File size: 5,668 Bytes
89f2fc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fd4000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
license: cc-by-4.0
dataset_info:
  features:
  - name: image1_path
    dtype: string
  - name: image2_path
    dtype: string
  - name: image1s_path
    dtype: string
  - name: image2s_path
    dtype: string
  - name: corruption
    dtype: string
  - name: split
    dtype: string
  - name: scene_id
    dtype: string
  - name: frame_leftright
    dtype: string
  - name: frame_forwardbackward
    dtype: string
  - name: index
    dtype: int32
  - name: sample_type
    dtype: string
  splits:
  - name: test
    num_bytes: 34406100
    num_examples: 158800
  download_size: 2757713
  dataset_size: 34406100
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
language:
- en
tags:
- computer-vision
- robustness
- image-corruption
- optical-flow
- scene-flow
- stereo
size_categories:
- 100K<n<1M
---

# RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo

This dataset provides structured **metadata only** for the [RobustSpring](https://spring-benchmark.org) dataset. All image samples are referenced by relative file paths, and must be paired with local image data downloaded separately from the public release site.

* **Dataset on the Hub**: [jeschmalfuss/RobustSpring](https://huggingface.co/datasets/jeschmalfuss/RobustSpring)
* **Image Data**: [RobustSpring](https://doi.org/10.18419/DARUS-5047)

For the related [research](https://www.arxiv.org/abs/2505.09368) see
```
RobustSpring: Benchmarking Robustness to Image Corruptions for Optical Flow, Scene Flow and Stereo
Jenny Schmalfuss*, Victor Oei*, Lukas Mehl, Madlen Bartsch, Shashank Agnihotri, Margret Keuper, Andrés Bruhn
https://doi.org/10.48550/arXiv.2505.09368
```
RobustSpring is an image-corruption dataset for optical flow, scene flow and stereo, that applies 20 different image corruption to the test split of the [Spring](https://spring-benchmark.org) dataset.
The combined Spring and RobustSpring website is at [spring-benchmark.org](https://spring-benchmark.org)

---

## Dataset Overview

Each sample in this dataset represents one data sample on which to predict:

- **Optical Flow**
- **Scene Flow**
- **Stereo Disparity**

The dataset contains only **file paths** to local image files. The raw image data must be downloaded separately.

---

## Download Image Data

Please download the raw image data zips files from:

**https://doi.org/10.18419/DARUS-5047**

After downloading:
1. Extract all contents to a local `data/` folder.
2. Ensure the folder structure looks like:

```
/data/
  brightness/
    test/
      scene_0003/
        frame_left/
          frame_left_0001.png
          frame_left_0002.png
          ...
        frame_right/
          frame_right_0001.png
          frame_right_0002.png
          ...
      scene_0019/
        frame_left/
          ...
        frame_right/
          ...
      scene_0028
      ...
  contrast/
    test/
      scene_0003/
      scene_0019/
      ...
  defocus_blur/
    test/
      scene_0003/
      scene_0019/
      ...
  ...
```

---

## Dataset Structure

Each sample in the dataset includes:

| Field                   | Type     | Description                                                             |
|---------------          |----------|-------------------------------------------------                        |
| `sample_type`           | `string` | `"optic-flow"`, `"scene-flow"` or `"stereo"`                            |
| `corruption`            | `string` | Image corruption type                                                   |
| `split`                 | `string` | Dataset split. `test` for all data.                                     |
| `scene_id`              | `string` | Spring's scene ID                                                       |
| `frame_leftright`       | `string` | If data is centered on left or right stereo frame                       |
| `frame_forwardbackward` | `string` | For optic- and scene-flow. Forward or backward in time.                 |
| `index`                 | `int32`  | Data sample index. Own indices for optical flow, scene flow and stereo. |
| `image1_path`           | `string` | Relative path to pivot image                                            |
| `image2_path`           | `string` | Relative path to pivot image at next time step (OF & SF only)           |
| `image1s_path`          | `string` | Relative path to stereo of pivot image (SF and S only)                  |
| `image2s_path`          | `string` | Relative path to stereo of image at next time step (SF only)            |

No image content is stored. Paths only.

---

## How to Use

### 1. Install Dependencies

```bash
pip install datasets Pillow
```

### 2. Load the Dataset

```python
from datasets import load_dataset

dataset = load_dataset("jeschmalfuss/RobustSpring", split="test")  # all samples
```

## 3. Filtering by Data Type

You can filter the dataset to only retrieve the type of samples you're interested in: optical flow, scene flow or stereo.


```python
dataset_optic_flow = dataset.filter(lambda x: x["sample_type"] == "optic-flow")
dataset_scene_flow = dataset.filter(lambda x: x["sample_type"] == "scene-flow")
dataset_stereo     = dataset.filter(lambda x: x["sample_type"] == "stereo")
```

### 4. Set Local Path to Images

```python
import os
from PIL import Image

base_path = "/absolute/path/to/data"  # where you extracted the downloaded zip

sample = dataset_optic_flow[0]
img1 = Image.open(os.path.join(base_path, sample["image1_path"]))
img2 = Image.open(os.path.join(base_path, sample["image2_path"]))
```


---


## License

The RobustSpring dataset is licensed under CC-BY-4.0