*frex(fi).*t) .* exp(-t.^2./(2*(s(fi)^2))) , n_conv_pow2 );  % sqrt(1/(s(fi)*sqrt(pi))) *

                

                seed=36;

                

                EEG_fft_4TOPO = fft(reshape(EEG.data(seed,:,:),1,n_data),n_conv_pow2);

                seed_EEG_conv_4TOPO = ifft(wavelet.*EEG_fft_4TOPO);

                seed_EEG_conv_4TOPO = seed_EEG_conv_4TOPO(1:n_convolution);

                seed_EEG_conv_4TOPO = seed_EEG_conv_4TOPO(half_of_wavelet_size+1:end-half_of_wavelet_size);

                seed_EEG_conv_4TOPO = reshape(seed_EEG_conv_4TOPO,dims(2),dims(3));

                clear EEG_fft_4TOPO ;

                

                % Common pre-EEG SEED baseline

                seed_BASE = mean(mean(abs(seed_EEG_conv_4TOPO(B1:B2,:)).^2,1),2);

                

                for chani=1:60

                    

                    EEG_fft_4TOPO = fft(reshape(EEG.data(chani,:,:),1,n_data),n_conv_pow2);

                    EEG_conv_4TOPO = ifft(wavelet.*EEG_fft_4TOPO);

                    EEG_conv_4TOPO = EEG_conv_4TOPO(1:n_convolution);

                    EEG_conv_4TOPO = EEG_conv_4TOPO(half_of_wavelet_size+1:end-half_of_wavelet_size);

                    EEG_conv_4TOPO = reshape(EEG_conv_4TOPO,dims(2),dims(3));



                    % Common pre-EEG baseline

                    temp_BASE = mean(mean(abs(EEG_conv_4TOPO(B1:B2,:)).^2,1),2);

                    

                    for idx=1:3

                        if     idx==1,  idx_V=VECTOR(:,1)==201;  % STD

                        elseif idx==2,  idx_V=VECTOR(:,1)==200;  % TARG

                        elseif idx==3,  idx_V=VECTOR(:,1)==202;   % NOV

                        end

                        

                        temp_PWR = squeeze(mean(abs(EEG_conv_4TOPO(T1:T2,idx_V)).^2,2));

                        POWER_TOPO(chani,:,idx) = 10* (  log10(temp_PWR) - log10(repmat(temp_BASE,size(tx2disp,2),1))  );

                        

                        S4cor=10* (  log10(abs(seed_EEG_conv_4TOPO(T1:T2,idx_V)).^2) -  log10(repmat(seed_BASE,size(tx2disp,2),sum(idx_V))) );

                        T4cor=10* (  log10(abs(EEG_conv_4TOPO(T1:T2,idx_V)).^2) -  log10(repmat(temp_BASE,size(tx2disp,2),sum(idx_V))) );

                        CORREL_TOPO(chani,:,idx)= diag(corr(S4cor',T4cor','type','Spearman'));

                        

                        SYNCH_TOPO(chani,:,idx) = abs(mean(exp(1i*(  angle(seed_EEG_conv_4TOPO(T1:T2,idx_V)) - angle(EEG_conv_4TOPO(T1:T2,idx_V))  )),2));

                        

                        clear idx_V temp_PWR  S4cor T4cor;

                    end

                    

                    clear EEG_fft_4TOPO  EEG_conv_4TOPO  TOPO_conv temp_BASE;

                end

                

                %%

                % $$$$$$$$$$$$$$$$$$$$$$$      $$$$$$$$$$$$$$$$$$$$$$$

                % $$$$$$$$$$$$$$$$$$$$$$$ ERPs

                % $$$$$$$$$$$$$$$$$$$$$$$      $$$$$$$$$$$$$$$$$$$$$$$

                

                % Filter

                dims=size(EEG.data);

                EEG.data=eegfilt(EEG.data,500,[],20);

                EEG.data=eegfiltfft(EEG.data,500,.1,[]);

                EEG.data=reshape(EEG.data,dims(1),dims(2),dims(3));

                

                % Basecor your ERPs here so they are pretty.

                EEG_BASE=squeeze( mean(EEG.data(:,find(tx==-200):find(tx==0),:),2) );

                for ai=1:dims(1)

                    EEG.data(ai,:,:)=squeeze(EEG.data(ai,:,:))-repmat( EEG_BASE(ai,:),dims(2),1 );

                end

                

                % Get ERPs

                for idx=1:3

                        if     idx==1,  idx_V=VECTOR(:,1)==201;  % STD

                        elseif idx==2,  idx_V=VECTOR(:,1)==200;  % TARG

                        elseif idx==3,  idx_V=VECTOR(:,1)==202;   % NOV

                        end

                    ERP(:,:,idx)=squeeze(mean(EEG.data(:,find(tx==-500):find(tx==1000),idx_V),3));

                    clear DATA_erp idx_V ;

                end

                

                save([savedir,num2str(subno),'_',num2str(sess),'_3AOB_TFandERPs_',TAG,'.mat'],'ERP','ISPC','ITPC','POWER','VECTOR','SYNCH_TOPO','TRL_ct','POWER_TOPO','CORREL_TOPO');

                

                clear ERP ISPC ITPC POWER RT;

            end

            

            clearvars -except datadir savedir FILEENDER BV_Chanlocs_60 D_DAT D_HDR D_ALL tx B1 B2 T1 T2 tx2disp si sess

        end

    end

end



%%