python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
## @package BlobWeightedSum # Module caffe2.python.layers.blob_weighted_sum from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer class BlobWeightedSum(ModelLayer): """ This layer implements the weighted sum: weighted element-wise sum of input blobs. """ def __init__( self, model, input_record, init_weights=None, weight_optim=None, name='blob_weighted_sum', **kwargs ): super(BlobWeightedSum, self).__init__(model, name, input_record, **kwargs) self.blobs = self.input_record.field_blobs() self.num_weights = len(self.blobs) assert self.num_weights > 1, ( "BlobWeightedSum expects more than one input blobs" ) assert len(input_record.field_types()[0].shape) > 0, ( "BlobWeightedSum expects limited dimensions of the input tensor" ) assert all( input_record.field_types()[0].shape == input_record.field_types()[i].shape for i in range(1, self.num_weights) ), "Shape of input blobs should be the same shape {}".format( input_record.field_types()[0].shape ) if init_weights: assert self.num_weights == len(init_weights), ( "the size of init_weights should be the same as input blobs, " "expects {}, got {}".format(self.num_weights, len(init_weights)) ) else: init_weights = [1.0] * self.num_weights self.weights = [ self.create_param( param_name="w_{}".format(idx), shape=[1], initializer=('ConstantFill', {'value': float(init_weights[idx])}), optimizer=weight_optim ) for idx in range(self.num_weights) ] self.output_schema = schema.Scalar( input_record.field_types()[0], self.get_next_blob_reference('blob_weighted_sum_out') ) def add_ops(self, net): net.WeightedSum( [x for pair in zip(self.blobs, self.weights) for x in pair], self.output_schema(), grad_on_w=True, )
pytorch-master
caffe2/python/layers/blob_weighted_sum.py
## @package batch_lr_loss # Module caffe2.python.layers.batch_lr_loss from caffe2.python import core, schema from caffe2.python.layers.layers import ( ModelLayer, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np class BatchLRLoss(ModelLayer): def __init__( self, model, input_record, name='batch_lr_loss', average_loss=True, jsd_weight=0.0, pos_label_target=1.0, neg_label_target=0.0, homotopy_weighting=False, log_D_trick=False, unjoined_lr_loss=False, uncertainty_penalty=1.0, focal_gamma=0.0, stop_grad_in_focal_factor=False, task_gamma=1.0, task_gamma_lb=0.1, **kwargs ): super(BatchLRLoss, self).__init__(model, name, input_record, **kwargs) self.average_loss = average_loss assert (schema.is_schema_subset( schema.Struct( ('label', schema.Scalar()), ('logit', schema.Scalar()) ), input_record )) self.jsd_fuse = False assert jsd_weight >= 0 and jsd_weight <= 1 if jsd_weight > 0 or homotopy_weighting: assert 'prediction' in input_record self.init_weight(jsd_weight, homotopy_weighting) self.jsd_fuse = True self.homotopy_weighting = homotopy_weighting assert pos_label_target <= 1 and pos_label_target >= 0 assert neg_label_target <= 1 and neg_label_target >= 0 assert pos_label_target >= neg_label_target self.pos_label_target = pos_label_target self.neg_label_target = neg_label_target assert not (log_D_trick and unjoined_lr_loss) self.log_D_trick = log_D_trick self.unjoined_lr_loss = unjoined_lr_loss assert uncertainty_penalty >= 0 self.uncertainty_penalty = uncertainty_penalty self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('output') ) self.focal_gamma = focal_gamma self.stop_grad_in_focal_factor = stop_grad_in_focal_factor self.apply_exp_decay = False if task_gamma < 1.0: self.apply_exp_decay = True self.task_gamma_cur = self.create_param( param_name=('%s_task_gamma_cur' % self.name), shape=[1], initializer=( 'ConstantFill', { 'value': 1.0, 'dtype': core.DataType.FLOAT } ), optimizer=self.model.NoOptim, ) self.task_gamma = self.create_param( param_name=('%s_task_gamma' % self.name), shape=[1], initializer=( 'ConstantFill', { 'value': task_gamma, 'dtype': core.DataType.FLOAT } ), optimizer=self.model.NoOptim, ) self.task_gamma_lb = self.create_param( param_name=('%s_task_gamma_lb' % self.name), shape=[1], initializer=( 'ConstantFill', { 'value': task_gamma_lb, 'dtype': core.DataType.FLOAT } ), optimizer=self.model.NoOptim, ) def init_weight(self, jsd_weight, homotopy_weighting): if homotopy_weighting: self.mutex = self.create_param( param_name=('%s_mutex' % self.name), shape=None, initializer=('CreateMutex', ), optimizer=self.model.NoOptim, ) self.counter = self.create_param( param_name=('%s_counter' % self.name), shape=[1], initializer=( 'ConstantFill', { 'value': 0, 'dtype': core.DataType.INT64 } ), optimizer=self.model.NoOptim, ) self.xent_weight = self.create_param( param_name=('%s_xent_weight' % self.name), shape=[1], initializer=( 'ConstantFill', { 'value': 1., 'dtype': core.DataType.FLOAT } ), optimizer=self.model.NoOptim, ) self.jsd_weight = self.create_param( param_name=('%s_jsd_weight' % self.name), shape=[1], initializer=( 'ConstantFill', { 'value': 0., 'dtype': core.DataType.FLOAT } ), optimizer=self.model.NoOptim, ) else: self.jsd_weight = self.model.add_global_constant( '%s_jsd_weight' % self.name, jsd_weight ) self.xent_weight = self.model.add_global_constant( '%s_xent_weight' % self.name, 1. - jsd_weight ) def update_weight(self, net): net.AtomicIter([self.mutex, self.counter], [self.counter]) # iter = 0: lr = 1; # iter = 1e6; lr = 0.5^0.1 = 0.93 # iter = 1e9; lr = 1e-3^0.1 = 0.50 net.LearningRate([self.counter], [self.xent_weight], base_lr=1.0, policy='inv', gamma=1e-6, power=0.1,) net.Sub( [self.model.global_constants['ONE'], self.xent_weight], [self.jsd_weight] ) return self.xent_weight, self.jsd_weight def add_ops(self, net): # numerically stable log-softmax with crossentropy label = self.input_record.label() # mandatory cast to float32 # self.input_record.label.field_type().base is np.float32 but # label type is actually int label = net.Cast( label, net.NextScopedBlob('label_float32'), to=core.DataType.FLOAT) label = net.ExpandDims(label, net.NextScopedBlob('expanded_label'), dims=[1]) if self.pos_label_target != 1.0 or self.neg_label_target != 0.0: label = net.StumpFunc( label, net.NextScopedBlob('smoothed_label'), threshold=0.5, low_value=self.neg_label_target, high_value=self.pos_label_target, ) xent = net.SigmoidCrossEntropyWithLogits( [self.input_record.logit(), label], net.NextScopedBlob('cross_entropy'), log_D_trick=self.log_D_trick, unjoined_lr_loss=self.unjoined_lr_loss ) if self.focal_gamma != 0: label = net.StopGradient( [label], [net.NextScopedBlob('label_stop_gradient')], ) prediction = self.input_record.prediction() # focal loss = (y(1-p) + p(1-y))^gamma * original LR loss # y(1-p) + p(1-y) = y + p - 2 * yp y_plus_p = net.Add( [prediction, label], net.NextScopedBlob("y_plus_p"), ) yp = net.Mul([prediction, label], net.NextScopedBlob("yp")) two_yp = net.Scale(yp, net.NextScopedBlob("two_yp"), scale=2.0) y_plus_p_sub_two_yp = net.Sub( [y_plus_p, two_yp], net.NextScopedBlob("y_plus_p_sub_two_yp") ) focal_factor = net.Pow( y_plus_p_sub_two_yp, net.NextScopedBlob("y_plus_p_sub_two_yp_power"), exponent=float(self.focal_gamma), ) if self.stop_grad_in_focal_factor is True: focal_factor = net.StopGradient( [focal_factor], [net.NextScopedBlob("focal_factor_stop_gradient")], ) xent = net.Mul( [xent, focal_factor], net.NextScopedBlob("focallossxent") ) if self.apply_exp_decay: net.Mul( [self.task_gamma_cur, self.task_gamma], self.task_gamma_cur ) task_gamma_multiplier = net.Max( [self.task_gamma_cur, self.task_gamma_lb], net.NextScopedBlob("task_gamma_cur_multiplier") ) xent = net.Mul( [xent, task_gamma_multiplier], net.NextScopedBlob("expdecayxent") ) # fuse with JSD if self.jsd_fuse: jsd = net.BernoulliJSD( [self.input_record.prediction(), label], net.NextScopedBlob('jsd'), ) if self.homotopy_weighting: self.update_weight(net) loss = net.WeightedSum( [xent, self.xent_weight, jsd, self.jsd_weight], net.NextScopedBlob('loss'), ) else: loss = xent if 'log_variance' in self.input_record.fields: # mean (0.5 * exp(-s) * loss + 0.5 * penalty * s) log_variance_blob = self.input_record.log_variance() log_variance_blob = net.ExpandDims( log_variance_blob, net.NextScopedBlob('expanded_log_variance'), dims=[1] ) neg_log_variance_blob = net.Negative( [log_variance_blob], net.NextScopedBlob('neg_log_variance') ) # enforce less than 88 to avoid OverflowError neg_log_variance_blob = net.Clip( [neg_log_variance_blob], net.NextScopedBlob('clipped_neg_log_variance'), max=88.0 ) exp_neg_log_variance_blob = net.Exp( [neg_log_variance_blob], net.NextScopedBlob('exp_neg_log_variance') ) exp_neg_log_variance_loss_blob = net.Mul( [exp_neg_log_variance_blob, loss], net.NextScopedBlob('exp_neg_log_variance_loss') ) penalized_uncertainty = net.Scale( log_variance_blob, net.NextScopedBlob("penalized_unceratinty"), scale=float(self.uncertainty_penalty) ) loss_2x = net.Add( [exp_neg_log_variance_loss_blob, penalized_uncertainty], net.NextScopedBlob('loss') ) loss = net.Scale(loss_2x, net.NextScopedBlob("loss"), scale=0.5) if 'weight' in self.input_record.fields: weight_blob = self.input_record.weight() if self.input_record.weight.field_type().base != np.float32: weight_blob = net.Cast( weight_blob, weight_blob + '_float32', to=core.DataType.FLOAT ) weight_blob = net.StopGradient( [weight_blob], [net.NextScopedBlob('weight_stop_gradient')], ) loss = net.Mul( [loss, weight_blob], net.NextScopedBlob('weighted_cross_entropy'), ) if self.average_loss: net.AveragedLoss(loss, self.output_schema.field_blobs()) else: net.ReduceFrontSum(loss, self.output_schema.field_blobs())
pytorch-master
caffe2/python/layers/batch_lr_loss.py
## @package gather_record # Module caffe2.python.layers.gather_record from caffe2.python import core, schema from caffe2.python.layers.layers import ModelLayer class GatherRecord(ModelLayer): """ Given 1-D `indices` tensor, gather elements at `i` in `indices` from all the blobs in `record`. If a blob is a values blob of a list, all the elements included by the list's lengths blob are gathered. For example, Input: indices = [0, 2] record:a = [[0, 1], [2, 3], [4, 5], [6, 7]] record:b:lengths = [0, 1, 2, 3] record:b:items = [0, 1, 2, 3, 4, 5] Output: a = [[0, 1], [4, 5]] b:lengths = [0, 2] b:items = [1, 2] This supports nested list. """ def __init__(self, model, input_record, name='gather_record', **kwargs): super(GatherRecord, self).__init__(model, name, input_record, **kwargs) assert 'indices' in input_record assert 'record' in input_record self.output_schema = schema.NewRecord( model.net, input_record.record.clone_schema()) self._indices = self.input_record.indices() def _gather_scalar(self, net, record, lengths_blob, output_record): if lengths_blob is None: net.Gather([record(), self._indices], output_record()) else: net.LengthsGather([record(), lengths_blob, self._indices], output_record()) def _gather_struct(self, net, record, lengths_blob, output_record): for name, field in record.get_children(): self._dispatch(net, field, lengths_blob, output_record[name]) def _gather_list(self, net, record, lengths_blob, output_record): self._gather_scalar( net, record.lengths, lengths_blob, output_record.lengths) if lengths_blob is None: lengths_blob = record.lengths() else: # TODO(kittipat): This is a hacky solution until LengthsSum for int # is implemented lengths_float = net.Cast( record.lengths(), net.NextScopedBlob(str(record.lengths()) + '_float'), to=core.DataType.FLOAT, ) lengths_blob_float = net.LengthsSum( [lengths_float, lengths_blob], net.NextScopedBlob(str(record.lengths()) + "_nested_float") ) lengths_blob = net.Cast( lengths_blob_float, net.NextScopedBlob(str(record.lengths()) + "_nested"), to=core.DataType.INT32, ) self._dispatch(net, record._items, lengths_blob, output_record._items) def _dispatch(self, net, record, lengths_blob, output_record): if isinstance(record, schema.Scalar): self._gather_scalar(net, record, lengths_blob, output_record) elif isinstance(record, schema.Struct): self._gather_struct(net, record, lengths_blob, output_record) elif isinstance(record, schema.List): self._gather_list(net, record, lengths_blob, output_record) else: raise NotImplementedError def add_ops(self, net): self._dispatch(net, self.input_record.record, None, self.output_schema)
pytorch-master
caffe2/python/layers/gather_record.py
# @package sparse_to_dense # Module caffe2.python.layers.sparse_to_dense from collections import defaultdict import numpy as np from caffe2.python import schema from caffe2.python.layers.layers import AccessedFeatures, ModelLayer class FeatureSparseToDense(ModelLayer): def __init__( self, model, input_record, input_specs, name="feature_sparse_to_dense", default_dense_value=None, **kwargs ): """ `input_specs` follows the format of FeatureSpec from schema. To be more precise it's a namedtuple that should have: 'feature_type', 'feature_names', 'feature_ids' Default_dense_value can only be 0.0 or float("NaN"). Any input that isn't None will be NaN. """ super(FeatureSparseToDense, self).__init__(model, name, input_record, **kwargs) if default_dense_value is None: default_dense_value = 0.0 default_dense_value = float(default_dense_value) assert ( np.isnan(default_dense_value) or default_dense_value == 0.0 ), "default_dense_value can only be 0.0 or NaN" self.input_specs = input_specs self.default_float_value = ( model.global_constants["NAN"] if np.isnan(default_dense_value) else model.global_constants["ZERO"] ) self.zero_range = model.global_constants["ZERO_RANGE"] outputs = [] for field, feature_specs in self.input_specs: assert len(feature_specs.feature_names) == len(feature_specs.feature_ids) if feature_specs.feature_type == "FLOAT": outputs.append( ( field, schema.Scalar( (np.float32, (len(feature_specs.feature_ids),)), self.get_next_blob_reference(field + "_output"), ), ) ) elif feature_specs.feature_type == "ID_LIST": outputs.append( ( field, schema.Struct( ( "ranges", schema.Scalar( (np.int32, (len(feature_specs.feature_ids), 2)), self.get_next_blob_reference(field + "_ranges"), ), ), ( "values", schema.Scalar( np.int64, self.get_next_blob_reference(field + "_values"), ), ), ), ) ) elif feature_specs.feature_type == "ID_SCORE_LIST": outputs.append( ( field, schema.Struct( ( "ranges", schema.Scalar( (np.int32, (len(feature_specs.feature_ids), 2)), self.get_next_blob_reference(field + "_ranges"), ), ), ( "ids", schema.Scalar( np.int64, self.get_next_blob_reference(field + "_ids"), ), ), ( "scores", schema.Scalar( np.float32, self.get_next_blob_reference(field + "_scores"), ), ), ), ) ) elif feature_specs.feature_type == "EMBEDDING": # We don't know dimensions of embeddings in input data. # Even though they should match dimensions from feature config, # we keep ranges blob to check input data later. outputs.append( ( field, schema.Struct( ( "ranges", schema.Scalar( (np.int32, (len(feature_specs.feature_ids), 2)), self.get_next_blob_reference(field + "_ranges"), ), ), ( "values", schema.Scalar( np.float32, self.get_next_blob_reference(field + "_values"), ), ), ), ) ) elif feature_specs.feature_type == "GENERIC_FEATURE": # We don't know dimensions of embeddings in input data. # Even though they should match dimensions from feature config, # we keep ranges blob to check input data later. # Currently this schema with ranges and values is only for # generic type enum 1. If new types are implemented, we need to # modify the ParseGeneric operator, and this part accordingly outputs.append( ( field, schema.Struct( ( "ranges", schema.Scalar( (np.int32, (len(feature_specs.feature_ids), 2)), self.get_next_blob_reference(field + "_ranges"), ), ), ( "values", schema.Scalar( np.float32, self.get_next_blob_reference(field + "_values"), ), ), ), ) ) else: raise TypeError( "Unsupported input type: {0}".format(feature_specs.feature_type) ) # TODO(amalevich): This schema is producing ranges. And thus if there is # something using it it should support ranges as well. It might be # confusing, if we don't add better support for ranges/have it as a # first layer self.output_schema = schema.Struct(*outputs) # TODO(amalevich): Consider moving this data to schema, instead # Structs doesn't support attaching metadata to them and clonning # will break things badly, but this is the most elegant way to pass # this info around. Should we change it or it'll be too much work and # not worse it? for field, feature_specs in input_specs: schema.attach_metadata_to_scalars( self.output_schema[field], schema.Metadata(feature_specs=feature_specs) ) # Add operators to all types that need to be densified def add_ops(self, net): record = self.input_record for field, feature_specs in self.input_specs: if feature_specs.feature_type == "FLOAT": net.SparseToDenseMask( [ record[field].keys(), record[field].values(), self.default_float_value, record[field].lengths(), ], [self.output_schema[field]()], mask=feature_specs.feature_ids, ) elif feature_specs.feature_type == "ID_LIST": id_list_ranges = net.LengthsToRanges( record[field].values.lengths(), net.NextScopedBlob("id_list_ranges") ) net.SparseToDenseMask( [ record[field].keys(), id_list_ranges, self.zero_range, record[field].lengths(), ], self.output_schema[field].ranges(), mask=feature_specs.feature_ids, ) # Alias helps to enforce the fact that all SparseToDense calls # produce new blobs. # Reusing blob names might result in some weird consequences # during the delivery time, when content of the blobs is # generated based on the inputSpecs. net.Alias( record[field].values.items(), self.output_schema[field].values() ) elif feature_specs.feature_type == "ID_SCORE_LIST": # TODO: merge this to the case above? id_list_ranges = net.LengthsToRanges( record[field].values.lengths(), net.NextScopedBlob("id_score_list_ranges"), ) net.SparseToDenseMask( [ record[field].keys(), id_list_ranges, self.zero_range, record[field].lengths(), ], self.output_schema[field].ranges(), mask=feature_specs.feature_ids, ) # Alias helps to enforce the fact that all SparseToDense calls # produce new blobs. # Reusing blob names might result in some weird consequences # during the delivery time, when content of the blobs is # generated based on the inputSpecs. net.Alias(record[field].values.keys(), self.output_schema[field].ids()) net.Alias( record[field].values.values(), self.output_schema[field].scores() ) elif feature_specs.feature_type == "EMBEDDING": ranges = net.LengthsToRanges( record[field].values.lengths(), net.NextScopedBlob("embeddings_ranges"), ) net.SparseToDenseMask( [ record[field].keys(), ranges, self.zero_range, record[field].lengths(), ], self.output_schema[field].ranges(), mask=feature_specs.feature_ids, ) # Alias helps to enforce the fact that all SparseToDense calls # produce new blobs. # Reusing blob names might result in some weird consequences # during the delivery time, when content of the blobs is # generated based on the inputSpecs. net.Alias( record[field].values.items(), self.output_schema[field].values() ) elif feature_specs.feature_type == "GENERIC_FEATURE": ( feature_lengths_blob, feature_ids_blob, value_lengths_blob, value_values_blob, ) = net.ParseGeneric( [record[field]()], ["feature_lengths", "feature_ids", "value_lengths", "value_values"], feature_type_enum=1, ) # Currently our implementation only supports # generic type enum 1. If new types are implemented, we need to # modify the ParseGeneric operator, the schema above, # and this part accordingly to parse the generic feature strings # into input_record ranges = net.LengthsToRanges( value_lengths_blob, net.NextScopedBlob("generics_ranges") ) net.SparseToDenseMask( [feature_ids_blob, ranges, self.zero_range, feature_lengths_blob], self.output_schema[field].ranges(), mask=feature_specs.feature_ids, ) # Alias helps to enforce the fact that all SparseToDense calls # produce new blobs. # Reusing blob names might result in some weird consequences # during the delivery time, when content of the blobs is # generated based on the inputSpecs. net.Alias(value_values_blob, self.output_schema[field].values()) def get_metadata(self): metadata = [] for field, feature_specs in self.input_specs: metadata.append( ( { "type": feature_specs.feature_type, "names": feature_specs.feature_names, "ids": feature_specs.feature_ids, }, self.output_schema[field].field_blobs(), self.output_schema[field].field_types(), ) ) if feature_specs.feature_type == "FLOAT": metadata[-1][0]["cardinality"] = 1 return metadata def get_accessed_features(self): accessed_features = defaultdict(list) # The features that are accessed are just those features that appear in # the input specs for field, feature_specs in self.input_specs: accessed_features[field].append( AccessedFeatures( feature_specs.feature_type, set(feature_specs.feature_ids) ) ) return accessed_features
pytorch-master
caffe2/python/layers/feature_sparse_to_dense.py
# @package functional # Module caffe2.python.layers.functional from caffe2.python import core, schema, scope, workspace from caffe2.python.layers.layers import ( ModelLayer, ) import caffe2.proto.caffe2_pb2 as caffe2_pb2 import numpy as np import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class Functional(ModelLayer): def __init__(self, model, input_record, output_names_or_num, function, name='functional', output_dtypes=None, tags=None, **kwargs): # allow coercion input_record = schema.as_record(input_record) super(Functional, self).__init__(model, name, input_record, tags=tags, **kwargs) self._function = function self._kwargs = kwargs return_struct = ( isinstance(output_names_or_num, list) or (isinstance(output_names_or_num, int) and output_names_or_num != 1) ) with scope.NameScope(self.name, reset=True): if isinstance(output_names_or_num, int): struct_output_schema = schema.NewRecord( model.net, schema.RawTuple(output_names_or_num)) elif isinstance(output_names_or_num, schema.Field): self.output_schema = output_names_or_num.clone(keep_blobs=True) return else: if not isinstance(output_names_or_num, list): output_names_or_num = [output_names_or_num] out_tuple = [(out, np.void) for out in output_names_or_num] struct_output_schema = schema.NewRecord( model.net, schema.Struct(*out_tuple)) num_outputs = len(struct_output_schema.field_blobs()) # functional layer returns Struct if more than one outputs or output is # a list, otherwise Scalar if return_struct: self.output_schema = struct_output_schema else: self.output_schema = struct_output_schema[0] # If output_dtypes is provided, use it for output schema. Otherwise # the shape and type will be inferred. if output_dtypes is not None: if not isinstance(output_dtypes, list): output_dtypes = [output_dtypes] * num_outputs assert len(output_dtypes) == num_outputs for dtype, scalar in zip(output_dtypes, self.output_schema.all_scalars()): scalar.set_type(dtype) return # Fake execution of the function to infer shapes and types automatically had_issues = False try: type_net = core.Net('_temp_type_and_shape_inference_net') schema.InitEmptyRecord(type_net, input_record, enforce_types=True) function(type_net, self.input_record, self.output_schema, **kwargs) (shapes, types) = workspace.InferShapesAndTypes([type_net], {}) for i in range(num_outputs): scalar_schema = (self.output_schema[i] if return_struct else self.output_schema) blob = scalar_schema() if blob not in types or blob not in shapes: had_issues = True continue if shapes[blob] == []: # Scalar type shape = tuple() elif shapes[blob][0] == 0: shape = tuple(shapes[blob][1:]) else: logger.warning("unexpected shape: {}".format(shapes[blob])) # If batch dimension is not first - give up on shape # inference for that blob had_issues = True continue # TODO(amalevich): Move it to some shared library dtype = None if types[blob] == caffe2_pb2.TensorProto.DOUBLE: dtype = (np.float64, shape) elif types[blob] == caffe2_pb2.TensorProto.FLOAT: dtype = (np.float32, shape) elif types[blob] == caffe2_pb2.TensorProto.INT32: dtype = (np.int32, shape) elif types[blob] == caffe2_pb2.TensorProto.INT64: dtype = (np.int64, shape) elif types[blob] == caffe2_pb2.TensorProto.FLOAT16: dtype = (np.float16, shape) if dtype is not None: scalar_schema.set_type(dtype) except TypeError as ex: had_issues = True logger.warning(str(ex)) if had_issues: logger.warning( "Type inference had problems for layer: {}".format(self.name)) def add_ops(self, net): self._function( net, self.input_record, self.output_schema, **(self._kwargs))
pytorch-master
caffe2/python/layers/functional.py
import logging from caffe2.python import schema from caffe2.python.layers.layers import ( InstantiationContext, ModelLayer, ) logger = logging.getLogger(__name__) class SelectRecordByContext(ModelLayer): """ Allowing model to follow different paths for each instantiation context and join later at some point. The implementation use `Alias` because schema sometimes clone fields internally so we need static blob name for output """ def __init__( self, model, input_record, name='select_record_by_context', check_field_metas=True, use_copy=False, default_output_record_field=None, **kwargs ): super(SelectRecordByContext, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Struct) assert len(input_record) > 1 self.use_copy = use_copy self.default_output_record = ( input_record[default_output_record_field] if (default_output_record_field is not None) else None ) ref_record = input_record[0] for record in input_record: assert schema.equal_schemas(record, ref_record, check_field_metas=check_field_metas) self.output_schema = schema.NewRecord(model.net, ref_record) def _set_output_blobs(self, net, context): record = self.input_record.get(context, self.default_output_record) assert record is not None, ( "{} context is not in input record without providing default" " output".format(context) ) for in_blob, out_blob in zip( record.field_blobs(), self.output_schema.field_blobs() ): if self.use_copy: net.Copy(in_blob, out_blob) else: net.Alias(in_blob, out_blob) def add_ops(self, net): self._set_output_blobs(net, InstantiationContext.PREDICTION) def add_eval_ops(self, net): self._set_output_blobs(net, InstantiationContext.EVAL) def add_train_ops(self, net): self._set_output_blobs(net, InstantiationContext.TRAINING) def add_ops_to_accumulate_pred(self, net): self._set_output_blobs(net, InstantiationContext.ACCUMULATE_PRED)
pytorch-master
caffe2/python/layers/select_record_by_context.py
## @package split # Module caffe2.python.layers.split from caffe2.python import schema from caffe2.python.layers.layers import ( ModelLayer, ) class Split(ModelLayer): def __init__(self, model, input_record, num_splits=1, axis=1, name='split', split=None, **kwargs): super(Split, self).__init__(model, name, input_record, **kwargs) self.axis = axis # Assume that first dimension is batch, so actual axis in shape is # axis - 1 axis -= 1 assert axis >= 0 assert isinstance(input_record, schema.Scalar),\ "Incorrect input type. Expected Scalar, but received: {0}".\ format(input_record) input_shape = input_record.field_type().shape assert len(input_shape) >= axis if split is None: assert input_shape[axis] % num_splits == 0 else: num_splits = len(split) assert input_shape[axis] == sum(split) if split is None: output_shape = list(input_shape) output_shape[axis] = int(output_shape[axis] / num_splits) else: output_shape = [] for i in range(num_splits): output_shape_i = list(input_shape) output_shape_i[axis] = split[i] output_shape.append(output_shape_i) data_type = input_record.field_type().base if split is None: output_scalars = [ schema.Scalar( (data_type, output_shape), self.get_next_blob_reference('output_{}'.format(i)), ) for i in range(num_splits) ] else: output_scalars = [ schema.Scalar( (data_type, output_shape[i]), self.get_next_blob_reference('output_{}'.format(i)), ) for i in range(num_splits) ] self.output_schema = schema.Tuple(*output_scalars) self.split = split def add_ops(self, net): net.Split( self.input_record.field_blobs(), self.output_schema.field_blobs(), split=self.split, axis=self.axis, )
pytorch-master
caffe2/python/layers/split.py
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # @package label_smooth # Module caffe2.python.layers.label_smooth from caffe2.python import core, schema from caffe2.python.layers.layers import ModelLayer import numpy as np class LabelSmooth(ModelLayer): def __init__( self, model, label, smooth_matrix, name='label_smooth', **kwargs ): super(LabelSmooth, self).__init__(model, name, label, **kwargs) self.label = label # shape as a list smooth_matrix = np.array(smooth_matrix).astype(np.float32).flatten() self.set_dim(smooth_matrix) self.set_smooth_matrix(smooth_matrix) self.output_schema = schema.Scalar( (np.float32, (self.dim, )), self.get_next_blob_reference('smoothed_label') ) def set_dim(self, smooth_matrix): num_elements = smooth_matrix.size self.binary_prob_label = (num_elements == 2) if self.binary_prob_label: self.dim = 1 else: assert np.sqrt(num_elements)**2 == num_elements self.dim = int(np.sqrt(num_elements)) def set_smooth_matrix(self, smooth_matrix): if not self.binary_prob_label: self.smooth_matrix = self.model.add_global_constant( '%s_label_smooth_matrix' % self.name, array=smooth_matrix.reshape((self.dim, self.dim)), dtype=np.dtype(np.float32), ) self.len = self.model.add_global_constant( '%s_label_dim' % self.name, array=self.dim, dtype=np.dtype(np.int64), ) else: self.smooth_matrix = smooth_matrix def add_ops_for_binary_prob_label(self, net): if self.label.field_type().base != np.float32: float32_label = net.NextScopedBlob('float32_label') net.Cast([self.label()], [float32_label], to=core.DataType.FLOAT) else: float32_label = self.label() net.StumpFunc( float32_label, self.output_schema(), threshold=0.5, low_value=self.smooth_matrix[0], high_value=self.smooth_matrix[1], ) def add_ops_for_categorical_label(self, net): if self.label.field_type().base != np.int64: int64_label = net.NextScopedBlob('int64_label') net.Cast([self.label()], [int64_label], to=core.DataType.INT64) else: int64_label = self.label() one_hot_label = net.NextScopedBlob('one_hot_label') net.OneHot([int64_label, self.len], [one_hot_label]) net.MatMul([one_hot_label, self.smooth_matrix], self.output_schema()) def add_ops(self, net): if self.binary_prob_label: self.add_ops_for_binary_prob_label(net) else: self.add_ops_for_categorical_label(net)
pytorch-master
caffe2/python/layers/label_smooth.py
## @package reservoir_sampling # Module caffe2.python.layers.reservoir_sampling from caffe2.python import core, schema from caffe2.python.layers.layers import ModelLayer class ReservoirSampling(ModelLayer): """ Collect samples from input record w/ reservoir sampling. If you have complex data, use PackRecords to pack it before using this layer. This layer is not thread safe. """ def __init__(self, model, input_record, num_to_collect, name='reservoir_sampling', **kwargs): super(ReservoirSampling, self).__init__( model, name, input_record, **kwargs) assert num_to_collect > 0 self.num_to_collect = num_to_collect self.reservoir = self.create_param( param_name='reservoir', shape=[0], initializer=('ConstantFill',), optimizer=model.NoOptim, ) self.num_visited_blob = self.create_param( param_name='num_visited', shape=[], initializer=('ConstantFill', { 'value': 0, 'dtype': core.DataType.INT64, }), optimizer=model.NoOptim, ) self.mutex = self.create_param( param_name='mutex', shape=[], initializer=('CreateMutex',), optimizer=model.NoOptim, ) self.extra_input_blobs = [] self.extra_output_blobs = [] if 'object_id' in input_record: object_to_pos = self.create_param( param_name='object_to_pos', shape=None, initializer=('CreateMap', { 'key_dtype': core.DataType.INT64, 'valued_dtype': core.DataType.INT32, }), optimizer=model.NoOptim, ) pos_to_object = self.create_param( param_name='pos_to_object', shape=[0], initializer=('ConstantFill', { 'value': 0, 'dtype': core.DataType.INT64, }), optimizer=model.NoOptim, ) self.extra_input_blobs.append(input_record.object_id()) self.extra_input_blobs.extend([object_to_pos, pos_to_object]) self.extra_output_blobs.extend([object_to_pos, pos_to_object]) self.output_schema = schema.Struct( ( 'reservoir', schema.from_blob_list(input_record.data, [self.reservoir]) ), ('num_visited', schema.Scalar(blob=self.num_visited_blob)), ('mutex', schema.Scalar(blob=self.mutex)), ) def add_ops(self, net): net.ReservoirSampling( [self.reservoir, self.num_visited_blob, self.input_record.data(), self.mutex] + self.extra_input_blobs, [self.reservoir, self.num_visited_blob] + self.extra_output_blobs, num_to_collect=self.num_to_collect, )
pytorch-master
caffe2/python/layers/reservoir_sampling.py
## @package sparse_feature_hash # Module caffe2.python.layers.sparse_feature_hash from caffe2.python import schema, core from caffe2.python.layers.layers import ( ModelLayer, IdList, IdScoreList, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np class SparseFeatureHash(ModelLayer): def __init__(self, model, input_record, seed=0, modulo=None, use_hashing=True, use_divide_mod=False, divisor=None, name='sparse_feature_hash', **kwargs): super(SparseFeatureHash, self).__init__(model, name, input_record, **kwargs) assert use_hashing + use_divide_mod < 2, "use_hashing and use_divide_mod cannot be set true at the same time." if use_divide_mod: assert divisor >= 1, 'Unexpected divisor: {}'.format(divisor) self.divisor = self.create_param(param_name='divisor', shape=[1], initializer=('GivenTensorInt64Fill', {'values': np.array([divisor])}), optimizer=model.NoOptim) self.seed = seed self.use_hashing = use_hashing self.use_divide_mod = use_divide_mod if schema.equal_schemas(input_record, IdList): self.modulo = modulo or self.extract_hash_size(input_record.items.metadata) metadata = schema.Metadata( categorical_limit=self.modulo, feature_specs=input_record.items.metadata.feature_specs if input_record.items.metadata else None, expected_value=input_record.items.metadata.expected_value if input_record.items.metadata else None ) with core.NameScope(name): self.output_schema = schema.NewRecord(model.net, IdList) self.output_schema.items.set_metadata(metadata) elif schema.equal_schemas(input_record, IdScoreList): self.modulo = modulo or self.extract_hash_size(input_record.keys.metadata) metadata = schema.Metadata( categorical_limit=self.modulo, feature_specs=input_record.keys.metadata.feature_specs, expected_value=input_record.keys.metadata.expected_value ) with core.NameScope(name): self.output_schema = schema.NewRecord(model.net, IdScoreList) self.output_schema.keys.set_metadata(metadata) else: assert False, "Input type must be one of (IdList, IdScoreList)" assert self.modulo >= 1, 'Unexpected modulo: {}'.format(self.modulo) if input_record.lengths.metadata: self.output_schema.lengths.set_metadata(input_record.lengths.metadata) # operators in this layer do not have CUDA implementation yet. # In addition, since the sparse feature keys that we are hashing are # typically on CPU originally, it makes sense to have this layer on CPU. self.tags.update([Tags.CPU_ONLY]) def extract_hash_size(self, metadata): if metadata.feature_specs and metadata.feature_specs.desired_hash_size: return metadata.feature_specs.desired_hash_size elif metadata.categorical_limit is not None: return metadata.categorical_limit else: assert False, "desired_hash_size or categorical_limit must be set" def add_ops(self, net): net.Copy( self.input_record.lengths(), self.output_schema.lengths() ) if schema.equal_schemas(self.output_schema, IdList): input_blob = self.input_record.items() output_blob = self.output_schema.items() elif schema.equal_schemas(self.output_schema, IdScoreList): input_blob = self.input_record.keys() output_blob = self.output_schema.keys() net.Copy( self.input_record.values(), self.output_schema.values() ) else: raise NotImplementedError() if self.use_hashing: net.IndexHash( input_blob, output_blob, seed=self.seed, modulo=self.modulo ) else: if self.use_divide_mod: quotient = net.Div([input_blob, self.divisor], [net.NextScopedBlob('quotient')]) net.Mod( quotient, output_blob, divisor=self.modulo, sign_follow_divisor=True ) else: net.Mod( input_blob, output_blob, divisor=self.modulo, sign_follow_divisor=True )
pytorch-master
caffe2/python/layers/sparse_feature_hash.py
## @package fc_with_bootstrap # Module caffe2.python.layers.fc_with_bootstrap import math import numpy as np from caffe2.python import core, schema from caffe2.python.helpers.arg_scope import get_current_scope from caffe2.python.layers.layers import ModelLayer from caffe2.python.layers.sampling_trainable_mixin import SamplingTrainableMixin def get_fc_predictor_version(fc_version): assert fc_version in ["fp32"], ( "Only support fp32 for the fully connected layer " "in the predictor net, the provided FC precision is {}".format(fc_version) ) return fc_version class FCWithBootstrap(SamplingTrainableMixin, ModelLayer): def __init__( self, model, input_record, output_dims, num_bootstrap, weight_init=None, bias_init=None, weight_optim=None, bias_optim=None, name="fc_with_bootstrap", weight_reg=None, bias_reg=None, clip_param=None, axis=1, **kwargs ): super(FCWithBootstrap, self).__init__(model, name, input_record, **kwargs) assert isinstance( input_record, schema.Scalar ), "Incorrect input type {}".format(input_record) assert ( len(input_record.field_types()[0].shape) > 0 ), "FC expects limited dimensions of the input tensor" assert axis >= 1, "axis {} should >= 1.".format(axis) self.axis = axis input_dims = np.prod(input_record.field_types()[0].shape[axis - 1 :]) assert input_dims > 0, "FC expects input dimensions > 0, got {}".format( input_dims ) self.clip_args = None # attributes for bootstrapping below self.num_bootstrap = num_bootstrap # input dim shape self.input_dims = input_dims # bootstrapped fully-connected layers to be used in eval time self.bootstrapped_FCs = [] # scalar containing batch_size blob so that we don't need to recompute self.batch_size = None # we want this to be the last FC, so the output_dim should be 1, set to None self.output_dim_vec = None # lower bound when creating random indices self.lower_bound = None # upper bound when creating random indices self.upper_bound = None if clip_param is not None: assert len(clip_param) == 2, ( "clip_param must be a tuple / list " "of length 2 and in the form of (clip_min, clip max)" ) clip_min, clip_max = clip_param assert ( clip_min is not None or clip_max is not None ), "clip_min, and clip_max in clip_param cannot both be None" assert ( clip_min is None or clip_max is None ) or clip_min < clip_max, ( "clip_param = [clip_min, clip_max] must have clip_min < clip_max" ) self.clip_args = {} if clip_min is not None: self.clip_args["min"] = clip_min if clip_max is not None: self.clip_args["max"] = clip_max scale = math.sqrt(1.0 / input_dims) weight_init = ( weight_init if weight_init else ("UniformFill", {"min": -scale, "max": scale}) ) bias_init = ( bias_init if bias_init else ("UniformFill", {"min": -scale, "max": scale}) ) """ bootstrapped FCs: Ex: [ bootstrapped_weights_blob_1, bootstrapped_bias_blob_1, ..., ..., bootstrapped_weights_blob_b, bootstrapped_bias_blob_b ] output_schema: Note: indices will always be on even indices. Ex: Struct( indices_0_blob, preds_0_blob, ... ... indices_b_blob, preds_b_blob ) """ bootstrapped_FCs = [] output_schema = schema.Struct() for i in range(num_bootstrap): output_schema += schema.Struct( ( "bootstrap_iteration_{}/indices".format(i), self.get_next_blob_reference( "bootstrap_iteration_{}/indices".format(i) ), ), ( "bootstrap_iteration_{}/preds".format(i), self.get_next_blob_reference( "bootstrap_iteration_{}/preds".format(i) ), ), ) self.bootstrapped_FCs.extend( [ self.create_param( param_name="bootstrap_iteration_{}/w".format(i), shape=[output_dims, input_dims], initializer=weight_init, optimizer=weight_optim, regularizer=weight_reg, ), self.create_param( param_name="bootstrap_iteration_{}/b".format(i), shape=[output_dims], initializer=bias_init, optimizer=bias_optim, regularizer=bias_reg, ), ] ) self.output_schema = output_schema if axis == 1: output_shape = (output_dims,) else: output_shape = list(input_record.field_types()[0].shape)[0 : axis - 1] output_shape = tuple(output_shape + [output_dims]) def _generate_bootstrapped_indices(self, net, copied_cur_layer, iteration): """ Args: net: the caffe2 net to insert operator copied_cur_layer: blob of the bootstrapped features (make sure this blob has a stop_gradient on) iteration: the bootstrap interation to generate for. Used to correctly populate the output_schema Return: A blob containing the generated indices of shape: (batch_size,) """ with core.NameScope("bootstrap_iteration_{}".format(iteration)): if iteration == 0: # capture batch_size once for efficiency input_shape = net.Shape(copied_cur_layer, "input_shape") batch_size_index = net.Const(np.array([0]), "batch_size_index") batch_size = net.Gather([input_shape, batch_size_index], "batch_size") self.batch_size = batch_size lower_bound = net.Const(np.array([0]), "lower_bound", dtype=np.int32) offset = net.Const(np.array([1]), "offset", dtype=np.int32) int_batch_size = net.Cast( [self.batch_size], "int_batch_size", to=core.DataType.INT32 ) upper_bound = net.Sub([int_batch_size, offset], "upper_bound") self.lower_bound = lower_bound self.upper_bound = upper_bound indices = net.UniformIntFill( [self.batch_size, self.lower_bound, self.upper_bound], self.output_schema[iteration * 2].field_blobs()[0], input_as_shape=1, ) return indices def _bootstrap_ops(self, net, copied_cur_layer, indices, iteration): """ This method contains all the bootstrapping logic used to bootstrap the features. Only used by the train_net. Args: net: the caffe2 net to insert bootstrapping operators copied_cur_layer: the blob representing the current features. Note, this layer should have a stop_gradient on it. Returns: bootstrapped_features: blob of bootstrapped version of cur_layer with same dimensions """ # draw features based upon the bootstrapped indices bootstrapped_features = net.Gather( [copied_cur_layer, indices], net.NextScopedBlob("bootstrapped_features_{}".format(iteration)), ) bootstrapped_features = schema.Scalar( (np.float32, self.input_dims), bootstrapped_features ) return bootstrapped_features def _insert_fc_ops(self, net, features, params, outputs, version): """ Args: net: the caffe2 net to insert operator features: Scalar containing blob of the bootstrapped features or actual cur_layer features params: weight and bias for FC outputs: the output blobs version: support fp32 for now. """ if version == "fp32": pred_blob = net.FC( features.field_blobs() + params, outputs, axis=self.axis, **self.kwargs ) return pred_blob else: raise Exception("unsupported FC type version {}".format(version)) def _add_ops(self, net, features, iteration, params, version): """ Args: params: the weight and bias, passed by either add_ops or add_train_ops function features: feature blobs to predict on. Can be the actual cur_layer or the bootstrapped_feature blobs. version: currently fp32 support only """ if self.clip_args is not None: clipped_params = [net.NextScopedBlob("clipped_%s" % str(p)) for p in params] for p, cp in zip(params, clipped_params): net.Clip([p], [cp], **self.clip_args) params = clipped_params if self.output_dim_vec is None or len(self.output_dim_vec) == 1: self._insert_fc_ops( net=net, features=features, params=params, outputs=[self.output_schema.field_blobs()[(iteration * 2) + 1]], version=version, ) def add_ops(self, net): """ Both the predict net and the eval net will call this function. For bootstrapping approach, the goal is to pass the cur_layer feature inputs through all the bootstrapped FCs that are stored under self.bootstrapped_FCs. Return the preds in the same output_schema with dummy indices (because they are not needed). """ version_info = get_current_scope().get( get_fc_predictor_version.__name__, {"fc_version": "fp32"} ) predictor_fc_fp_version = version_info["fc_version"] for i in range(self.num_bootstrap): # these are dummy indices, not to be used anywhere indices = self._generate_bootstrapped_indices( net=net, copied_cur_layer=self.input_record.field_blobs()[0], iteration=i, ) params = self.bootstrapped_FCs[i * 2 : (i * 2) + 2] self._add_ops( net=net, features=self.input_record, params=params, iteration=i, version=predictor_fc_fp_version, ) def add_train_ops(self, net): # use the train_param_blobs to be consistent with the SamplingTrain unittest # obtain features for i in range(self.num_bootstrap): indices = self._generate_bootstrapped_indices( net=net, copied_cur_layer=self.input_record.field_blobs()[0], iteration=i, ) bootstrapped_features = self._bootstrap_ops( net=net, copied_cur_layer=self.input_record.field_blobs()[0], indices=indices, iteration=i, ) self._add_ops( net, features=bootstrapped_features, iteration=i, params=self.train_param_blobs[i * 2 : (i * 2) + 2], version="fp32", ) def get_fp16_compatible_parameters(self): if self.output_dim_vec is None or len(self.output_dim_vec) == 1: return [ blob for idx, blob in enumerate(self.bootstrapped_FCs) if idx % 2 == 0 ] else: raise Exception( "Currently only supports functionality for output_dim_vec == 1" ) @property def param_blobs(self): if self.output_dim_vec is None or len(self.output_dim_vec) == 1: return self.bootstrapped_FCs else: raise Exception("FCWithBootstrap layer only supports output_dim_vec==1")
pytorch-master
caffe2/python/layers/fc_with_bootstrap.py
# Module caffe2.python.layers.dropout from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer class Dropout(ModelLayer): def __init__( self, model, input_record, name='dropout', ratio=0.5, dropout_for_eval=False, **kwargs): super(Dropout, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Scalar), "Incorrect input type" assert (ratio >= 0 and ratio < 1.0), \ "Expected 0 <= ratio < 1, but got ratio of %s" % ratio self.output_schema = input_record.clone_schema() self.output_schema.set_value(self.get_next_blob_reference('output')) self.dropout_for_eval = dropout_for_eval self.ratio = ratio def _add_ops(self, net, is_test): input_blob = self.input_record.field_blobs() output_blobs = self.output_schema.field_blobs() \ + [net.NextScopedBlob('d_mask')] net.Dropout(input_blob, output_blobs, ratio=self.ratio, is_test=is_test) def add_train_ops(self, net): self._add_ops(net, is_test=False) def add_eval_ops(self, net): self._add_ops(net, is_test=(not self.dropout_for_eval)) def add_ops(self, net): self.add_eval_ops(net)
pytorch-master
caffe2/python/layers/dropout.py
## @package conv # Module caffe2.python.layers.conv from caffe2.python import schema from caffe2.python.layers.layers import ( ModelLayer, ) import numpy as np class Conv(ModelLayer): """ Convolutional layer Input: - input_record: at least has the shape info of C (num_channels) - output_dim: number of convolutional filters - kernel_h, kernel_w: kernel size for h and w - stride_h, stride_w: stride for h and w - pad_b, pad_l, pad_r, pad_t: padding sizes, if stride == 1, 'None' value will do auto padding - order: either 'NHWC' or 'NCHW' """ def __init__(self, model, input_record, output_dim, kernel_h, kernel_w, stride_h, stride_w, pad_b=None, pad_l=None, pad_r=None, pad_t=None, order='NHWC', kernel_init=None, bias_init=None, kernel_optim=None, bias_optim=None, name='conv', **kwargs): super(Conv, self).__init__(model, name, input_record, **kwargs) assert isinstance(input_record, schema.Scalar), "Incorrect input type" # input num_channels (C) is needed input_dims = input_record.field_type().shape assert (kernel_h > 0 and isinstance(kernel_h, int)), ( "kernel_h should be positive integer") assert (kernel_w > 0 and isinstance(kernel_w, int)), ( "kernel_w should be positive integer") self.kernel_h = kernel_h self.kernel_w = kernel_w assert (stride_h > 0 and isinstance(stride_h, int)), ( "stride_h should be positive integer") assert (stride_w > 0 and isinstance(stride_w, int)), ( "stride_w should be positive integer") self.stride_h = stride_h self.stride_w = stride_w # output_dim calculation (http://cs231n.github.io/convolutional-networks/) # output_dim_w = (input_dim_w - kernel_w + pad_r + pad_l) / stride_w + 1 # so, do auto_padding requires # pad_r, pad_l = [(input_dim_w - 1) * stride_w - input_dim_w + kernel_w] / 2 # similair for pad_t and pad_b to auto pad kernel_h # here we only do auto padding for stride = 1 case if stride_h == 1: pad_t = int((kernel_h - 1) / 2) if pad_t is None else pad_t pad_b = int((kernel_h - 1) / 2) if pad_b is None else pad_b else: pad_t = 0 if pad_t is None else pad_t pad_b = 0 if pad_b is None else pad_b if stride_w == 1: pad_r = int((kernel_w - 1) / 2) if pad_r is None else pad_r pad_l = int((kernel_w - 1) / 2) if pad_l is None else pad_l else: pad_r = 0 if pad_r is None else pad_r pad_l = 0 if pad_l is None else pad_l assert (pad_t >= 0 and isinstance(pad_t, int)), "pad_t should be int >= 0" assert (pad_b >= 0 and isinstance(pad_b, int)), "pad_b should be int >= 0" assert (pad_r >= 0 and isinstance(pad_r, int)), "pad_r should be int >= 0" assert (pad_l >= 0 and isinstance(pad_l, int)), "pad_l should be int >= 0" self.pad_t = pad_t self.pad_b = pad_b self.pad_r = pad_r self.pad_l = pad_l assert order in ['NHWC', 'NCHW'], "order should either 'NHWC' or 'NCHW'" self.order = order if order == 'NHWC': input_c = input_dims[-1] kernel_shape = [output_dim, kernel_h, kernel_w, input_c] elif order == 'NCHW': input_c = input_dims[0] kernel_shape = [output_dim, input_c, kernel_h, kernel_w] assert input_c > 0, ( "Number of input channels in conv parameters should be positive") kernel_init = kernel_init if kernel_init else ( 'XavierFill', {} ) bias_init = bias_init if bias_init else ( 'ConstantFill', {'value': 0.0} ) self.kernel = self.create_param( param_name='conv_kernel', shape=kernel_shape, initializer=kernel_init, optimizer=kernel_optim, ) self.bias = self.create_param( param_name='conv_bias', shape=[output_dim], initializer=bias_init, optimizer=bias_optim, ) # the output_schema only has the num of output channels # output_h and output_w would be inferred internally self.output_schema = schema.Scalar( (np.float32, (output_dim,)), self.get_next_blob_reference('output') ) def add_ops(self, net): net.Conv( self.input_record.field_blobs() + [self.kernel, self.bias], self.output_schema.field_blobs(), kernel_h=self.kernel_h, kernel_w=self.kernel_w, stride_h=self.stride_h, stride_w=self.stride_w, pad_t=self.pad_t, pad_l=self.pad_l, pad_b=self.pad_b, pad_r=self.pad_r, order=self.order )
pytorch-master
caffe2/python/layers/conv.py
## @package layers # Module caffe2.python.layers.layers import logging from collections import namedtuple import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core, schema, scope, utils, workspace from caffe2.python.layers.tags import TagContext logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Some types to simplify descriptions of things traveling between ops IdList = schema.List(np.int64) IdScoreList = schema.Map(np.int64, np.float32) IdListWithEvicted = schema.ListWithEvicted(np.int64) IdScoreListWithEvicted = schema.MapWithEvicted(np.int64, np.float32) def almost_equal_schemas( record, original_schema, check_field_names=True, check_field_types=True, check_field_metas=False, ): if original_schema == IdList: return schema.equal_schemas( record, IdList, check_field_names=check_field_names, check_field_types=check_field_types, check_field_metas=check_field_metas, ) or schema.equal_schemas( record, IdListWithEvicted, check_field_names=check_field_names, check_field_types=check_field_types, check_field_metas=check_field_metas, ) elif original_schema == IdScoreList: return schema.equal_schemas( record, IdScoreList, check_field_names=check_field_names, check_field_types=check_field_types, check_field_metas=check_field_metas, ) or schema.equal_schemas( record, IdScoreListWithEvicted, check_field_names=check_field_names, check_field_types=check_field_types, check_field_metas=check_field_metas, ) else: return schema.equal_schemas(record, original_schema) def get_key(record): if almost_equal_schemas(record, IdList): key = "values" elif almost_equal_schemas( record, IdScoreList, check_field_types=False ): key = "values:keys" else: raise NotImplementedError("Not implemented for {}".format(record)) assert record[key].metadata is not None, "Blob {} doesn't have metadata".format( str(record[key]()) ) return record[key] def get_categorical_limit(record): key = get_key(record) return key.metadata.categorical_limit def get_avg_length(record): return record["lengths"].metadata.expected_value def set_request_only(field): for f in field.all_scalars(): categorical_limit, expected_value = None, None if not f.metadata: feature_specs = schema.FeatureSpec(feature_is_request_only=True) elif not f.metadata.feature_specs: categorical_limit = f.metadata.categorical_limit expected_value = f.metadata.expected_value feature_specs = schema.FeatureSpec(feature_is_request_only=True) else: categorical_limit = f.metadata.categorical_limit expected_value = f.metadata.expected_value feature_specs = schema.FeatureSpec( feature_type=f.metadata.feature_specs.feature_type, feature_names=f.metadata.feature_specs.feature_names, feature_ids=f.metadata.feature_specs.feature_ids, feature_is_request_only=True, desired_hash_size=f.metadata.feature_specs.desired_hash_size, ) # make sure not to set categorical_limit for a non-integer field if not np.issubdtype(f.field_type(), np.integer): assert ( categorical_limit is None ), "categorical_limit shouldn't be set for no-integer field" f.set_metadata( schema.Metadata( categorical_limit=categorical_limit, expected_value=expected_value, feature_specs=feature_specs, ) ) class InstantiationContext(object): """ List of contexts where layer could be instantitated """ # The layers support this context will accumulate predictions, labels, # weights. The accumulated data can later be used to compute # calibration or for other # purpose. ACCUMULATE_PRED = "accumulate_pred" EVAL = "eval" PREDICTION = "prediction" TRAINING = "training" _LAYER_REGISTRY = {} def register_layer(name, layer): assert name not in _LAYER_REGISTRY, "{0} already exists".format(name) _LAYER_REGISTRY[name] = layer def layer_exists(name): return name in _LAYER_REGISTRY def get_layer_class(name): return _LAYER_REGISTRY[name] def create_layer(layer_name, *args, **kwargs): return _LAYER_REGISTRY[layer_name](*args, **kwargs) LayerPsParam = namedtuple("LayerPsParam", ["sparse_key", "average_length"]) class LayerParameter(object): def __init__( self, parameter=None, optimizer=None, initializer=None, ps_param=None, regularizer=None, ): assert isinstance( parameter, core.BlobReference ), "expect {0} to be a blob reference".format(str(parameter)) # need to put the following line (shape) before initialier # shape will be updated once initializer is (re)set self._shape = None self.parameter = parameter self.optimizer = optimizer self.initializer = initializer self.ps_param = ps_param self.regularizer = regularizer @property def initializer(self): return self._initializer @initializer.setter def initializer(self, op): assert op is None or core.IsOperator( getattr(op, "type", None) ), "initializer expects an operator, got type: {}".format(type(op)) self._initializer = op if op is not None: self.shape = self._infer_shape_from_initializer() @property def shape(self): return self._shape @shape.setter def shape(self, shape): assert self.shape is None or self.shape == shape, ( "inconsistent shape for layer parameter:" " {}, expect: {}, but got {}".format(self, self.shape, shape) ) self._shape = shape def _infer_shape_from_initializer(self): for arg in self.initializer.arg: if arg.name == "shape": return list(arg.ints) with workspace.WorkspaceGuard("model_init_by_loading_params"): try: net = core.Net("shape_checker") net._net.op.extend([self.initializer]) shape_blob = net.NextScopedBlob(self.parameter + "_shape") net.Shape([self.parameter], shape_blob) workspace.RunNetOnce(net) shape = workspace.FetchBlob(shape_blob).tolist() # ResetWorkspace to save memory workspace.ResetWorkspace() return shape except RuntimeError as exp: logger.warning( "Cannot infer the shape of blob {} from operator {}: {}".format( self.parameter, self.initializer.type, exp ) ) workspace.ResetWorkspace() return None def __str__(self): return str(self.parameter) def is_request_only_scalar(scalar): if len(scalar.field_metadata()) == 0: return False for metadata in scalar.field_metadata(): if not ( metadata and metadata.feature_specs and getattr(metadata.feature_specs, "feature_is_request_only", False) ): return False return True # Contains features accessed in a model layer of a given type # `type`: A string representing the kind of feature, consistent with FeatureSpec # `ids`: A set of feature IDs that are accessed in the model layer AccessedFeatures = namedtuple("AccessedFeatures", ["type", "ids"]) class ModelLayer(object): def __init__( self, model, prefix, input_record, predict_input_record_fields=None, tags=None, **kwargs ): """ Base class for model layers. Layer is an abstraction that allows to provide model description in terms of meta-operators, where each of the meta-operators can have different implementations for training, evaluation and prediction, that are instantiated later. As an example SampledSoftmax can do something related to sampling depending on supervision during the training and just apply softmax if it's used for prediction/evaluation. All inputs/outputs from layers are represented as a record (instance of schema bounded to blobs) and are accessible through input_record and output_schema. If Layer needs to have only a subset of inputs/provides subset of outputs during the inference - it should provide predict_input_record and predict_output_schema correspondingly (those records are expected to be a subset of input_record/output_schema). Each layer has a list of Tags associated with it, that depends on current context and arguments. It's possible to use those tags during the instantiation time. """ self.name = model.next_layer_name(prefix) self.model = model self.kwargs = kwargs self._input_record = input_record if predict_input_record_fields: if not isinstance(predict_input_record_fields, list): predict_input_record_fields = [predict_input_record_fields] self._predict_input_record = self._input_record[predict_input_record_fields] else: self._predict_input_record = None self.request_only = True if len(input_record.all_scalars()) == 0: self.request_only = False for scalar in input_record.all_scalars(): if not is_request_only_scalar(scalar): self.request_only = False break self.precomputation_request_only = False self.precomputation_object_only = False self._output_schema = None self._predict_output_schema = None self.eval_output_schema = None self.tags = set(tags or []) self.tags.update(TagContext.current().tags) self.params = [] self._export_output_for_metrics = False self._export_params_for_metrics = False def get_type(self): return self.__class__.__name__ def _check_output_schema(self): assert self._output_schema is not None, "Schema is not initialized" assert self._predict_output_schema is None or schema.is_schema_subset( self._predict_output_schema, self._output_schema ), "predict_output_schema is not a subset of the output_schema" @property def predict_input_record(self): return self._predict_input_record or self._input_record @property def input_record(self): return self._input_record @property def predict_output_schema(self): self._check_output_schema() return self._predict_output_schema or self._output_schema @predict_output_schema.setter def predict_output_schema(self, output_schema): assert self._predict_output_schema is None self._predict_output_schema = output_schema @property def output_schema(self): if self.request_only: set_request_only(self._output_schema) self._check_output_schema() return self._output_schema @output_schema.setter def output_schema(self, output_schema): assert self._output_schema is None self._output_schema = output_schema def get_parameters(self): return self.params def get_fp16_compatible_parameters(self): """Return a subset of parameters which can be converted to fp16""" return [] def get_memory_usage(self): return 0 def get_accessed_features(self): """ Return a map from field to list of AccessedFeatures, the map should contain all features accessed in the model layer """ return {} def add_init_params(self, init_net): """ Adds layer initialization operators to passed net. """ for param in self.params: # TODO(amalevich): Either return back to lambdas, that add # all params (looks a bit safer and breaking less # abstractions) or extend Net interface to this type of # operations better # TODO(xlwang) init_net._net.op has type google.protobuf.\ # internal.containers.RepeatedCompositeFieldContainer, but # the version of protobuf in fbcode does not support append # so extend is used init_op = param.initializer current_device_scope = scope.CurrentDeviceScope() if not init_op: continue if not init_op.HasField("device_option") and current_device_scope: init_op = caffe2_pb2.OperatorDef() init_op.CopyFrom(param.initializer) init_op.device_option.CopyFrom(current_device_scope) # do not add duplicated init ops if any( utils.OpAlmostEqual(op, init_op, "debug_info") for op in init_net._net.op ): continue init_net._net.op.extend([init_op]) def create_param( self, param_name, shape, initializer, optimizer, ps_param=None, regularizer=None ): with scope.NameScope(self.name, reset=True): param = self.model.create_param( param_name=param_name, shape=shape, initializer=initializer, optimizer=optimizer, ps_param=ps_param, regularizer=regularizer, ) # make sure we don't share parameters in the same layer assert all(param.parameter != p.parameter for p in self.params) self.params.append(param) return param.parameter def get_next_blob_reference(self, name): with scope.NameScope(self.name, reset=True): return self.model.net.NextScopedBlob(name) def add_operators(self, net, init_net=None, context=InstantiationContext.TRAINING): """ Adds layer trainig or initialization operators to the passed in net. init_net can be None and can be called independently from add_init_params """ # Namescope below should warranty that all intermediate blobs will be # assiciated with the layer that produces them with scope.NameScope(self.name): if context not in { InstantiationContext.PREDICTION, InstantiationContext.EVAL, InstantiationContext.ACCUMULATE_PRED, }: assert init_net, "Only prediction and eval context don't need init_net" if init_net: self.add_init_params(init_net) if context == InstantiationContext.TRAINING: self.add_train_ops(net) elif context == InstantiationContext.EVAL: self.add_eval_ops(net) elif context == InstantiationContext.ACCUMULATE_PRED: self.add_ops_to_accumulate_pred(net) else: self.add_ops(net) if ( context in {InstantiationContext.TRAINING, InstantiationContext.EVAL} and self._export_params_for_metrics ): self.add_param_copy_operators(net) def add_ops(self, net): # Predict layer implementation. raise NotImplementedError def add_eval_ops(self, net): # Default eval layer implementation is completely matching # predict layer implementation. self.add_ops(net) def add_train_ops(self, net): # Default train layer implementation is completely matching # eval layer implementation. self.add_eval_ops(net) def add_ops_to_accumulate_pred(self, net): # This adds operators to accumulate predictions/labels/weights. The # accumulated data can later be used to compute calibration or for other # purpose. Default layer implementation is completely matching eval # layer implementation. self.add_eval_ops(net) def add_param_copy_operators(self, net): for param in self.params: param_copy_ref = self.model.metrics_schema[str(param.parameter)] net.Copy([param.parameter], param_copy_ref.field_blobs()) def export_output_for_metrics(self): self._export_output_for_metrics = True # Export output of the layer directly export_name = self.name + "/output" self.model.add_metric_field(export_name, self.output_schema) def export_params_for_metrics(self): self._export_params_for_metrics = True # Export copies of parameters for param in self.params: param_copy_ref = self.get_next_blob_reference( str(param).split("/")[-1] + "_copy" ) self.model.add_metric_field(str(param.parameter), param_copy_ref)
pytorch-master
caffe2/python/layers/layers.py
from caffe2.python import schema from caffe2.python.layers.layers import ( IdList, ModelLayer, ) # Model layer for implementing probabilistic replacement of elements in # IdLists. Takes probabilities for train, eval and predict nets as input, as # well as the replacement value when dropout happens. For features we may have # available to us in train net but not in predict net, we'd set dropout # probability for predict net to be 1.0 and set the feature to the replacement # value given here. This way, the value is tied to the particular model and not # to any specific logic in feature processing in serving. # Consider the following example where X is the values in the IdList and Lengths # is the number of values corresponding to each example. # X: [1, 2, 3, 4, 5] # Lengths: [2, 3] # This IdList contains 2 items of lengths 2, 3. Let's assume we used a ratio of # 0.5 and ended up dropping out 2nd example, and used a replacement value of -1. # We will end up with the following IdList. # # Y: [1, 2, -1] # OutputLengths: [2, 1] # where the 2nd item values [3,4,5] were replaced with [-1] and the length got # set to 1. class SparseDropoutWithReplacement(ModelLayer): def __init__( self, model, input_record, dropout_prob_train, dropout_prob_eval, dropout_prob_predict, replacement_value, name='sparse_dropout', **kwargs): super(SparseDropoutWithReplacement, self).__init__(model, name, input_record, **kwargs) assert schema.equal_schemas(input_record, IdList), "Incorrect input type" self.dropout_prob_train = float(dropout_prob_train) self.dropout_prob_eval = float(dropout_prob_eval) self.dropout_prob_predict = float(dropout_prob_predict) self.replacement_value = int(replacement_value) assert (self.dropout_prob_train >= 0 and self.dropout_prob_train <= 1.0), \ "Expected 0 <= dropout_prob_train <= 1, but got %s" \ % self.dropout_prob_train assert (self.dropout_prob_eval >= 0 and self.dropout_prob_eval <= 1.0), \ "Expected 0 <= dropout_prob_eval <= 1, but got %s" \ % dropout_prob_eval assert (self.dropout_prob_predict >= 0 and self.dropout_prob_predict <= 1.0), \ "Expected 0 <= dropout_prob_predict <= 1, but got %s" \ % dropout_prob_predict assert(self.dropout_prob_train > 0 or self.dropout_prob_eval > 0 or self.dropout_prob_predict > 0), \ "Ratios all set to 0.0 for train, eval and predict" self.output_schema = schema.NewRecord(model.net, IdList) if input_record.lengths.metadata: self.output_schema.lengths.set_metadata( input_record.lengths.metadata) if input_record.items.metadata: self.output_schema.items.set_metadata( input_record.items.metadata) def _add_ops(self, net, ratio): input_values_blob = self.input_record.items() input_lengths_blob = self.input_record.lengths() output_lengths_blob = self.output_schema.lengths() output_values_blob = self.output_schema.items() net.SparseDropoutWithReplacement([input_values_blob, input_lengths_blob], [output_values_blob, output_lengths_blob], ratio=ratio, replacement_value=self.replacement_value) def add_train_ops(self, net): self._add_ops(net, self.dropout_prob_train) def add_eval_ops(self, net): self._add_ops(net, self.dropout_prob_eval) def add_ops(self, net): self._add_ops(net, self.dropout_prob_predict)
pytorch-master
caffe2/python/layers/sparse_dropout_with_replacement.py
## @package batch_mse_loss # Module caffe2.python.layers.batch_mse_loss from caffe2.python import core, schema from caffe2.python.layers.layers import ( ModelLayer, ) from caffe2.python.layers.tags import ( Tags ) import numpy as np class BatchMSELoss(ModelLayer): def __init__(self, model, input_record, name='batch_mse_loss', **kwargs): super(BatchMSELoss, self).__init__(model, name, input_record, **kwargs) assert schema.is_schema_subset( schema.Struct( ('label', schema.Scalar()), ('prediction', schema.Scalar()) ), input_record ) self.tags.update([Tags.EXCLUDE_FROM_PREDICTION]) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('output')) def add_ops(self, net): prediction = self.input_record.prediction() label = self.input_record.label.field_blobs() if self.input_record.label.field_type().base != ( self.input_record.prediction.field_type().base): label = net.Cast( label, net.NextScopedBlob('cast_label'), to=schema.data_type_for_dtype( self.input_record.prediction.field_type() ) ) label = net.ExpandDims(label, 1, dims=[1]) label = net.StopGradient( label, net.NextScopedBlob('stopped_label') ) l2dist = net.SquaredL2Distance( [label, prediction], net.NextScopedBlob('l2') ) if 'weight' in self.input_record.fields: weight_blob = self.input_record.weight() if self.input_record.weight.field_type().base != np.float32: weight_blob = net.Cast( weight_blob, weight_blob + '_float32', to=core.DataType.FLOAT ) weight_blob = net.StopGradient( [weight_blob], [net.NextScopedBlob('weight_stop_gradient')], ) l2dist = net.Mul( [l2dist, weight_blob], net.NextScopedBlob('weighted_l2_distance'), ) net.AveragedLoss(l2dist, self.output_schema.field_blobs())
pytorch-master
caffe2/python/layers/batch_mse_loss.py
# @package constant_weight # Module caffe2.fb.python.layers.constant_weight from caffe2.python import schema from caffe2.python.layers.layers import ModelLayer import numpy as np class ConstantWeight(ModelLayer): def __init__( self, model, input_record, weights=None, name='constant_weight', **kwargs ): super(ConstantWeight, self).__init__(model, name, input_record, **kwargs) self.output_schema = schema.Scalar( np.float32, self.get_next_blob_reference('constant_weight') ) self.data = self.input_record.field_blobs() self.num = len(self.data) weights = ( weights if weights is not None else [1. / self.num for _ in range(self.num)] ) assert len(weights) == self.num self.weights = [ self.model.add_global_constant( '%s_weight_%d' % (self.name, i), float(weights[i]) ) for i in range(self.num) ] def add_ops(self, net): net.WeightedSum( [b for x_w_pair in zip(self.data, self.weights) for b in x_w_pair], self.output_schema() )
pytorch-master
caffe2/python/layers/constant_weight.py
## @package uniform_sampling # Module caffe2.python.layers.uniform_sampling import numpy as np from caffe2.python import core, schema from caffe2.python.layers.layers import ModelLayer class UniformSampling(ModelLayer): """ Uniform sampling `num_samples - len(input_record)` unique elements from the range [0, num_elements). `samples` is the concatenation of input_record and the samples. input_record is expected to be unique. """ def __init__( self, model, input_record, num_samples, num_elements, name='uniform_sampling', **kwargs ): super(UniformSampling, self).__init__( model, name, input_record, **kwargs ) assert num_elements > num_samples > 0 assert isinstance(input_record, schema.Scalar) self.num_elements = num_elements num_examples_init = ('GivenTensorInt64Fill', {'values': [num_samples]}) self.num_samples = self.create_param(param_name='num_examples', shape=(1,), initializer=num_examples_init, optimizer=model.NoOptim) sampling_blob_init = ('ConstantFill', {'value': float(num_samples) / num_elements, 'dtype': core.DataType.FLOAT}) self.sampling_prob = self.create_param(param_name='prob', shape=(num_samples,), initializer=sampling_blob_init, optimizer=model.NoOptim) self.output_schema = schema.Struct( ( 'samples', schema.Scalar( np.int32, self.get_next_blob_reference("samples") ) ), ('sampling_prob', schema.Scalar(np.float32, self.sampling_prob)), ) def add_ops(self, net): net.StopGradient(self.sampling_prob, self.sampling_prob) shape = net.Shape([self.input_record()], net.NextScopedBlob("shape")) shape = net.Sub([self.num_samples, shape], shape) samples = net.UniqueUniformFill( [shape, self.input_record()], net.NextScopedBlob("samples_before_concat"), min=0, max=self.num_elements - 1, input_as_shape=True ) net.Concat( [self.input_record(), samples], [self.output_schema.samples(), net.NextScopedBlob("split_info")], axis=0 ) net.StopGradient( self.output_schema.samples(), self.output_schema.samples() )
pytorch-master
caffe2/python/layers/uniform_sampling.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np import unittest class DoOpTest(TestCase): def test_operator(self): def make_net(): subnet = core.Net('subnet') subnet.Add(["X", "Y"], "Z") net = core.Net("net") net.CreateScope([], "W") net.Do( ["outer_X", "outer_Y", "W"], ["outer_Z", "W"], net=subnet.Proto(), inner_blobs=["X", "Y", "Z"], outer_blobs_idx=[0, 1, 2], ) return net net = make_net() workspace.ResetWorkspace() workspace.FeedBlob("outer_X", np.asarray([1, 2])) workspace.FeedBlob("outer_Y", np.asarray([3, 4])) workspace.RunNetOnce(net) outer_Z_val = workspace.FetchBlob("outer_Z") self.assertTrue(np.all(outer_Z_val == np.asarray([4, 6]))) def test_reuse_workspace(self): def make_net(): param_init_subnet = core.Net('param_init_subnet') param_init_subnet.ConstantFill([], "X", shape=[1], value=1) param_init_subnet.ConstantFill([], "Y", shape=[1], value=2) subnet = core.Net("subnet") subnet.Add(["X", "Y"], "Z") net = core.Net("net") net.CreateScope([], "W") net.Do( "W", "W", net=param_init_subnet.Proto(), inner_blobs=[], outer_blobs_idx=[], ) net.Do( "W", ["outer_Z", "W"], net=subnet.Proto(), inner_blobs=["Z"], outer_blobs_idx=[0], reuse_workspace=True, ) return net net = make_net() workspace.ResetWorkspace() workspace.RunNetOnce(net) outer_Z_val = workspace.FetchBlob("outer_Z") self.assertTrue(np.all(outer_Z_val == np.asarray([3]))) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/test/do_op_test.py
from caffe2.python import ( brew, cnn, core, workspace, data_parallel_model, timeout_guard, model_helper, optimizer) from caffe2.python.test_util import TestCase import caffe2.python.models.resnet as resnet from caffe2.python.modeling.initializers import Initializer from caffe2.python import convnet_benchmarks as cb from caffe2.python import hypothesis_test_util as hu import time import numpy as np CI_MAX_EXAMPLES = 2 CI_TIMEOUT = 600 def executor_test_settings(func): if hu.is_sandcastle() or hu.is_travis(): return hu.settings( max_examples=CI_MAX_EXAMPLES, deadline=CI_TIMEOUT * 1000 # deadline is in ms )(func) else: return func def gen_test_resnet50(_order, _cudnn_ws): model = cnn.CNNModelHelper( order="NCHW", name="resnet_50_test", cudnn_exhaustive_search=True, ) data = model.net.AddExternalInput("data") label = model.net.AddExternalInput("label") (_softmax, loss) = resnet.create_resnet50( model, data, num_input_channels=3, num_labels=1000, label=label, is_test=False, ) return model, 227 def conv_model_generators(): return { 'AlexNet': cb.AlexNet, 'OverFeat': cb.OverFeat, 'VGGA': cb.VGGA, 'Inception': cb.Inception, 'MLP': cb.MLP, 'Resnet50': gen_test_resnet50, } def executor_test_model_names(): if hu.is_sandcastle() or hu.is_travis(): return ["MLP"] else: return sorted(conv_model_generators().keys()) def build_conv_model(model_name, batch_size): model_gen_map = conv_model_generators() assert model_name in model_gen_map, "Model " + model_name + " not found" model, input_size = model_gen_map[model_name]("NCHW", None) input_shape = [batch_size, 3, input_size, input_size] if model_name == "MLP": input_shape = [batch_size, input_size] model.param_init_net.GaussianFill( [], "data", shape=input_shape, mean=0.0, std=1.0 ) model.param_init_net.UniformIntFill( [], "label", shape=[batch_size, ], min=0, max=999 ) model.AddGradientOperators(["loss"]) ITER = brew.iter(model, "iter") LR = model.net.LearningRate( ITER, "LR", base_lr=-1e-8, policy="step", stepsize=10000, gamma=0.999) ONE = model.param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0) for param in model.params: param_grad = model.param_to_grad[param] model.net.WeightedSum([param, ONE, param_grad, LR], param) return model def build_resnet50_dataparallel_model( num_gpus, batch_size, epoch_size, cudnn_workspace_limit_mb=64, num_channels=3, num_labels=1000, weight_decay=1e-4, base_learning_rate=0.1, image_size=227, use_cpu=False): batch_per_device = batch_size // num_gpus train_arg_scope = { 'order': 'NCHW', 'use_cudnn': True, 'cudnn_exhaustive_search': False, 'ws_nbytes_limit': (cudnn_workspace_limit_mb * 1024 * 1024), 'deterministic': True, } train_model = model_helper.ModelHelper( name="test_resnet50", arg_scope=train_arg_scope ) def create_resnet50_model_ops(model, loss_scale): with brew.arg_scope([brew.conv, brew.fc], WeightInitializer=Initializer, BiasInitializer=Initializer, enable_tensor_core=0): pred = resnet.create_resnet50( model, "data", num_input_channels=num_channels, num_labels=num_labels, no_bias=True, no_loss=True, ) softmax, loss = model.SoftmaxWithLoss([pred, 'label'], ['softmax', 'loss']) loss = model.Scale(loss, scale=loss_scale) brew.accuracy(model, [softmax, "label"], "accuracy") return [loss] def add_optimizer(model): stepsz = int(30 * epoch_size / batch_size) optimizer.add_weight_decay(model, weight_decay) opt = optimizer.build_multi_precision_sgd( model, base_learning_rate, momentum=0.9, nesterov=1, policy="step", stepsize=stepsz, gamma=0.1 ) return opt def add_image_input(model): model.param_init_net.GaussianFill( [], ["data"], shape=[batch_per_device, 3, image_size, image_size], dtype='float', ) model.param_init_net.ConstantFill( [], ["label"], shape=[batch_per_device], value=1, dtype=core.DataType.INT32, ) def add_post_sync_ops(model): for param_info in model.GetOptimizationParamInfo(model.GetParams()): if param_info.blob_copy is not None: model.param_init_net.HalfToFloat( param_info.blob, param_info.blob_copy[core.DataType.FLOAT]) # Create parallelized model data_parallel_model.Parallelize( train_model, input_builder_fun=add_image_input, forward_pass_builder_fun=create_resnet50_model_ops, optimizer_builder_fun=add_optimizer, post_sync_builder_fun=add_post_sync_ops, devices=list(range(num_gpus)), rendezvous=None, optimize_gradient_memory=True, cpu_device=use_cpu, shared_model=use_cpu, ) return train_model def run_resnet50_epoch(train_model, batch_size, epoch_size, skip_first_n_iter=0): epoch_iters = int(epoch_size / batch_size) prefix = "{}_{}".format( train_model._device_prefix, train_model._devices[0]) train_time = 0.0 train_examples = 0 for i in range(epoch_iters): timeout = 600.0 if i == 0 else 60.0 with timeout_guard.CompleteInTimeOrDie(timeout): t1 = time.time() workspace.RunNet(train_model.net.Proto().name) t2 = time.time() dt = t2 - t1 if i >= skip_first_n_iter: train_time += dt train_examples += batch_size fmt = "Finished iteration {}/{} ({:.2f} images/sec)" print(fmt.format(i + 1, epoch_iters, batch_size / dt)) accuracy = workspace.FetchBlob(prefix + '/accuracy') loss = workspace.FetchBlob(prefix + '/loss') assert loss < 40, "Exploded gradients" return ( train_examples, train_time, accuracy, loss) class ExecutorTestBase(TestCase): def compare_executors(self, model, ref_executor, test_executor, model_run_func): model.Proto().type = ref_executor model.param_init_net.set_rand_seed(seed=0xCAFFE2) model.net.set_rand_seed(seed=0xCAFFE2) workspace.ResetWorkspace() workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) model_run_func() ref_ws = {str(k): workspace.FetchBlob(k) for k in workspace.Blobs()} ref_ws = {k: v for k, v in ref_ws.items() if type(v) is np.ndarray} workspace.ResetWorkspace() workspace.RunNetOnce(model.param_init_net) model.Proto().type = test_executor workspace.CreateNet(model.net, overwrite=True) model_run_func() test_ws = {str(k): workspace.FetchBlob(k) for k in workspace.Blobs()} test_ws = {k: v for k, v in test_ws.items() if type(v) is np.ndarray} for blob_name, ref_val in ref_ws.items(): self.assertTrue( blob_name in test_ws, "Blob {} not found in {} run".format(blob_name, test_executor)) val = test_ws[blob_name] np.testing.assert_array_equal( val, ref_val, "Blob {} differs in {} run".format(blob_name, test_executor))
pytorch-master
caffe2/python/test/executor_test_util.py
import unittest import torch from caffe2.python import core, workspace # This is a standalone test that doesn't use test_util as we're testing # initialization and thus we should be the ones calling GlobalInit @unittest.skipIf(not workspace.has_cuda_support, "THC pool testing is obscure and doesn't work on HIP yet") class TestGPUInit(unittest.TestCase): def testTHCAllocator(self): cuda_or_hip = 'hip' if workspace.has_hip_support else 'cuda' flag = '--caffe2_{}_memory_pool=thc'.format(cuda_or_hip) core.GlobalInit(['caffe2', flag]) # just run one operator # it's importantant to not call anything here from Torch API # even torch.cuda.memory_allocated would initialize CUDA context workspace.RunOperatorOnce(core.CreateOperator( 'ConstantFill', [], ["x"], shape=[5, 5], value=1.0, device_option=core.DeviceOption(workspace.GpuDeviceType) )) # make sure we actually used THC allocator self.assertGreater(torch.cuda.memory_allocated(), 0) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/test/gpu_context_test.py
from caffe2.python import core, workspace from caffe2.python.test.executor_test_util import ( build_conv_model, build_resnet50_dataparallel_model, run_resnet50_epoch, ExecutorTestBase, executor_test_settings, executor_test_model_names) from caffe2.python.test_util import TestCase from hypothesis import given import hypothesis.strategies as st import unittest EXECUTORS = ["parallel", "async_scheduling"] ITERATIONS = 1 class ExecutorCPUConvNetTest(ExecutorTestBase): @given(executor=st.sampled_from(EXECUTORS), model_name=st.sampled_from(executor_test_model_names()), batch_size=st.sampled_from([1]), num_workers=st.sampled_from([8])) @executor_test_settings def test_executor(self, executor, model_name, batch_size, num_workers): model = build_conv_model(model_name, batch_size) model.Proto().num_workers = num_workers def run_model(): iterations = ITERATIONS if model_name == "MLP": iterations = 1 # avoid numeric instability with MLP gradients workspace.RunNet(model.net, iterations) self.compare_executors( model, ref_executor="simple", test_executor=executor, model_run_func=run_model, ) @unittest.skipIf(not workspace.has_gpu_support, "no gpu") class ExecutorGPUResNetTest(ExecutorTestBase): @given(executor=st.sampled_from(EXECUTORS), num_workers=st.sampled_from([8])) @executor_test_settings def test_executor(self, executor, num_workers): model = build_resnet50_dataparallel_model( num_gpus=workspace.NumGpuDevices(), batch_size=8, epoch_size=8) model.Proto().num_workers = num_workers def run_model(): run_resnet50_epoch(model, batch_size=8, epoch_size=8) self.compare_executors( model, ref_executor="simple", test_executor=executor, model_run_func=run_model, ) class ExecutorFailingOpTest(TestCase): def test_failing_op(self): def create_failing_net(throw_exception): net = core.Net("failing_net") if throw_exception: net.ThrowException([], []) else: net.Fail([], []) net.Proto().type = "async_scheduling" return net workspace.ResetWorkspace() net = create_failing_net(throw_exception=True) workspace.CreateNet(net) with self.assertRaises(RuntimeError): workspace.RunNet(net) with self.assertRaises(RuntimeError): workspace.RunNet(net, allow_fail=True) workspace.ResetWorkspace() net = create_failing_net(throw_exception=False) workspace.CreateNet(net) with self.assertRaises(RuntimeError): workspace.RunNet(net) res = workspace.RunNet(net, allow_fail=True) self.assertFalse(res) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/test/executor_test.py
#!/usr/bin/env python3 import hypothesis.strategies as st import numpy as np import torch from caffe2.python import core from caffe2.python.test_util import TestCase from hypothesis import given, settings from torch import nn class TestC2LSTM(TestCase): @given( bsz=st.integers(1, 5), seq_lens=st.integers(1, 6), emb_lens=st.integers(5, 10), hidden_size=st.integers(3, 7), num_layers=st.integers(1, 4), has_biases=st.booleans(), is_bidirectional=st.booleans(), batch_first=st.booleans(), ) @settings(deadline=10000) def test_c2_lstm( self, bsz, seq_lens, emb_lens, hidden_size, num_layers, has_biases, is_bidirectional, batch_first, ): net = core.Net("test_net") num_directions = 2 if is_bidirectional else 1 py_lstm = nn.LSTM( emb_lens, hidden_size, batch_first=batch_first, bidirectional=is_bidirectional, bias=has_biases, num_layers=num_layers, ) hx = np.zeros((num_layers * num_directions, bsz, hidden_size), dtype=np.float32) if batch_first: inputs = np.random.randn(bsz, seq_lens, emb_lens).astype(np.float32) else: inputs = np.random.randn(seq_lens, bsz, emb_lens).astype(np.float32) py_results = py_lstm(torch.from_numpy(inputs)) lstm_in = [ torch.from_numpy(inputs), torch.from_numpy(hx), torch.from_numpy(hx), ] + [param.detach() for param in py_lstm._flat_weights] c2_results = torch.ops._caffe2.InferenceLSTM( lstm_in, num_layers, has_biases, batch_first, is_bidirectional ) np.testing.assert_array_almost_equal( py_results[0].detach().numpy(), c2_results[0].detach().numpy() ) np.testing.assert_array_almost_equal( py_results[1][0].detach().numpy(), c2_results[1].detach().numpy() ) np.testing.assert_array_almost_equal( py_results[1][1].detach().numpy(), c2_results[2].detach().numpy() )
pytorch-master
caffe2/python/test/inference_lstm_op_test.py
from caffe2.python import core, workspace import unittest core.GlobalInit(['python']) class BlobDeallocationTest(unittest.TestCase): def test(self): net = core.Net('net') x = net.GivenTensorStringFill([], ['x'], shape=[3], values=['a', 'b', 'c']) y = net.GivenTensorStringFill([], ['y'], shape=[3], values=['d', 'e', 'f']) net.Concat([x, y], ['concated', '_'], axis=0) workspace.ResetWorkspace() workspace.RunNetOnce(net) workspace.ResetWorkspace() workspace.RunNetOnce(net) self.assertTrue(True) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/test/blob_deallocation_test.py
pytorch-master
caffe2/python/test/__init__.py
import unittest from caffe2.python.fakefp16_transform_lib import fakeFp16FuseOps from caffe2.python import core class Transformer(unittest.TestCase): def test_fuse(self): net_swish = core.Net("test_swish") net_swish_init = core.Net("test_swish_init") deq = core.CreateOperator("Int8DequantizeNNPI", ["Xq"], ["X"]) swish = core.CreateOperator("SwishFakeFp16NNPI", ["X"], ["Y"]) quant = core.CreateOperator("Int8QuantizeNNPI", ["Y"], ["Y_q"]) net_swish.Proto().op.extend( [ deq, swish, quant ] ) print(net_swish.Proto()) out_net = fakeFp16FuseOps(net_swish.Proto()) assert(len(out_net.op) == 1)
pytorch-master
caffe2/python/test/fakefp16_transform_test.py
# make sure we use cpp implementation of protobuf import os os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "cpp" # then import protobuf from caffe2.proto import caffe2_pb2, metanet_pb2 import unittest class TestCrossProtoCalls(unittest.TestCase): def testSimple(self): net = caffe2_pb2.NetDef() meta = metanet_pb2.MetaNetDef() # if metanet_pb2 wasn't initialized properly the following fails with a # cryptic message: "Parameter to MergeFrom() must be instance of same # class: expected caffe2.NetDef got caffe2.NetDef." meta.nets.add(key="foo", value=net)
pytorch-master
caffe2/python/test/python_protobuf_test.py
## @package onnx # Module caffe2.python.onnx.backend_rep_cpp from onnx.backend.base import BackendRep, namedtupledict # This is a wrapper around C++ Caffe2BackendRep, # mainly to handle the different input and output types for convenience of Python class Caffe2CppRep(BackendRep): def __init__(self, cpp_rep): super(Caffe2CppRep, self).__init__() self.__core = cpp_rep self.__external_outputs = cpp_rep.external_outputs() self.__external_inputs = cpp_rep.external_inputs() self.__uninitialized_inputs = cpp_rep.uninitialized_inputs() def init_net(self): return self.__core.init_net() def pred_net(self): return self.__core.pred_net() def external_outputs(self): return self.__core.external_outputs() def external_inputs(self): return self.__core.external_inputs() def run(self, inputs): output_values = None if isinstance(inputs, dict): output_values = self.__core.run(inputs) elif isinstance(inputs, list) or isinstance(inputs, tuple): if len(inputs) != len(self.__uninitialized_inputs): raise RuntimeError('Expected {} values for uninitialized ' 'graph inputs ({}), but got {}.'.format( len(self.__uninitialized_inputs), ', '.join(self.__uninitialized_inputs), len(inputs))) input_map = {} for k, v in zip(self.__uninitialized_inputs, inputs): input_map[k] = v output_values = self.__core.run(input_map) else: # single input output_values = self.__core.run([inputs]) return namedtupledict('Outputs', self.__external_outputs)(*output_values)
pytorch-master
caffe2/python/onnx/backend_cpp_rep.py
## @package onnx # Module caffe2.python.onnx.backend """Backend for running ONNX on Caffe2 To run this, you will need to have Caffe2 installed as well. """ import collections import sys import zipfile import itertools # When onnx is built against a version of protobuf that is older than # that which is vendored with caffe2, onnx will crash if caffe2's # vendored protobuf is loaded first. We can work around this by # importing onnx first, which will cause it to go out and pick up the # system protobuf. import onnx.backend from caffe2.python import core, workspace, rnn_cell, gru_cell from caffe2.python.model_helper import ModelHelper from caffe2.proto import caffe2_pb2 import caffe2.python.utils import numpy as np import onnx from onnx import TensorProto import onnx.numpy_helper import onnx.defs import onnx.shape_inference import onnx.utils from onnx.backend.base import Backend, Device, DeviceType, namedtupledict from caffe2.python.onnx.workspace import Workspace from caffe2.python.onnx.backend_rep import Caffe2Rep import caffe2.python._import_c_extension as C import warnings def force_unicode(s): try: return s.decode('utf-8') except AttributeError: return s def get_device_option(device): m = {DeviceType.CPU: caffe2_pb2.CPU, DeviceType.CUDA: workspace.GpuDeviceType} return core.DeviceOption(m[device.type], device.device_id) class OnnxAttributes(dict): """ This is a more convenient way to work with ONNX/Caffe2 attributes that is not the protobuf representation. """ @staticmethod def from_onnx(args): d = OnnxAttributes() for arg in args: d[arg.name] = convertAttributeProto(arg) return d def caffe2(self, kmap=lambda k: k): for k, v in self.items(): if kmap(k) != '': yield caffe2.python.utils.MakeArgument(kmap(k), v) # TODO: Move this into ONNX main library def convertAttributeProto(onnx_arg): """ Convert an ONNX AttributeProto into an appropriate Python object for the type. NB: Tensor attribute gets returned as the straight proto. """ if onnx_arg.HasField('f'): return onnx_arg.f elif onnx_arg.HasField('i'): return onnx_arg.i elif onnx_arg.HasField('s'): return onnx_arg.s elif onnx_arg.HasField('t'): return onnx_arg.t # this is a proto! elif onnx_arg.HasField('g'): return Caffe2Backend._graph_to_net(onnx_arg.g, Caffe2Backend._known_opset_version) elif len(onnx_arg.floats): return list(onnx_arg.floats) elif len(onnx_arg.ints): return list(onnx_arg.ints) elif len(onnx_arg.strings): return list(onnx_arg.strings) elif len(onnx_arg.graphs): retval = [] # TODO: this doesn't work with RNN ops for g in onnx_arg.graphs: retval.append(Caffe2Backend._graph_to_net(g, Caffe2Backend._known_opset_version)) return retval else: raise ValueError("Unsupported ONNX attribute: {}".format(onnx_arg)) # TODO: Move this into ONNX main library class OnnxNode(object): """ Reimplementation of NodeProto from ONNX, but in a form more convenient to work with from Python. We may temporarily edit these nodes to get them into Caffe2 form, before actually translating into the Caffe2 protobuf, since this is easier than decomposing everything, and putting it back together when we're ready. """ def __init__(self, node): self.name = str(node.name) self.op_type = str(node.op_type) self.attrs = OnnxAttributes.from_onnx(node.attribute) self.inputs = list(node.input) self.outputs = list(node.output) Caffe2Ops = collections.namedtuple('Caffe2Ops', ['ops', 'init_ops', 'interface_blobs']) class Caffe2Backend(Backend): # The greatest version of the ONNX operator set which we are aware of. # Models whose version is larger than this will cause us to emit a warning # that we are attempting to translate on a "best effort" basis. # # If you increase this, make SURE you cross-reference all BC-breaking # changes from one version to the next, and any that you did not # implement, mark as broken in _broken_operators _known_opset_version = 9 # This dictionary will record operators which are KNOWN to be # broken, so we give a good error message rather than do something # bogus and then fail. _broken_operators = { # 'BrokenOp': version_it_was_broken_in } # Operators that are different between Caffe2 and # ONNX but only in their name. # In most cases, this should be empty - as the effort of ONNX is # to unify the operator definitions. _renamed_operators = { 'GlobalMaxPool': 'MaxPool', 'GlobalAveragePool': 'AveragePool', 'Pad': 'PadImage', 'Neg': 'Negative', 'BatchNormalization': 'SpatialBN', 'InstanceNormalization': 'InstanceNorm', 'MatMul': 'BatchMatMul', 'Upsample': 'ResizeNearest', 'Identity': 'Copy', 'InstanceNormalization': 'InstanceNorm', 'Equal': 'EQ', 'Less': 'LT', 'Greater': 'GT', 'Unsqueeze': 'ExpandDims', 'Loop': 'ONNXWhile', 'Tile': 'NumpyTile', 'RandomNormal': 'GaussianFill', 'RandomUniform': 'UniformFill', } _global_renamed_attrs = {'kernel_shape': 'kernels'} _per_op_renamed_attrs = { 'Squeeze': {'axes': 'dims'}, 'Unsqueeze': {'axes': 'dims'}, 'Transpose': {'perm': 'axes'}, 'Upsample': {'mode': '', 'scales': ''}, 'ConvTranspose': {'output_padding': 'adjs'}, 'Selu': {'gamma': 'scale'}, 'If': {'then_branch': 'then_net', 'else_branch': 'else_net'}, 'RandomUniform': {'low': 'min', 'high': 'max'} } # operators whose behavior is different beyond renaming # the value is an attribute of this class that is a # function from ToffeIR node_def to caffe2 op_def _special_operators = { 'LSTM': '_create_rnn_variant', 'GRU': '_create_rnn_variant', 'RNN': '_create_rnn_variant', 'Loop': '_create_loop', 'If': '_create_if', 'Upsample': '_create_upsample', 'RandomNormal': '_create_gaussian_fill' } # Dummy name generator _dummy_name = C.DummyName() @classmethod def dummy_name(cls): return cls._dummy_name.new_dummy_name() # NB: By default, you will use the LATEST definition of the operator, # so this interface MAY make BC-breaking changes. Specify an # opset_version if you don't want this to version. @classmethod def run_node(cls, node, inputs, device='CPU', opset_version=_known_opset_version, outputs_info=None): super(Caffe2Backend, cls).run_node(node, inputs, device=device, outputs_info=outputs_info, opset_version=opset_version) value_infos = [] device_option = get_device_option(Device(device)) ws = Workspace() with core.DeviceScope(device_option): # temporary! if isinstance(inputs, dict): for key, value in inputs.items(): ws.FeedBlob(key, value) value_infos.append(onnx.helper.make_tensor_value_info( name=key, elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[value.dtype], shape=value.shape).SerializeToString()) else: assert len(node.input) == len(inputs), "{}: expected {} but got {}".format( node.op_type, len(node.input), len(inputs)) for key, value in zip(node.input, inputs): ws.FeedBlob(key, value) value_infos.append(onnx.helper.make_tensor_value_info( name=key, elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[value.dtype], shape=value.shape).SerializeToString()) ops = [] cbackend = C.Caffe2Backend(cls._dummy_name) ops_str = cbackend.convert_node(node.SerializeToString(), value_infos, opset_version) for s in ops_str[0] + ops_str[1]: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op.device_option.CopyFrom(device_option) ops.append(op) ws.RunOperatorsOnce(ops) output_values = [ws.FetchBlob(name) for name in node.output] return namedtupledict('Outputs', node.output)(*output_values) @classmethod def _create_tensor_filling_op(cls, onnx_tensor, name=None): """ Given an Onnx TensorProto, translate it into a Caffe2 operator which produces the given tensor filling op. """ assert name or onnx_tensor.name name = name or onnx_tensor.name c2_op = caffe2_pb2.OperatorDef() c2_values = c2_op.arg.add() c2_values.name = "values" def tensor2list(onnx_tensor): # Use the onnx.numpy_helper because the data may be raw return onnx.numpy_helper.to_array(onnx_tensor).flatten().tolist() if onnx_tensor.data_type in [TensorProto.FLOAT]: c2_op.type = 'GivenTensorFill' c2_values.floats.extend(tensor2list(onnx_tensor)) elif onnx_tensor.data_type in [TensorProto.DOUBLE]: c2_op.type = 'GivenTensorDoubleFill' c2_values.floats.extend(tensor2list(onnx_tensor)) elif onnx_tensor.data_type in [TensorProto.INT64, TensorProto.UINT32]: c2_op.type = 'GivenTensorInt64Fill' c2_values.ints.extend(tensor2list(onnx_tensor)) elif onnx_tensor.data_type in [TensorProto.UINT8, TensorProto.INT8, TensorProto.UINT16, TensorProto.INT16, TensorProto.INT32]: c2_op.type = 'GivenTensorIntFill' c2_values.ints.extend(tensor2list(onnx_tensor)) elif onnx_tensor.data_type == TensorProto.BOOL: c2_op.type = 'GivenTensorBoolFill' c2_values.ints.extend(tensor2list(onnx_tensor)) elif onnx_tensor.data_type == TensorProto.STRING: c2_op.type = 'GivenTensorStringFill' c2_values.strings.extend(onnx_tensor.string_data) else: raise RuntimeError( "unrecognized tensor type {}".format(onnx_tensor.data_type)) c2_shape = c2_op.arg.add() c2_shape.name = "shape" c2_shape.ints.extend(onnx_tensor.dims) c2_op.output.append(name) return c2_op @classmethod def _rnn_reform_weights(cls, reforms, name, hidden_size, init_net, gates, reorder_indices): for name_from, name_to, do_concat, extra_dims in reforms: gate_blobs = ['%s/%s_%s' % (name, prefix, name_to) for prefix in gates] for i, x in enumerate(gate_blobs): dim0 = i * hidden_size, (i+1) * hidden_size starts, ends = zip(dim0, *extra_dims) init_net.Slice(name_from, x, starts=starts, ends=ends) if do_concat: reordered_gate_blobs = [gate_blobs[i] for i in reorder_indices] init_net.Concat(reordered_gate_blobs, ['%s/%s' % (name, name_to), cls.dummy_name()], axis=0) @classmethod def _make_rnn_direction(cls, input_blob, B, W, R, initial_states_and_names, sequence_lens, pred_mh, init_net, input_size, hidden_size, num_gates, direction_offset, Bi, Br, W_, R_, reform, make_cell, keep_outputs): name = cls.dummy_name() # input and recurrence biases are squashed together in onnx # but not in caffe2 gates_hidden_size = num_gates * hidden_size bias_offset = 2 * direction_offset * gates_hidden_size weight_offset = direction_offset * gates_hidden_size Bi = init_net.Slice(B, name + Bi, starts=[bias_offset + 0 * gates_hidden_size], ends =[bias_offset + 1 * gates_hidden_size]) Br = init_net.Slice(B, name + Br, starts=[bias_offset + 1 * gates_hidden_size], ends =[bias_offset + 2 * gates_hidden_size]) W_ = init_net.Slice(W, name + W_, starts=[weight_offset + 0 * gates_hidden_size, 0], ends =[weight_offset + 1 * gates_hidden_size,-1]) R_ = init_net.Slice(R, name + R_, starts=[weight_offset + 0 * gates_hidden_size, 0], ends =[weight_offset + 1 * gates_hidden_size,-1]) initial_states_sliced = [] for initial_state, name_suffix in initial_states_and_names: initial_states_sliced.append( pred_mh.net.Slice(initial_state, name + name_suffix, starts=[direction_offset + 0, 0, 0], ends =[direction_offset + 1,-1,-1])) if direction_offset == 1: if sequence_lens is not None: seq_lens_for_reverse = sequence_lens else: input_shape = pred_mh.net.Shape(input_blob, name + '/input_shape') batch_size = pred_mh.net.Slice(input_shape, name + '/batch_size_slice', starts=[1], ends=[2]) seq_len = pred_mh.net.Slice(input_shape, name + '/seq_len_slice', starts=[0], ends=[1]) dummy_sequence_lens = pred_mh.net.Tile([seq_len, batch_size], name + '/dummy_sequence_lens', axis=0) pred_mh.net.Reshape(dummy_sequence_lens, [dummy_sequence_lens, cls.dummy_name()], shape=[-1]) seq_lens_for_reverse = pred_mh.net.Cast(dummy_sequence_lens, name + '/seq_lens_for_reverse', to=core.DataType.INT32) reform(Bi, Br, W_, R_, name, hidden_size, init_net) if direction_offset == 1: input = pred_mh.net.ReversePackedSegs( [input_blob, seq_lens_for_reverse], name + "/input-reversed") else: input = input_blob outputs = keep_outputs(list(make_cell( pred_mh, input, sequence_lens, initial_states_sliced, input_size, hidden_size, name, drop_states=False, forward_only=True, ))) if direction_offset == 1: outputs[0] = pred_mh.net.ReversePackedSegs( [outputs[0], seq_lens_for_reverse], name + "/output-reversed") return outputs @classmethod def _create_rnn_variant(cls, init_model, pred_model, n, opset_version): assert init_model is not None, "cannot convert RNNs without access to the full model" assert pred_model is not None, "cannot convert RNNs without access to the full model" attrs = dict(n.attrs) # make a copy, which is safe to mutate hidden_size = attrs.pop('hidden_size') direction = force_unicode(attrs.pop('direction', 'forward')) if n.op_type == 'RNN': activation = force_unicode(attrs.pop('activations', ('tanh',))[0].lower()) elif n.op_type == 'GRU': linear_before_reset = attrs.pop('linear_before_reset', 0) assert not attrs, "unsupported RNN attributes: " + str(attrs.keys()) assert direction in ['forward', 'bidirectional'], "unsupported backwards RNN/GRU/LSTM" if n.op_type in ['RNN', 'GRU']: input_blob, W, R, B, sequence_lens, initial_h = n.inputs elif n.op_type == 'LSTM': input_blob, W, R, B, sequence_lens, initial_h, initial_c = n.inputs if sequence_lens == "": sequence_lens = None for x in itertools.chain(init_model.graph.input, init_model.graph.value_info, pred_model.graph.input, pred_model.graph.value_info): if x.name == W: input_size = x.type.tensor_type.shape.dim[2].dim_value break else: raise RuntimeError("best-effort shape inference for RNN/GRU/LSTM failed") pred_mh = ModelHelper() init_net = core.Net("init-net") init_net.Reshape(W, [W, cls.dummy_name()], shape=[1,-1,0]) init_net.Squeeze(W, W, dims=[0]) init_net.Reshape(R, [R, cls.dummy_name()], shape=[1,-1,0]) init_net.Squeeze(R, R, dims=[0]) init_net.Reshape(B, [B, cls.dummy_name()], shape=[1,-1]) init_net.Squeeze(B, B, dims=[0]) if n.op_type == 'RNN': def reform(*args): pass def make_cell(*args, **kwargs): return rnn_cell.BasicRNN(*args, activation=activation, **kwargs) def make_rnn(direction_offset): return cls._make_rnn_direction( input_blob, B, W, R, [(initial_h, '/initial_h')], sequence_lens, pred_mh, init_net, input_size, hidden_size, 1, direction_offset, "/i2h_b", "/gates_t_b", "/i2h_w", "/gates_t_w", reform, make_cell, lambda x: x) elif n.op_type == 'GRU': def reform(Bi, Br, W_, R_, name, hidden_size, init_net): # caffe2 has a different order from onnx. We need to rearrange # z r h -> r z h reforms = ((W_, 'i2h_w', True, [(0,-1)]), (R_, 'gate_t_w', False, [(0,-1)]), (Bi, 'i2h_b', True, []), (Br, 'gate_t_b', False, [])) cls._rnn_reform_weights(reforms, name, hidden_size, init_net, ['update', 'reset', 'output'], [1, 0, 2]) def make_cell(*args, **kwargs): return gru_cell.GRU(*args, linear_before_reset=linear_before_reset, **kwargs) def make_rnn(direction_offset): return cls._make_rnn_direction( input_blob, B, W, R, [(initial_h, '/initial_h')], sequence_lens, pred_mh, init_net, input_size, hidden_size, 3, direction_offset, "_bias_i2h", "_bias_gates", "/i2h_w_pre", "/gates_t_w_pre", reform, make_cell, lambda x: x) elif n.op_type == 'LSTM': def reform(Bi, Br, W_, R_, name, hidden_size, init_net): # caffe2 has a different order from onnx. We need to rearrange # i o f c -> i f o c reforms = ((W_, 'i2h_w', True, [(0, -1)]), (R_, 'gates_t_w', True, [(0, -1)]), (Bi, 'i2h_b' , True, []), (Br, 'gates_t_b', True, [])) cls._rnn_reform_weights(reforms, name, hidden_size, init_net, ['input', 'output', 'forget', 'cell'], [0, 2, 1, 3]) def make_cell(*args, **kwargs): return rnn_cell.LSTM(*args, **kwargs) def make_rnn(direction_offset): return cls._make_rnn_direction( input_blob, B, W, R, [(initial_h, '/initial_h'), (initial_c, '/initial_c')], sequence_lens, pred_mh, init_net, input_size, hidden_size, 4, direction_offset, "/i2h_b", "/gates_t_b", "/i2h_w", "/gates_t_w", reform, make_cell, lambda x: [x[0], x[1], x[3]]) if direction == 'forward': outputs = make_rnn(0) # in the forward case, storage is shared between the # last outputs. We need to decouple them so that the # VariableLengthSequencePadding only mutates # n.outputs[0] for i in range(1, len(outputs)): pred_mh.net.Copy(outputs[i], n.outputs[i]) if sequence_lens is not None: pred_mh.net.VariableLengthSequencePadding( [outputs[0], sequence_lens], [outputs[0]]) pred_mh.net.ExpandDims([outputs[0]], [n.outputs[0]], dims=[1]) elif direction == 'bidirectional': outputs_f = make_rnn(0) outputs_b = make_rnn(1) concatted_output, _ = pred_mh.net.Concat( [outputs_f[0], outputs_b[0]], [cls.dummy_name(), cls.dummy_name()], axis=2) if sequence_lens is not None: pred_mh.net.VariableLengthSequencePadding( [concatted_output, sequence_lens], [concatted_output]) reshaped_output, _ = pred_mh.net.Reshape(concatted_output, [cls.dummy_name(), cls.dummy_name()], shape=[0,0,-1,2]) pred_mh.net.Transpose(reshaped_output, n.outputs[0], axes=[0,2,1,3]) for i in range(1, len(n.outputs)): pred_mh.net.Concat([outputs_f[i], outputs_b[i]], [n.outputs[i], cls.dummy_name()], axis=0) # We want to decide whether to put all of our weight-reshaping # operators in the init net or the predict net. We can put # them in the init net iff the inputs to those operators are # already available, either as graph initializers, or as the # output of other operators in the init net. The latter case # occurs, for example, when exporting from pytorch to onnx. # In most production use, we expect has_initializers to be # true. initializers = {i.name for i in init_model.graph.initializer} outputs = {output for node in init_model.graph.node for output in node.output} has_initializers = all(x in initializers or x in outputs for x in (W, R, B)) pred_ops = [] init_ops = [] (init_ops if has_initializers else pred_ops).extend(init_net.Proto().op) pred_ops.extend(pred_mh.Proto().op) return Caffe2Ops(pred_ops, init_ops, list(pred_mh.Proto().external_input)) @classmethod def _create_control_op(cls, init_model, pred_model, n, opset_version): control_inputs = [] if '__control_inputs' in n.attrs: control_inputs.extend(n.attrs['__control_inputs']) node = cls._common_onnx_node_to_caffe2_op(init_model, pred_model, n, opset_version) node.control_input.extend(control_inputs) return Caffe2Ops([node], [], []) @classmethod def _remove_ssa(cls, net, remap_dict): for op in net.op: for i, name in enumerate(op.output): if name in remap_dict: op.output[i] = remap_dict[name] for i, out in enumerate(net.external_output): if out in remap_dict: net.external_output[i] = remap_dict[out] @classmethod def _create_if(cls, init_model, pred_model, n, opset_version): ops = cls._create_control_op(init_model, pred_model, n, opset_version) assert ops[0][0].type == 'If' if_op = ops[0][0] then_net = else_net = None control_inputs = [] for arg in if_op.arg: if arg.name == 'then_net': then_net = arg.n if arg.name == 'else_net': else_net = arg.n if arg.name == '__control_inputs': control_inputs = arg.strings assert then_net and else_net then_net_outs = then_net.external_output else_net_outs = else_net.external_output op_outputs = if_op.output assert len(then_net_outs) == len(else_net_outs) assert len(else_net_outs) == len(op_outputs) for arg in if_op.arg: if arg.name == 'then_net': arg.n.external_input.extend(control_inputs) if arg.name == 'else_net': arg.n.external_input.extend(control_inputs) return ops @classmethod def _create_loop(cls, init_model, pred_model, n, opset_version): ops = cls._create_control_op(init_model, pred_model, n, opset_version) assert ops[0][0].type == 'ONNXWhile' while_op = ops[0][0] while_op.arg.extend([caffe2.python.utils.MakeArgument('has_trip_count', True)]) while_op.arg.extend([caffe2.python.utils.MakeArgument('has_cond', True)]) while_op.arg.extend([caffe2.python.utils.MakeArgument('disable_scopes', True)]) control_inputs = [] for arg in while_op.arg: if arg.name == '__control_inputs': control_inputs = arg.strings num_loop_carried_deps = 0 for arg in while_op.arg: if arg.name == 'body': num_loop_carried_deps = len(arg.n.external_input) - 2 arg.n.external_input.extend(control_inputs) while_op.arg.extend([ caffe2.python.utils.MakeArgument('num_loop_carried_deps', num_loop_carried_deps) ]) return ops @classmethod def _substitute_raw_value(cls, tp, raw_values_dict): if tp.HasField('raw_data') and tp.raw_data == bytes(b'__EXTERNAL'): if tp.name not in raw_values_dict: raise RuntimeError('TensorProto for value {} referenced raw data but it was not found!'.format(tp.name)) else: tp.raw_data = raw_values_dict[tp.name] @classmethod def _visit_and_substitute_raw_values(cls, nodes, raw_values_dict): for node in nodes: for attr in node.attribute: if attr.HasField('t'): cls._substitute_raw_value(attr.t, raw_values_dict) for t in attr.tensors: cls._substitute_raw_value(t, raw_values_dict) if attr.HasField('g'): cls._visit_and_substitute_raw_values(attr.g.node, raw_values_dict) for g in attr.graphs: cls._visit_and_substitute_raw_values(g.node, raw_values_dict) @classmethod def _external_value_resolution_pass(cls, model, raw_values_dict): for init in model.graph.initializer: cls._substitute_raw_value(init, raw_values_dict) cls._visit_and_substitute_raw_values(model.graph.node, raw_values_dict) @classmethod def _direct_initialize_parameters(cls, initializer, ws, device_option): for tp in initializer: ws.FeedBlob(tp.name, onnx.numpy_helper.to_array(tp), device_option) @classmethod def _direct_initialize_inputs(cls, inputs, initialized, ws, device_option): for value_info in inputs: if value_info.name in initialized: continue shape = list(d.dim_value for d in value_info.type.tensor_type.shape.dim) ws.FeedBlob( value_info.name, np.ones(shape, dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[value_info.type.tensor_type.elem_type]), device_option) @staticmethod def optimize_onnx(input, init=False, predict=False): passes = ['fuse_consecutive_transposes', 'eliminate_nop_transpose', 'fuse_transpose_into_gemm', 'lift_lexical_references'] if init: passes.append('split_init') if predict: passes.append('split_predict') try: out = onnx.optimizer.optimize(input, passes) except AttributeError: warnings.warn("OptimizerWarning: optimizer module not found in ONNX version {}".format(onnx.__version__)) # ONNX does no ship onnx.optimizer since version 1.9+ import onnxoptimizer out = onnxoptimizer.optimize(input, passes) return out @classmethod def prepare_zip_archive(cls, file, device='CPU', **kwargs): with zipfile.ZipFile(file, mode='r') as z: with z.open('__MODEL_PROTO', 'r') as f: model = onnx.load(f); blob_names = set(z.namelist()) - set('__MODEL_PROTO') # TODO: make this more efficient raw_values_dict = {} for name in blob_names: with z.open(name, 'r') as blob_file: raw_values_dict[name] = blob_file.read() return cls.prepare(model, device, raw_values_dict=raw_values_dict, **kwargs) @classmethod def prepare(cls, model, device='CPU', raw_values_dict=None, **kwargs): ''' For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph, for example, if "img" is the input blob for the predict_net, we require that in init_graph and in initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since there is no way we can know which blob is the input of the predict_graph. ''' if not kwargs.pop('no_check_UNSAFE', False): super(Caffe2Backend, cls).prepare(model, device, **kwargs) opset_version = None for imp in model.opset_import: if not imp.HasField("domain") or imp.domain == "": opset_version = imp.version if imp.version > cls._known_opset_version: warnings.warn("This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}. We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail.".format(cls._known_opset_version, imp.version)) else: warnings.warn("Unrecognized operator set {}".format(imp.domain)) if opset_version is None: if model.ir_version >= 0x00000003: raise RuntimeError("Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)") else: opset_version = 1 # Prior to onnx version update to onnx-1.8.0, errors caused by failures in # in the onnx shape inference call were being supressed. Hence a try-catch block # is added around the infer_shapes call to avoid these failures and preserve status try: model = onnx.shape_inference.infer_shapes(model) except RuntimeError: warnings.warn("ShapeInferenceWarning: Inferred shape and existing shape differ in rank") ws = Workspace() device_option = get_device_option(Device(device)) init_net, predict_net = cls._onnx_model_to_caffe2_net(model, device, opset_version, False) if raw_values_dict: cls._external_value_resolution_pass(model, raw_values_dict) # Directly load initializer data into blobs in workspace cls._direct_initialize_parameters( model.graph.initializer, ws, device_option, ) initialized = {init.name for init in model.graph.initializer} cls._direct_initialize_inputs( model.graph.input, initialized, ws, device_option, ) uninitialized = [value_info.name for value_info in model.graph.input if value_info.name not in initialized] retval = Caffe2Rep(init_net, predict_net, ws, uninitialized) return retval @classmethod # TODO: This method needs a refactor for clarity def _onnx_node_to_caffe2_op(cls, init_model, pred_model, node_def, opset_version): cbackend = C.Caffe2Backend(cls._dummy_name) if cbackend.support_onnx_import(node_def.op_type): # extract value infos from pred model (value infos of # node's inputs that are in init model should be all # available in pred model) value_infos = [] for name in node_def.input: if pred_model is not None: for vi in itertools.chain(pred_model.graph.input, pred_model.graph.output, pred_model.graph.value_info): if vi.name == name: value_infos.append(vi.SerializeToString()) op_strs = cbackend.convert_node(node_def.SerializeToString(), value_infos, opset_version) init_ops = [] for s in op_strs[0]: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) init_ops.append(op) ops = [] for s in op_strs[1]: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) ops.append(op) return Caffe2Ops(ops, init_ops, []) if node_def.op_type in cls._special_operators: translator = getattr(cls, cls._special_operators[node_def.op_type]) else: translator = cls._common_onnx_node_to_caffe2_op ops = translator(init_model, pred_model, OnnxNode(node_def), opset_version) if isinstance(ops, Caffe2Ops): return ops if not isinstance(ops, collections.abc.Iterable): ops = [ops] return Caffe2Ops(ops, [], []) _broadcast_operators = { 'Add', 'Sub', } @classmethod def _common_onnx_node_to_caffe2_op(cls, init_model, pred_model, onnx_node, opset_version): """ This translator performs the basic translation of ONNX nodes into Caffe2 operators. Besides doing a straightforward marshalling from one format to another, it also does these extra things: - Renames operators based on '_renamed_operators' - Renames attributes based on '_global_renamed_attrs' and '_per_op_renamed_attrs' If you're writing a custom translator, consider calling this first, and then fixing things up further. """ c2_op = caffe2_pb2.OperatorDef() c2_op.input.extend(onnx_node.inputs) c2_op.output.extend(onnx_node.outputs) c2_op.name = onnx_node.name onnx_op_type = onnx_node.op_type broken_version = cls._broken_operators.get(onnx_op_type, float('Inf')) if broken_version <= opset_version: raise ValueError( "Don't know how to translate op {} in ONNX operator set v{} (I only support prior to v{})".format(onnx_op_type, opset_version, broken_version)) c2_op.type = cls._renamed_operators.get(onnx_op_type, onnx_op_type) if not core.IsOperator(c2_op.type): raise ValueError( "Don't know how to translate op {}".format(onnx_op_type)) def kmap(k): if (onnx_op_type in cls._per_op_renamed_attrs and k in cls._per_op_renamed_attrs[onnx_op_type]): return cls._per_op_renamed_attrs[onnx_op_type][k] if k in cls._global_renamed_attrs: return cls._global_renamed_attrs[k] return k c2_op.arg.extend(onnx_node.attrs.caffe2(kmap=kmap)) if opset_version < 7: # onnx opset 7 and newest caffe2 have adopted full onnx broadcast semantics # so we don't need this hack anymore if c2_op.type in cls._broadcast_operators: already_broadcast = False for arg in c2_op.arg: if arg.name == 'broadcast': already_broadcast = True if not already_broadcast: c2_op.arg.extend([caffe2.python.utils.MakeArgument('broadcast', 1)]) return c2_op @staticmethod def _all_names_in_graph(graph): if graph is None: return set() names = set() names.update(value_info.name for value_info in graph.input) names.update(value_info.name for value_info in graph.output) for node in graph.node: names.update(node.input) names.update(node.output) return names @classmethod def _graph_to_net(cls, onnx_graph, opset_version): net = caffe2_pb2.NetDef() for node in onnx_graph.node: try: c2ops = cls._onnx_node_to_caffe2_op( None, None, node, opset_version) except Exception as e: print('ONNX FATAL:', e) continue net.op.extend(c2ops.init_ops) net.op.extend(c2ops.ops) net.external_input.extend(c2ops.interface_blobs) net.external_output.extend( value_info.name for value_info in onnx_graph.output) net.external_input.extend( value_info.name for value_info in onnx_graph.input) return net @classmethod def _onnx_model_to_caffe2_net(cls, onnx_model, device, opset_version, include_initializers): device_option = get_device_option(Device(device)) # Prior to onnx version update to onnx-1.8.0, errors caused by failures in # in the onnx shape inference call were being supressed. Hence a try-catch block # is added around the infer_shapes call to avoid these failures and preserve status try: onnx_model = onnx.utils.polish_model(onnx_model) except RuntimeError: warnings.warn("ShapeInferenceWarning: Inferred shape and existing shape differ in rank") except AttributeError: warnings.warn("ShapeInferenceWarning: utils module not found in ONNX version {}".format(onnx.__version__)) # Optimizer module has been removed in ONNX-1.9 or later, warn caller if that is the case try: init_model = cls.optimize_onnx(onnx_model, init=True) pred_model = cls.optimize_onnx(onnx_model, predict=True) except ModuleNotFoundError: warnings.warn("OptimizerWarning: onnxoptimizer module not installed. " "init_model and pred_model models will not be splitted, which can cause a runtime error") init_model = onnx_model pred_model = onnx_model init_net = caffe2_pb2.NetDef() pred_net = caffe2_pb2.NetDef() init_net.name = onnx_model.graph.name + '_init' pred_net.name = onnx_model.graph.name + '_predict' if include_initializers: init_net.op.extend(cls._create_tensor_filling_op(tp) for tp in onnx_model.graph.initializer) cls._dummy_name.reset(cls._all_names_in_graph(init_model.graph) | cls._all_names_in_graph(pred_model.graph)) errors = [] for net, model in ( (init_net, init_model), (pred_net, pred_model) ): net.device_option.CopyFrom(device_option) for node in model.graph.node: try: c2ops = cls._onnx_node_to_caffe2_op( init_model, pred_model, node, opset_version) except Exception as e: msg = 'Error while processing node: {}. Exception: {}'.format(node, e) errors.append(msg) print('ONNX FATAL:', msg, file=sys.stderr) continue init_net.op.extend(c2ops.init_ops) net.op.extend(c2ops.ops) net.external_input.extend(c2ops.interface_blobs) net.external_output.extend( value_info.name for value_info in model.graph.output) net.external_input.extend( value_info.name for value_info in model.graph.input) if len(errors) > 0: raise RuntimeError( "ONNX conversion failed, encountered {} errors:\n\n{}".format( len(errors), "\n\n".join(errors))) return init_net, pred_net # wrapper for backwards compatibility @classmethod def onnx_graph_to_caffe2_net(cls, model, device="CPU", opset_version=_known_opset_version): return cls._onnx_model_to_caffe2_net(model, device=device, opset_version=opset_version, include_initializers=True) @classmethod def supports_device(cls, device_str): device = Device(device_str) if device.type == DeviceType.CPU: return True elif core.IsGPUDeviceType(device.type): return workspace.has_gpu_support return False @classmethod def is_compatible(cls, model, device='CPU', **kwargs): if hasattr(super(Caffe2Backend, cls), 'is_compatible') \ and callable(super(Caffe2Backend, cls).is_compatible): if not super(Caffe2Backend, cls).is_compatible(model, device, **kwargs): return False # TODO: should have an unspported list of operators, be optimistic for now return True prepare = Caffe2Backend.prepare prepare_zip_archive = Caffe2Backend.prepare_zip_archive run_node = Caffe2Backend.run_node run_model = Caffe2Backend.run_model supports_device = Caffe2Backend.supports_device # noqa is_compatible = Caffe2Backend.is_compatible
pytorch-master
caffe2/python/onnx/backend.py
## @package onnx # Module caffe2.python.onnx.error class BaseException(Exception): pass class Unsupported(BaseException): pass
pytorch-master
caffe2/python/onnx/error.py
## @package onnx # Module caffe2.python.onnx.frontend """Caffe2 Protobuf to ONNX converter To run this, you will need to have Caffe2 installed as well. """ import collections import itertools import logging import re from caffe2.python import core as caffe2_core from onnx import (checker, helper, numpy_helper, mapping, GraphProto, NodeProto, TensorProto, OperatorSetIdProto) from onnx.helper import make_tensor_value_info, make_model import numpy as np from caffe2.python.onnx.helper import c2_native_run_net import caffe2.python._import_c_extension as C logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class Caffe2Frontend(object): # This number controls the semantics of the operators we target. Whenever # ONNX makes a BC breaking change to semantics of operators, having this set # to an accurate number will prevent our models form exporting. However, # we should strive to keep this up-to-date as much as possible. target_opset_version = 9 _renamed_operators = { 'SpatialBN': 'BatchNormalization', 'Conv1D': 'Conv', 'Conv2D': 'Conv', 'Conv3D': 'Conv', 'ConvTranspose1D': 'ConvTranspose', 'ConvTranspose2D': 'ConvTranspose', 'ConvTranspose3D': 'ConvTranspose', 'MaxPool1D': 'MaxPool', 'MaxPool2D': 'MaxPool', 'MaxPool3D': 'MaxPool', 'AveragePool1D': 'AveragePool', 'AveragePool2D': 'AveragePool', 'AveragePool3D': 'AveragePool', } # caffe2 arguments that are completely removed in onnx _blocklist_caffe2_args = { 'order': {b'NCHW'}, 'cudnn_exhaustive_search': {0, 1}, 'exhaustive_search': {0, 1}, 'use_cudnn': {0, 1}, } _global_renamed_args = { 'kernels': 'kernel_shape', } _per_op_renamed_args = { 'Squeeze': {'dims': 'axes'}, 'Transpose': {'axes': 'perm'}, } _special_operators = {} # Dummy name generator _dummy_name = C.DummyName() @classmethod def dummy_name(cls): return cls._dummy_name.new_dummy_name() @classmethod def _common_caffe2_arg_to_onnx_attr(cls, op_def, arg): # name op_type = op_def.type name = cls._global_renamed_args.get(arg.name, arg.name) if op_type in cls._per_op_renamed_args: # Per-op attribute renames override the global attribute renames name = cls._per_op_renamed_args[op_type].get(arg.name, name) # value if arg.HasField('f'): value = arg.f elif arg.HasField('i'): value = arg.i elif arg.HasField('s'): value = arg.s elif arg.floats: value = arg.floats elif arg.ints: value = arg.ints elif arg.strings: value = arg.strings else: raise ValueError('Could not find data field in arg: {}'.format(arg)) if name in cls._blocklist_caffe2_args: assert value in cls._blocklist_caffe2_args[arg.name] return None return helper.make_attribute(name, value) @classmethod def caffe2_arg_to_onnx_attr(cls, op_def, arg): return cls._common_caffe2_arg_to_onnx_attr(op_def, arg) @classmethod def _common_caffe2_op_to_onnx_node(cls, op_def, shapes): node_def = NodeProto() node_def.name = op_def.name node_def.op_type = cls._renamed_operators.get(op_def.type, op_def.type) node_def.input.extend(op_def.input) node_def.output.extend(op_def.output) attrs = filter(None, [cls.caffe2_arg_to_onnx_attr(op_def, arg) for arg in op_def.arg]) node_def.attribute.extend(attrs) return node_def @classmethod def caffe2_op_to_onnx_node(cls, op_def, shapes): if C.support_onnx_export(op_def.type): node_strs, tensor_strs = C.export_to_onnx(cls._dummy_name, op_def.SerializeToString(), shapes) nodes = [] for s in node_strs: node = NodeProto() node.ParseFromString(s) nodes.append(node) const_tensors = [] for s in tensor_strs: tensor = TensorProto() tensor.ParseFromString(s) const_tensors.append(tensor) return nodes, const_tensors elif op_def.type in cls._special_operators: translator = getattr(cls, cls._special_operators[op_def.type]) else: translator = cls._common_caffe2_op_to_onnx_node nodes = translator(op_def, shapes) const_tensors = [] if isinstance(nodes, tuple): nodes, const_tensors = nodes if not isinstance(nodes, collections.abc.Iterable): nodes = [nodes] return nodes, const_tensors @staticmethod def _all_names_in_net(net): if net is None: return set() names = set() names.update(net.external_input) names.update(net.external_output) for op in net.op: names.update(op.input) names.update(op.output) return names @staticmethod def _extract_value_info(tensor): return make_tensor_value_info( name=tensor.name, elem_type=tensor.data_type, shape=tensor.dims) @classmethod def caffe2_net_to_onnx_graph(cls, predict_net, init_net=None, value_info=None): if value_info is None: value_info = {} if not isinstance(value_info, dict): raise ValueError('Please pass value_info as a ' 'name -> (type, shape) dictionary') cls._filter_fake_init(init_net, value_info) cls._ssa_rewrite(predict_net, init_net, value_info) if init_net: initializer = cls.caffe2_init_net_to_initializer(init_net) value_info.update({init.name: (init.data_type, init.dims) for init in initializer}) else: initializer = [] # Check if value_info contains the types/shapes of all the blobs, in # which case we don't need to infer them by running the net. run_native_net = False for op in predict_net.op: for name in itertools.chain(op.input, op.output): if name not in value_info: run_native_net = True break # Check whether we have got type shape info of all input missing = (set(list(predict_net.external_input)) - set(value_info.keys())) if missing: raise RuntimeError('Could not find value info of inputs: {}'.format( ', '.join(missing))) ws = None outputs = None if run_native_net: inputs = {} for name in predict_net.external_input: elem_type, shape = value_info[name] inputs[name] = np.random.randn(*shape).astype( mapping.TENSOR_TYPE_TO_NP_TYPE[elem_type]) ws, outputs = c2_native_run_net( init_net, predict_net, inputs) for name in predict_net.external_output: output = outputs[name] elem_type = mapping.NP_TYPE_TO_TENSOR_TYPE[output.dtype] shape = output.shape value_info[name] = (elem_type, shape) graph_def = GraphProto() graph_def.name = predict_net.name graph_def.initializer.extend(initializer) # This is a mapping from Caffe2 names to ONNX names graph_def.input.extend( make_tensor_value_info( name=name, elem_type=value_info[name][0], shape=value_info[name][1]) for name in predict_net.external_input) cls._dummy_name.reset(cls._all_names_in_net(predict_net) | cls._all_names_in_net(init_net)) for op in predict_net.op: shapes = {} for name in itertools.chain(op.input, op.output): if ws: blob = ws.FetchBlob(name) if hasattr(blob, 'shape'): shapes[name] = blob.shape else: shapes[name] = value_info[name][1] nodes, const_tensors = cls.caffe2_op_to_onnx_node(op, shapes=shapes) graph_def.node.extend(nodes) graph_def.initializer.extend(const_tensors) graph_def.input.extend([cls._extract_value_info(tensor) for tensor in const_tensors]) all_output = set(sum((list(node.output) for node in graph_def.node), [init.name for init in graph_def.initializer])) redundant_output = set(vi.name for vi in graph_def.output) - all_output if redundant_output: logger.warning( 'There are graph output not produced by any node or initializer: {}' '! Will drop them.'.format(', '.join(redundant_output))) graph_def.output.extend( make_tensor_value_info( name=name, elem_type=value_info[name][0], shape=value_info[name][1]) for name in predict_net.external_output if name in all_output) return graph_def @classmethod def caffe2_init_net_to_initializer(cls, init_net): ws, _ = c2_native_run_net(init_net=None, predict_net=init_net, inputs=[]) output_names = [] for op in init_net.op: output_names.extend(op.output) initializer = [numpy_helper.from_array(ws.FetchBlob(name), name=name) for name in sorted(set(output_names))] return initializer @classmethod def _filter_fake_init(cls, init_net, value_info): if init_net: fake_inits = [op for op in init_net.op if len(op.output) == 1 and op.output[0] in value_info and re.match('GivenTensor.*Fill|ConstantFill', op.type)] for fake_init in fake_inits: init_net.op.remove(fake_init) del fake_inits[:] del fake_inits @classmethod def ssa_rewrite(cls, net, init_net, value_info): return cls._ssa_rewrite(net, init_net, value_info) @classmethod def _ssa_rewrite(cls, net, init_net, value_info): def ssa_name(name, version, version_cnt=None): if version == 0: return name if version_cnt and len(version_cnt.get(name, {})) <= 1: return name return '{}_{}'.format(name, version) if init_net: for op in init_net.op: assert re.match('GivenTensor.*Fill', op.type), "type is {}, \n{}".format(op.type, op) assert len(op.output) == 1 ssa, blob_versions = caffe2_core.get_ssa(net) version_cnt = {} versioned_blobs = [] for versioned_input, versioned_output in ssa: versioned_blobs += versioned_input versioned_blobs += versioned_output for (name, version) in versioned_blobs: if name not in version_cnt: version_cnt[name] = {version} else: version_cnt[name].add(version) assert len(net.op) == len(ssa) for op, (versioned_inputs, versioned_outputs) in zip(net.op, ssa): op.input[:] = [ssa_name(name, version, version_cnt) for name, version in versioned_inputs] op.output[:] = [ssa_name(name, version, version_cnt) for name, version in versioned_outputs] net.external_output[:] = [ssa_name(name, blob_versions[name], version_cnt) for name in net.external_output] @classmethod def caffe2_net_to_onnx_model(cls, *args, **kwargs): opset_id = OperatorSetIdProto() opset_id.domain = '' # ONNX default domain opset_id.version = cls.target_opset_version model = make_model(cls.caffe2_net_to_onnx_graph(*args, **kwargs), opset_imports=[opset_id], # current supported opset version producer_name='onnx-caffe2', # producer name ) checker.check_model(model) return model caffe2_net_to_onnx_graph = Caffe2Frontend.caffe2_net_to_onnx_graph caffe2_net_to_onnx_model = Caffe2Frontend.caffe2_net_to_onnx_model caffe2_init_net_to_initializer = Caffe2Frontend.caffe2_init_net_to_initializer ssa_rewrite = Caffe2Frontend.ssa_rewrite
pytorch-master
caffe2/python/onnx/frontend.py
pytorch-master
caffe2/python/onnx/__init__.py
## @package onnx # Module caffe2.python.onnx.helper from caffe2.proto import caffe2_pb2 from onnx.backend.base import namedtupledict from caffe2.python.onnx.workspace import Workspace import logging import time log = logging.getLogger(__name__) def c2_native_run_op(op_def, inputs): ws = Workspace() if isinstance(inputs, dict): for key, value in inputs.items(): ws.FeedBlob(key, value, op_def.device_option) else: assert(len(op_def.input) == len(inputs)) for key, value in zip(op_def.input, inputs): ws.FeedBlob(key, value, op_def.device_option) ws.RunOperatorOnce(op_def) output_names = op_def.output output_values = [ws.FetchBlob(name) for name in output_names] return ws, namedtupledict('Outputs', output_names)(*output_values) def c2_native_run_net(init_net, predict_net, inputs, debug_arg=None): ws = Workspace() if init_net: ws.RunNetOnce(init_net) if isinstance(inputs, dict): for key, value in inputs.items(): ws.FeedBlob(key, value, predict_net.device_option) else: uninitialized = [input_name for input_name in predict_net.external_input if not ws.HasBlob(input_name)] if len(uninitialized) == len(inputs): for key, value in zip(uninitialized, inputs): ws.FeedBlob(key, value, predict_net.device_option) else: # If everything is initialized, # we just initialized the first len(inputs) external_input. # Added some extra logging to help debug sporadic sandcastle fails if len(inputs) > len(predict_net.external_input): print("c2_native_run_net assert. len(inputs)=", len(inputs), "len(predict_net.external_input)=", len(predict_net.external_input)) print("debug_arg: ", debug_arg) print("predict_net ", type(predict_net), ":", predict_net) print("inputs ", type(inputs), ":", inputs) assert(len(inputs) <= len(predict_net.external_input)) for i in range(len(inputs)): ws.FeedBlob(predict_net.external_input[i], inputs[i], predict_net.device_option) ws.RunNetOnce(predict_net) output_names = predict_net.external_output output_values = [ws.FetchBlob(name) for name in output_names] return ws, namedtupledict('Outputs', output_names)(*output_values) def load_caffe2_net(file): net = caffe2_pb2.NetDef() with open(file, "rb") as f: net.ParseFromString(f.read()) return net def save_caffe2_net(net, file, output_txt=False): with open(file, "wb") as f: f.write(net.SerializeToString()) if output_txt: with open(file + "txt", "w") as f: f.write(str(net)) def benchmark_caffe2_model(init_net, predict_net, warmup_iters=3, main_iters=10, layer_details=True): ''' Run the benchmark net on the target model. Return the execution time per iteration (millisecond). ''' ws = Workspace() if init_net: ws.RunNetOnce(init_net) ws.CreateNet(predict_net) results = ws.BenchmarkNet(predict_net.name, warmup_iters, main_iters, layer_details) del ws return results[0] def benchmark_pytorch_model(model, inputs, training=False, warmup_iters=3, main_iters=10, verbose=False): ''' Run the model several times, and measure the execution time. Return the execution time per iteration (millisecond). ''' for _i in range(warmup_iters): model(*inputs) total_pytorch_time = 0.0 for _i in range(main_iters): ts = time.time() model(*inputs) te = time.time() total_pytorch_time += te - ts log.info("The PyTorch model execution time per iter is {} milliseconds, " "{} iters per second.".format(total_pytorch_time / main_iters * 1000, main_iters / total_pytorch_time)) return total_pytorch_time * 1000 / main_iters
pytorch-master
caffe2/python/onnx/helper.py
## @package onnx # Module caffe2.python.onnx.workspace import uuid from caffe2.python import workspace # Separating out the context manager part so that users won't # (mis-)use Workspace instances as context managers class _WorkspaceCtx(object): def __init__(self, workspace_id): self.workspace_id = workspace_id # A stack, so that the context manager is reentrant. self.workspace_stack = [] def __enter__(self): self.workspace_stack.append(workspace.CurrentWorkspace()) workspace.SwitchWorkspace(self.workspace_id, create_if_missing=True) def __exit__(self, exc_type, exc_value, traceback): w = self.workspace_stack.pop() # Strictly speaking, create_if_missing here is unnecessary, since a user # is not supposed to be allowed to destruct a workspace while we're in # it. However, empirically, it has been observed that during abnormal # shutdown, Caffe2 deletes its default workspace fairly early in the # final calls to destructors. In this case, we may attempt to exit # to a default workspace which no longer exists. create_if_missing=True # will (harmlessly) recreate the workspace before we finally quit.) workspace.SwitchWorkspace(w, create_if_missing=True) class Workspace(object): """ An object representing a Caffe2 workspace. It is a context manager, so you can say 'with workspace:' to use the represented workspace as your global workspace. It also supports every method supported by caffe2.python.workspace, but instead of running these operations in the global workspace, it runs them in the workspace represented by this object. When this object goes dead, the workspace (and all nets and blobs within it) are freed. Why do we need this class? Caffe2's workspace model is very "global state" oriented, in that there is always some ambient global workspace you are working in which holds on to all of your networks and blobs. This class makes it possible to work with workspaces more locally, and without forgetting to deallocate everything in the end. """ def __init__(self): # Caffe2 (apparently) doesn't provide any native method of generating # a fresh, unused workspace, so we have to fake it by generating # a unique ID and hoping it's not used already / will not be used # directly in the future. self._ctx = _WorkspaceCtx(str(uuid.uuid4())) def __getattr__(self, attr): def f(*args, **kwargs): with self._ctx: return getattr(workspace, attr)(*args, **kwargs) return f def __del__(self): # NB: This is a 'self' call because we need to switch into the workspace # we want to reset before we actually reset it. A direct call to # workspace.ResetWorkspace() will reset the ambient workspace, which # is not want we want. self.ResetWorkspace()
pytorch-master
caffe2/python/onnx/workspace.py
# @package onnx # Module caffe2.python.onnx.backend_rep from caffe2.python import core from caffe2.proto import caffe2_pb2 from onnx.backend.base import BackendRep, namedtupledict class Caffe2Rep(BackendRep): def __init__(self, init_net, predict_net, workspace, uninitialized): super(Caffe2Rep, self).__init__() self.init_net = init_net self.predict_net = predict_net self.workspace = workspace # The list of uninitialized external_inputs in workspace, we need this to # pair the name with given sequence inputs. self.uninitialized = uninitialized self.nets_created = False self.ran_init_net = False @property def _name_scope(self): if self.predict_net.device_option.device_type == caffe2_pb2.CUDA: return 'gpu_{}'.format(self.predict_net.device_option.device_id) return '' def run(self, inputs, **kwargs): super(Caffe2Rep, self).run(inputs, **kwargs) with core.DeviceScope(self.predict_net.device_option): if isinstance(inputs, dict): with core.NameScope(self._name_scope): for key, value in inputs.items(): self.workspace.FeedBlob(key, value) elif isinstance(inputs, list) or isinstance(inputs, tuple): if len(self.uninitialized) != len(inputs): raise RuntimeError('Expected {} values for uninitialized ' 'graph inputs ({}), but got {}.'.format( len(self.uninitialized), ', '.join(self.uninitialized), len(inputs))) for i, value in enumerate(inputs): # namescope already baked into protobuf self.workspace.FeedBlob(self.uninitialized[i], value) else: # single input self.workspace.FeedBlob(self.uninitialized[0], inputs) if not self.nets_created: self.workspace.CreateNet(self.init_net) self.workspace.CreateNet(self.predict_net) self.nets_created = True if not self.ran_init_net: self.workspace.RunNet(self.init_net.name) self.ran_init_net = True self.workspace.RunNet(self.predict_net.name) output_values = [] for name in self.predict_net.external_output: try: output_values.append(self.workspace.FetchBlob(name)) except Exception: output_values.append(self.workspace.FetchInt8Blob(name)) return namedtupledict('Outputs', self.predict_net.external_output)(*output_values)
pytorch-master
caffe2/python/onnx/backend_rep.py
## @package onnx #Module caffe2.python.onnx.onnxifi """ ONNXIFI a Caffe2 net """ from caffe2.proto import caffe2_pb2 import caffe2.python._import_c_extension as C def onnxifi_set_option(option_name, option_value): """ Set onnxifi option """ return C.onnxifi_set_option(option_name, str(option_value)) def onnxifi_get_option(option_name): """ Get onnxifi option """ return C.onnxifi_get_option(option_name) def onnxifi_caffe2_net( pred_net, input_shapes, max_batch_size=1, max_seq_size=1, debug=False, use_onnx=True, merge_fp32_inputs_into_fp16=False, adjust_batch=True, block_list=None, weight_names=None, net_ssa_rewritten=False, timeout=0): """ Transform the caffe2_net by collapsing ONNXIFI-runnable nodes into Onnxifi c2 ops """ shape_hints = caffe2_pb2.TensorBoundShapes() if type(input_shapes) is caffe2_pb2.TensorBoundShapes: shape_hints = input_shapes elif type(input_shapes) is dict: for k, v in input_shapes.items(): tbs = caffe2_pb2.TensorBoundShape() tbs.name = k tbs.shape.dims.extend(v) tbs.dim_type.extend([caffe2_pb2.TensorBoundShape.CONSTANT] * len(tbs.shape.dims)) tbs.dim_type[0] = caffe2_pb2.TensorBoundShape.BATCH shape_hints.shapes.extend([tbs]) shape_hints.max_batch_size = max_batch_size shape_hints.max_feature_len = max_seq_size pred_net_str = C.onnxifi(pred_net.SerializeToString(), shape_hints.SerializeToString(), block_list if block_list else [], weight_names if weight_names is not None else [], max_batch_size, max_seq_size, timeout, adjust_batch, debug, merge_fp32_inputs_into_fp16, net_ssa_rewritten, use_onnx) pred_net_cut = caffe2_pb2.NetDef() pred_net_cut.ParseFromString(pred_net_str) return pred_net_cut
pytorch-master
caffe2/python/onnx/onnxifi.py
import numpy as np import time import unittest import onnx import onnx.defs from onnx.backend.base import namedtupledict from onnx.helper import make_node, make_graph, make_tensor_value_info, make_model from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace from caffe2.python.models.download import ModelDownloader from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net from caffe2.python.onnx.tests.test_utils import TestCase ONNXIFI_DATATYPE_FLOAT32 = 1 def _print_net(net): for i in net.external_input: print("Input: {}".format(i)) for i in net.external_output: print("Output: {}".format(i)) for op in net.op: print("Op {}".format(op.type)) for x in op.input: print(" input: {}".format(x)) for y in op.output: print(" output: {}".format(y)) class OnnxifiTest(TestCase): @unittest.skip("Need ONNXIFI backend support") def test_relu_graph(self): batch_size = 1 X = np.random.randn(batch_size, 1, 3, 2).astype(np.float32) graph_def = make_graph( [make_node("Relu", ["X"], ["Y"])], name="test", inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])], outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])]) model_def = make_model(graph_def, producer_name='relu-test') op = core.CreateOperator( "Onnxifi", ["X"], ["Y"], onnx_model=model_def.SerializeToString(), input_names=["X"], output_names=["Y"], output_shape_hint_0=[ONNXIFI_DATATYPE_FLOAT32, batch_size, 1, 3, 2]) workspace.FeedBlob("X", X) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob("Y") np.testing.assert_almost_equal(Y, np.maximum(X, 0)) @unittest.skip("Need ONNXIFI backend support") def test_conv_graph(self): X = np.array([[[[0., 1., 2., 3., 4.], # (1, 1, 5, 5) input tensor [5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.], [20., 21., 22., 23., 24.]]]]).astype(np.float32) W = np.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights [1., 1., 1.], [1., 1., 1.]]]]).astype(np.float32) Y_without_padding = np.array([[[[54., 63., 72.], # (1, 1, 3, 3) output tensor [99., 108., 117.], [144., 153., 162.]]]]).astype(np.float32) graph_def = make_graph( [make_node( 'Conv', inputs=['X', 'W'], outputs=['Y'], kernel_shape=[3, 3], # Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1 pads=[0, 0, 0, 0], )], name="test", inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [1, 1, 5, 5]), make_tensor_value_info("W", onnx.TensorProto.FLOAT, [1, 1, 3, 3]), ], outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [1, 1, 3, 3])]) model_def = make_model(graph_def, producer_name='conv-test') # We intentional rewrite the input/output name so test that the # input/output binding of c2 op is positional op = core.CreateOperator( "Onnxifi", ["X0"], ["Y0"], onnx_model=model_def.SerializeToString(), initializers=["W", "W0"], input_names=["X"], output_names=["Y"], output_shape_hint_0=[ONNXIFI_DATATYPE_FLOAT32, 1, 1, 3, 3]) workspace.FeedBlob("X0", X) workspace.FeedBlob("W0", W) workspace.RunOperatorOnce(op) Y = workspace.FetchBlob("Y0") np.testing.assert_almost_equal(Y, Y_without_padding) class OnnxifiTransformTest(TestCase): def setUp(self): self.model_downloader = ModelDownloader() def _add_head_tail(self, pred_net, new_head, new_tail): orig_head = pred_net.external_input[0] orig_tail = pred_net.external_output[0] # Add head head = caffe2_pb2.OperatorDef() head.type = "Copy" head.input.append(new_head) head.output.append(orig_head) dummy = caffe2_pb2.NetDef() dummy.op.extend(pred_net.op) del pred_net.op[:] pred_net.op.extend([head]) pred_net.op.extend(dummy.op) pred_net.external_input[0] = new_head # Add tail tail = caffe2_pb2.OperatorDef() tail.type = "Copy" tail.input.append(orig_tail) tail.output.append(new_tail) pred_net.op.extend([tail]) pred_net.external_output[0] = new_tail @unittest.skip("Need ONNXIFI backend support") def test_resnet50_core(self): N = 1 repeat = 1 print("Batch size: {}, repeat inference {} times".format(N, repeat)) init_net, pred_net, _ = self.model_downloader.get_c2_model('resnet50') self._add_head_tail(pred_net, 'real_data', 'real_softmax') input_blob_dims = (N, 3, 224, 224) input_name = "real_data" device_option = core.DeviceOption(caffe2_pb2.CPU, 0) init_net.device_option.CopyFrom(device_option) pred_net.device_option.CopyFrom(device_option) for op in pred_net.op: op.device_option.CopyFrom(device_option) net_outputs = pred_net.external_output Y_c2 = None data = np.random.randn(*input_blob_dims).astype(np.float32) c2_time = 1 workspace.SwitchWorkspace("onnxifi_test", True) with core.DeviceScope(device_option): workspace.FeedBlob(input_name, data) workspace.RunNetOnce(init_net) workspace.CreateNet(pred_net) start = time.time() for _ in range(repeat): workspace.RunNet(pred_net.name) end = time.time() c2_time = end - start output_values = [workspace.FetchBlob(name) for name in net_outputs] Y_c2 = namedtupledict('Outputs', net_outputs)(*output_values) workspace.ResetWorkspace() # Fill the workspace with the weights with core.DeviceScope(device_option): workspace.RunNetOnce(init_net) # Cut the graph start = time.time() pred_net_cut = onnxifi_caffe2_net(pred_net, {input_name: input_blob_dims}, infer_shapes=True) del init_net, pred_net #_print_net(pred_net_cut) Y_trt = None input_name = pred_net_cut.external_input[0] print("C2 runtime: {}s".format(c2_time)) with core.DeviceScope(device_option): workspace.FeedBlob(input_name, data) workspace.CreateNet(pred_net_cut) end = time.time() print("Conversion time: {:.2f}s".format(end - start)) start = time.time() for _ in range(repeat): workspace.RunNet(pred_net_cut.name) end = time.time() trt_time = end - start print("Onnxifi runtime: {}s, improvement: {}%".format(trt_time, (c2_time - trt_time) / c2_time * 100)) output_values = [workspace.FetchBlob(name) for name in net_outputs] Y_trt = namedtupledict('Outputs', net_outputs)(*output_values) np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
pytorch-master
caffe2/python/onnx/test_onnxifi.py
## @package onnx # Module caffe2.python.onnx.bin.conversion import json from caffe2.proto import caffe2_pb2 import click from onnx import ModelProto from caffe2.python.onnx.backend import Caffe2Backend as c2 import caffe2.python.onnx.frontend as c2_onnx @click.command( help='convert caffe2 net to onnx model', context_settings={ 'help_option_names': ['-h', '--help'] } ) @click.argument('caffe2_net', type=click.File('rb')) @click.option('--caffe2-net-name', type=str, help="Name of the caffe2 net") @click.option('--caffe2-init-net', type=click.File('rb'), help="Path of the caffe2 init net pb file") @click.option('--value-info', type=str, help='A json string providing the ' 'type and shape information of the inputs') @click.option('-o', '--output', required=True, type=click.File('wb'), help='Output path for the onnx model pb file') def caffe2_to_onnx(caffe2_net, caffe2_net_name, caffe2_init_net, value_info, output): c2_net_proto = caffe2_pb2.NetDef() c2_net_proto.ParseFromString(caffe2_net.read()) if not c2_net_proto.name and not caffe2_net_name: raise click.BadParameter( 'The input caffe2 net does not have name, ' '--caffe2-net-name must be provided') c2_net_proto.name = caffe2_net_name or c2_net_proto.name if caffe2_init_net: c2_init_net_proto = caffe2_pb2.NetDef() c2_init_net_proto.ParseFromString(caffe2_init_net.read()) c2_init_net_proto.name = '{}_init'.format(caffe2_net_name) else: c2_init_net_proto = None if value_info: value_info = json.loads(value_info) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=c2_net_proto, init_net=c2_init_net_proto, value_info=value_info) output.write(onnx_model.SerializeToString()) @click.command( help='convert onnx model to caffe2 net', context_settings={ 'help_option_names': ['-h', '--help'] } ) @click.argument('onnx_model', type=click.File('rb')) @click.option('-o', '--output', required=True, type=click.File('wb'), help='Output path for the caffe2 net file') @click.option('--init-net-output', required=True, type=click.File('wb'), help='Output path for the caffe2 init net file') def onnx_to_caffe2(onnx_model, output, init_net_output): onnx_model_proto = ModelProto() onnx_model_proto.ParseFromString(onnx_model.read()) init_net, predict_net = c2.onnx_graph_to_caffe2_net(onnx_model_proto) init_net_output.write(init_net.SerializeToString()) output.write(predict_net.SerializeToString())
pytorch-master
caffe2/python/onnx/bin/conversion.py
pytorch-master
caffe2/python/onnx/bin/__init__.py
# @package onnx # Module caffe2.python.onnx.tests.onnx_backend_test import os import unittest import onnx.backend.test import caffe2.python.onnx.backend as c2 from caffe2.python import core core.SetEnginePref({}, {}) # This is a pytest magic variable to load extra plugins pytest_plugins = 'onnx.backend.test.report', backend_test = onnx.backend.test.BackendTest(c2, __name__) backend_test.exclude(r'(test_hardsigmoid' # Does not support Hardsigmoid. '|test_hardmax' # Does not support Hardmax. '|test_.*FLOAT16.*' # Does not support Cast on Float16. '|test_depthtospace.*' # Does not support DepthToSpace. '|test_reduce_l1.*' # Does not support ReduceL1. '|test_reduce_l2.*' # Does not support ReduceL2. '|test_reduce_log_sum.*' # Does not support ReduceLogSum. '|test_reduce_prod.*' # Does not support ReduceProd. '|test_reduce_sum_square.*' # Does not support ReduceSumSquare '|test_det.*' # Does not support Det '|test_range.*' # Does not support Range '|test_tile.*' # Tile's Caffe2 implementation needs some tweak '|test_lstm.*' # Seems LSTM case has some problem '|test_simple_rnn.*' # Seems simple RNN case has some problem '|test_gru.*' # Seems GRU case has some problem '|test_prelu.*' # PRelu is not compliant with ONNX yet '|test_operator_repeat.*' # Tile is not compliant with ONNX yet '|test_.*pool_.*same.*' # Does not support pool same. '|test_.*pool_.*ceil.*' # Does not support pool same. '|test_maxpool_with_argmax.*' # MaxPool outputs indices in different format. '|test_maxpool.*dilation.*' # MaxPool doesn't support dilation yet. '|test_maxpool.*uint8.*' # MaxPool doesn't support uint8 yet. '|test_convtranspose.*' # ConvTranspose needs some more complicated translation '|test_mvn.*' # MeanVarianceNormalization is experimental and not supported. '|test_dynamic_slice.*' # MeanVarianceNormalization is experimental and not supported. '|test_eyelike.*' # Needs implementation '|test_maxunpool.*' # Needs implementation '|test_acosh.*' # Needs implementation '|test_asinh.*' # Needs implementation '|test_atanh.*' # Needs implementation '|test_onehot.*' # Needs implementation '|test_scan.*' # Needs implementation '|test_isnan.*' # Needs implementation '|test_scatter.*' # Should be similar to ScatterAssign '|test_constantofshape_int.*' # Needs implementation '|test_shrink.*' # Needs implementation '|test_strnorm.*' # Needs implementation '|test_nonzero.*' # Needs implementation '|test_tfidfvectorizer.*' # Needs implementation '|test_top_k.*' # opset 10 is not supported yet '|test_resize.*' # opset 10 is not supported yet '|test_slice.*' # opset 10 is not supported yet '|test_.*qlinear.*' # Skip quantized op test '|test_.*quantize.*' # Skip quantized op test '|test_.*matmulinteger.*' # Skip quantized op test '|test_.*convinteger.*' # Skip quantized op test '|test_isinf.*' # Needs implementation '|test_mod.*' # Needs implementation '|test_nonmaxsuppression.*' # Needs implementation '|test_reversesequence.*' # Needs implementation '|test_roialign.*' # Needs implementation '|test_bitshift.*' # Needs implementation '|test_round.*' # Needs implementation '|test_cumsum.*' # Needs implementation '|test_clip.*' # opset 11 is not supported yet '|test_gather_elements.*' # opset 11 is not supported yet '|test_scatter.*' # opset 11 is not supported yet '|test_unique.*' # opset 11 is not supported yet '|test_gathernd.*' # opset 11 is not supported yet '|test_dropout_random.*' # opset 12 is not supported '|test_dropout_default.*' # opset 12 is not supported '|test_einsum.*' # opset 12 is not supported '|test_.*training.*' # training is not supported '|test_.*_loss.*' # training is not supported '|test_split_zero_size.*' # unsupported case '|test_constantofshape_int_shape_zero.*' # unsupported case '|test_constant_pad.*' # 1d pad is not supported '|test_edge_pad.*' # 1d pad is not supported '|test_reflect_pad.*' # 1d pad is not supported '|test_gemm_default_no_bias.*' # no bias is not supported '|test_gemm_default_scalar_bias.*' # incorrect type '|test_sequence_.*' # type sequence is not supported yet '|test_.*negative_ax.*' # negative axis is not supported yet '|test_.*negative_ind.*' # negative axis is not supported yet '|test_argmax_.*select_last_index.*' # unsupported case '|test_argmin_.*select_last_index_.*' # unsupported case '|test_celu.*' # unsupported case '|test_gathernd.*' # unsupported case '|test_greater_equal.*' # unsupported case '|test_less_equal.*' # unsupported case '|test_max_.*' # unsupported case '|test_min_.*' # unsupported case '|test_.*momentum_.*' # unsupported case '|test_sce.*' # unsupported case '|test_nllloss.*' # unsupported case '|test_unfoldtodepth.*' # unsupported case '|test_.*gradient.*' # no support for gradient op in c2-onnx '|test_.*adagrad.*' # no support for gradient op in c2-onnx '|test_.*loss.*' # no support for loss op in c2-onnx '|test_.*adam.*' # no support for adam op '|test_.*identity.*' # no support for adam op ')') # Quick patch to unbreak master CI, is working on the debugging. backend_test.exclude('(test_cast_.*' '|test_compress_.*' '|test_Conv1d_.*cuda' '|test_Conv3d_groups_cuda' '|test_rnn_seq_length' '|test_operator_add.*_cuda' '|test_operator_lstm_cuda' '|test_operator_rnn.*_cuda' '|test_lrn_default_cuda)') # Temporarily skip some ONNX backend tests with broadcasting. backend_test.exclude('(test_pow_bcast' '|test_pow_types.*' ')') # Temporarily skip some ONNX backend tests due to updates in opset 13. backend_test.exclude('(test_if_.*' # added support for sequence type inputs '|test_if_seq_.*' # added support for sequence type inputs '|test_logsoftmax_.*' # axis attr default value changed from 1 to -1 '|test_loop11_.*' # seg fault issue '|test_loop16_.*' # seg fault issue '|test_loop13_seq_.*' # no support for sequence inputs for scan input '|test_reduce_sum_.*' # axes is now an input (not attr), added noop_with_empty_axes '|test_softmax_.*' # axis attr default value changed from 1 to -1 '|test_split_variable_parts_.*' # axes is now an input (not attr) '|test_squeeze_.*' # axes is now an input (not attr) '|test_unsqueeze_.*' # axes is now an input (not attr) '|test_MaxPool1d_stride_padding_dilation_.*' '|test_MaxPool2d_stride_padding_dilation_.*' ')') # Temporarily skip some ONNX backend tests due to updates in opset 14. backend_test.exclude('(test_add_uint8_.*' # uint8 dtype added '|test_div_uint8_.*' # uint8 dtype added '|test_hardswish_.*' # new operator added '|test_mul_uint8_.*' # uint8 dtype added '|test_sub_uint8_.*' # uint8 dtype added '|test_tril_.*' # new operator added '|test_triu_.*' # new operator added '|test_identity_sequence_.*' # new operator added '|test_reshape_allowzero_reordered_.*' '|test_conv_with_autopad_same_.*' ')') # Unsupported ops in opset 15 backend_test.exclude('(test_bernoulli_.*' '|test_castlike_.*' '|test_optional_.*' '|test_shape_end_.*' '|test_shape_start_.*' '|test_identity_opt_*' '|test_loop16_seq_none_*' '|test_if_opt_*' ')') # Unsupported ops in opset 16 backend_test.exclude('(test_gridsample_.*' '|test_spacetodepth_.*' ')') # Unsupported ops in opset 17 backend_test.exclude('(test_layer_normalization_.*' '|test_blackmanwindow_.*' '|test_dft_.*' '|test_hammingwindow_.*' '|test_hannwindow_.*' '|test_melweightmatrix_.*' '|test_stft_.*' '|test_sequencemap_.*' ')') # Skip vgg to speed up CI if 'JENKINS_URL' in os.environ: backend_test.exclude(r'(test_vgg19|test_vgg)') # import all test cases at global scope to make them visible to python.unittest globals().update(backend_test .enable_report() .test_cases) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/onnx/tests/onnx_backend_test.py
## @package onnx # Module caffe2.python.onnx.tests.test_utils import unittest import numpy as np class TestCase(unittest.TestCase): def setUp(self): np.random.seed(seed=0) def assertSameOutputs(self, outputs1, outputs2, decimal=7): self.assertEqual(len(outputs1), len(outputs2)) for o1, o2 in zip(outputs1, outputs2): self.assertEqual(o1.dtype, o2.dtype) np.testing.assert_almost_equal(o1, o2, decimal=decimal) def add_test_case(self, name, test_func): if not name.startswith('test_'): raise ValueError('Test name must start with test_: {}'.format(name)) if hasattr(self, name): raise ValueError('Duplicated test name: {}'.format(name)) setattr(self, name, test_func)
pytorch-master
caffe2/python/onnx/tests/test_utils.py
## @package onnx # Module caffe2.python.onnx.tests.helper_test import unittest from caffe2.python.onnx.tests.test_utils import TestCase import caffe2.python._import_c_extension as C class TestCaffe2Basic(TestCase): def test_dummy_name(self): g = C.DummyName() g.reset() names_1 = [g.new_dummy_name() for _ in range(3)] g.reset() names_2 = [g.new_dummy_name() for _ in range(3)] self.assertEqual(names_1, names_2) g.reset(set(names_1)) names_3 = [g.new_dummy_name() for _ in range(3)] self.assertFalse(set(names_1) & set(names_3)) g.reset(set(names_1)) names_4 = [g.new_dummy_name() for _ in range(3)] self.assertFalse(set(names_1) & set(names_4)) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/onnx/tests/helper_test.py
## @package onnx # Module caffe2.python.onnx.tests.ssa_test import copy import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core from onnx import TensorProto import caffe2.python.onnx.frontend as c2_onnx from caffe2.python.onnx.helper import c2_native_run_net from caffe2.python.onnx.tests.test_utils import TestCase class TestFrontendSSAConversion(TestCase): def test_ssa(self): X = np.random.randn(4, 2).astype(np.float32) W = np.random.randn(3, 2).astype(np.float32) b = np.random.randn(3).astype(np.float32) s = np.random.randn(1).astype(np.float32) np_result = X.dot(W.transpose()) + b + s net = caffe2_pb2.NetDef() net.name = 'test-ssa' net.external_input[:] = ['W', 'X', 'b', 's'] net.op.extend([ core.CreateOperator( 'FC', ['X', 'W', 'b'], ['Y'] ), core.CreateOperator( 'Add', ['Y', 's'], ['Y'], broadcast=True, ) ]) net.external_output[:] = ['Y'] init_net = caffe2_pb2.NetDef() init_net.name = 'test-ssa-init' init_net.op.extend([ core.CreateOperator( 'GivenTensorFill', [], ['W'], values=W, shape=W.shape, ), core.CreateOperator( 'GivenTensorFill', [], ['b'], values=b, shape=b.shape, ), core.CreateOperator( 'GivenTensorFill', [], ['s'], values=s, shape=s.shape, ) ]) init_net.external_output[:] = ['W', 'b', 's'] _, orig_output = c2_native_run_net( predict_net=net, init_net=init_net, inputs=[X]) value_info = {'X': (TensorProto.FLOAT, X.shape)} c2_onnx.Caffe2Frontend._ssa_rewrite( net, init_net, value_info) self.assertEqual(net.external_input, ['W', 'X', 'b', 's']) self.assertEqual(net.op[0].input, ['X', 'W', 'b']) self.assertEqual(net.op[0].output, ['Y_1']) self.assertEqual(net.op[1].input, ['Y_1', 's']) self.assertEqual(net.op[1].output, ['Y_2']) self.assertEqual(net.external_output, ['Y_2']) self.assertEqual(init_net.external_input, []) self.assertEqual(init_net.op[0].input, []) self.assertEqual(init_net.op[0].output, ['W']) self.assertEqual(init_net.op[1].input, []) self.assertEqual(init_net.op[1].output, ['b']) self.assertEqual(init_net.op[2].input, []) self.assertEqual(init_net.op[2].output, ['s']) self.assertEqual(init_net.external_output, ['W', 'b', 's']) self.assertEqual(value_info, {'X': (TensorProto.FLOAT, X.shape)}) _, ssa_output = c2_native_run_net( predict_net=net, init_net=init_net, inputs=[X]) self.assertSameOutputs(ssa_output, orig_output) self.assertSameOutputs(ssa_output, [np_result]) def test_idempotence(self): net = caffe2_pb2.NetDef() net.name = 'test-idempotence' net.external_input[:] = ['W', 'X', 'b', 's'] net.op.extend([ core.CreateOperator( 'FC', ['X', 'W', 'b'], ['Y'] ), core.CreateOperator( 'Add', ['Y', 's'], ['Z'], broadcast=True, ) ]) net.external_output[:] = ['Z'] value_info = {'X': (TensorProto.FLOAT, [4, 2])} net_copy = copy.deepcopy(net) c2_onnx.Caffe2Frontend._ssa_rewrite( net_copy, None, value_info) self.assertEqual(net, net_copy)
pytorch-master
caffe2/python/onnx/tests/ssa_test.py
pytorch-master
caffe2/python/onnx/tests/__init__.py
## @package onnx # Module caffe2.python.onnx.tests.conversion_test import json import tempfile import textwrap import traceback import unittest import zipfile from caffe2.proto import caffe2_pb2 from caffe2.python import brew, core from caffe2.python.model_helper import ModelHelper from click.testing import CliRunner import numpy as np from onnx import helper, ModelProto, TensorProto from caffe2.python.onnx.helper import c2_native_run_net from caffe2.python.onnx.bin.conversion import caffe2_to_onnx, onnx_to_caffe2 import caffe2.python.onnx.backend as c2 from caffe2.python.onnx.tests.test_utils import TestCase class TestConversion(TestCase): def _run_command(self, cmd, *args, **kwargs): runner = CliRunner() result = runner.invoke(cmd, *args, **kwargs) self.assertEqual(result.exit_code, 0, textwrap.dedent(''' Command exited with non-zero exit code: output: {} exception: {} exc_info: {} '''.format(result.output, result.exception, traceback.format_exception(*result.exc_info)))) return result def test_caffe2_to_onnx(self): caffe2_net = tempfile.NamedTemporaryFile() caffe2_init_net = tempfile.NamedTemporaryFile() output = tempfile.NamedTemporaryFile() model = ModelHelper(name='caffe2-to-onnx-test') brew.relu(model, ["X"], "Y") caffe2_net.write(model.net.Proto().SerializeToString()) caffe2_net.flush() init_model = ModelHelper(name='caffe2-to-onnx-init-test') init_model.net.GivenTensorFill([], 'X', shape=[2, 2], values=np.zeros((2, 2)).flatten().astype(float)) caffe2_init_net.write(init_model.net.Proto().SerializeToString()) caffe2_init_net.flush() self._run_command( caffe2_to_onnx, [ caffe2_net.name, '--caffe2-init-net', caffe2_init_net.name, '--output', output.name, ], catch_exceptions=False, ) onnx_model = ModelProto() onnx_model.ParseFromString(output.read()) self.assertEqual(len(onnx_model.graph.node), 1) self.assertEqual(onnx_model.graph.node[0].op_type, 'Relu') self.assertEqual(len(onnx_model.graph.initializer), 1) self.assertEqual(onnx_model.graph.initializer[0].name, onnx_model.graph.input[0].name) def test_caffe2_to_onnx_value_info(self): caffe2_net = tempfile.NamedTemporaryFile() output = tempfile.NamedTemporaryFile() model = ModelHelper(name='caffe2-to-onnx-test') brew.relu(model, ["X"], "Y") caffe2_net.write(model.net.Proto().SerializeToString()) caffe2_net.flush() args = [caffe2_net.name, '--output', output.name] self.assertRaisesRegex(Exception, 'value info', self._run_command, caffe2_to_onnx, args) args.extend([ '--value-info', json.dumps({ 'X': (TensorProto.FLOAT, (2, 2)), })]) self._run_command(caffe2_to_onnx, args) onnx_model = ModelProto() onnx_model.ParseFromString(output.read()) self.assertEqual(len(onnx_model.graph.node), 1) self.assertEqual(onnx_model.graph.node[0].op_type, 'Relu') self.assertEqual(len(onnx_model.graph.initializer), 0) @unittest.skip("Disabled due to onnx optimizer deprecation") def test_onnx_to_caffe2(self): onnx_model = tempfile.NamedTemporaryFile() output = tempfile.NamedTemporaryFile() init_net_output = tempfile.NamedTemporaryFile() node_def = helper.make_node( "Mul", ["X", "W"], ["Y"]) graph_def = helper.make_graph( [node_def], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("W", TensorProto.FLOAT, (1, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3))], initializer=[helper.make_tensor("W", TensorProto.FLOAT, [1, 3], np.zeros((1, 3)).flatten().astype(float))]) model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test') onnx_model.write(model_def.SerializeToString()) onnx_model.flush() self._run_command( onnx_to_caffe2, [ onnx_model.name, '--output', output.name, '--init-net-output', init_net_output.name, ]) caffe2_net = caffe2_pb2.NetDef() caffe2_net.ParseFromString(output.read()) self.assertEqual(len(caffe2_net.op), 1) self.assertEqual(caffe2_net.op[0].type, 'Mul') caffe2_init_net = caffe2_pb2.NetDef() caffe2_init_net.ParseFromString(init_net_output.read()) self.assertEqual(len(caffe2_init_net.op), 1) self.assertEqual(set(sum([list(init_op.output) for init_op in caffe2_init_net.op], [])), {'W'}) def test_onnx_to_caffe2_zipfile(self): buf = tempfile.NamedTemporaryFile() onnx_model = zipfile.ZipFile(buf, 'w') node_def = helper.make_node( "MatMul", ["X", "W"], ["Y"]) X = np.random.rand(2, 3).astype(np.float32) W = np.random.rand(3, 2).flatten().astype(np.float32) graph_def = helper.make_graph( [node_def], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("W", TensorProto.FLOAT, (3, 2))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2))], initializer=[helper.make_tensor("W", TensorProto.FLOAT, [3, 2], W.tobytes(), raw=True)]) model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test') onnx_model.writestr('__MODEL_PROTO', model_def.SerializeToString()) onnx_model.writestr('W', W.tobytes()) onnx_model.close() W = W.reshape((3, 2)) Y_expect = np.matmul(X, W) c2_model = c2.prepare_zip_archive(buf) Y = c2_model.run(X).Y np.testing.assert_allclose(Y, Y_expect) def _make_fake_if_op(self, true_nodes, false_nodes, output_types): true = helper.make_tensor("condition", TensorProto.BOOL, (), [True]) true_graph = helper.make_graph(true_nodes, "true_graph", [], [ helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2)), ]) false_graph = helper.make_graph(false_nodes, "false_graph", [], [ helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2)), ]) if_inputs = ["condition"] if_outputs = [name for _, _, name in output_types] retval_nodes = [ helper.make_node("Constant", [], ["condition"], value=true), helper.make_node("If", if_inputs, if_outputs, then_branch=true_graph, else_branch=false_graph) ] return retval_nodes def test_onnx_to_caffe2_if(self): true_nodes = [helper.make_node( "MatMul", ["X", "W"], ["Y"])] false_nodes = [helper.make_node("Slice", ["X"], ["Y"], axes=[0, 1], starts=[0, 0], ends=[2, 2])] nodes = self._make_fake_if_op(true_nodes, false_nodes, [(TensorProto.FLOAT, (2, 2), "Y")]) X = np.random.rand(2, 3).astype(np.float32) W = np.random.rand(3, 2).flatten().astype(np.float32) graph_def = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("W", TensorProto.FLOAT, (3, 2))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2))], initializer=[helper.make_tensor("W", TensorProto.FLOAT, [3, 2], W.tolist())] ) onnx_id = helper.make_opsetid("", 9) model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test', opset_imports=[onnx_id]) p = c2.prepare(model_def) Y = np.matmul(X, W.reshape(3, 2)) out = p.run(X) np.testing.assert_allclose(out.Y, Y) # input_types and output_types are lists of triples of (name, type, shape) def _make_fake_loop_op(self, body_nodes, input_types, output_types): ten = helper.make_tensor("trip_count_value", TensorProto.INT64, (1,), [10]) true = helper.make_tensor("condition", TensorProto.BOOL, (1,), [True]) # lcd is a dummy loop-carried dependency that only exists because # right now the schema checker is broken and assumes a variadic # input needs at least one value. graph_inputs = [helper.make_tensor_value_info("i", TensorProto.INT64, (1,)), helper.make_tensor_value_info("cond", TensorProto.BOOL, (1,))] for type, shape, name in input_types: graph_inputs.append(helper.make_tensor_value_info("_" + name, type, shape)) graph_outputs = [helper.make_tensor_value_info("cond", TensorProto.BOOL, (1,))] for type, shape, name in output_types: graph_outputs.append(helper.make_tensor_value_info("_" + name, type, shape)) body_graph = helper.make_graph(body_nodes, "body_graph", graph_inputs, graph_outputs) loop_inputs = ["trip_count", "condition"] loop_inputs.extend([name for _, _, name in input_types]) loop_outputs = [name for _, _, name in output_types] retval_nodes = [ helper.make_node("Constant", [], ["trip_count"], value=ten), helper.make_node("Constant", [], ["condition"], value=true), helper.make_node("Loop", loop_inputs, loop_outputs, body=body_graph) ] return retval_nodes @unittest.skip("Disabled due to onnx optimizer deprecation") def test_onnx_to_caffe2_loop(self): body_nodes = [helper.make_node( "MatMul", ["_X", "W"], ["_Y"])] nodes = self._make_fake_loop_op(body_nodes, [(TensorProto.FLOAT, (2, 2), "X")], [(TensorProto.FLOAT, (2, 2), "Y")]) X = np.random.rand(2, 2).astype(np.float32) W = np.random.rand(2, 2).flatten().astype(np.float32) graph_def = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 2)), helper.make_tensor_value_info("W", TensorProto.FLOAT, (2, 2))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2))], initializer=[helper.make_tensor("W", TensorProto.FLOAT, [2, 2], W.tolist())] ) model_def = helper.make_model(graph_def, producer_name='onnx-to-caffe2-test') Y = X for _ in range(10): Y = np.matmul(Y, W.reshape(2, 2)) p = c2.prepare(model_def) out = p.run(X) np.testing.assert_allclose(out.Y, Y) # TODO investigate why this is failing after changing Reshape # operator from taking the new shape as attribute to as input @unittest.skip('Start failing after Reshape op change') def test_convert_end2end(self): predict_net_f = tempfile.NamedTemporaryFile() init_net_f = tempfile.NamedTemporaryFile() onnx_model_f = tempfile.NamedTemporaryFile() x = 'X' w = 'W' b = 'b' y = 'Y' predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-convert-end2end' predict_net.external_input[:] = [x, w, b] predict_net.external_output[:] = [y] predict_net.op.extend([ core.CreateOperator( 'FC', inputs=[x, w, b], outputs=[y], axis=2, ), ]) predict_net_f.write(predict_net.SerializeToString()) predict_net_f.flush() init_net = caffe2_pb2.NetDef() init_net.name = 'test-convert-end2end-init' init_net.external_output[:] = [w, b] x_val = np.random.randn(1, 3, 2).astype(np.float32) w_val = np.random.randn(4, 2).astype(np.float32) b_val = np.random.randn(4).astype(np.float32) init_net.op.extend([ core.CreateOperator( 'GivenTensorFill', [], [w], values=w_val, shape=w_val.shape, ), core.CreateOperator( 'GivenTensorFill', [], [b], values=b_val, shape=b_val.shape, ), ]) init_net_f.write(init_net.SerializeToString()) init_net_f.flush() y_val = np.matmul(x_val, w_val.transpose()) + b_val for _ in range(5): self._run_command( caffe2_to_onnx, [ predict_net_f.name, '--caffe2-init-net', init_net_f.name, '--output', onnx_model_f.name, '--value-info', json.dumps({ x: (TensorProto.FLOAT, (1, 3, 2)), }), ], catch_exceptions=False, ) onnx_model_f.seek(0) onnx_model = ModelProto() onnx_model.ParseFromString(onnx_model_f.read()) np.testing.assert_almost_equal( c2.run_model( onnx_model, {onnx_model.graph.input[0].name: x_val}), [y_val]) self._run_command( onnx_to_caffe2, [ onnx_model_f.name, '--output', predict_net_f.name, '--init-net-output', init_net_f.name, ]) predict_net_f.seek(0) predict_net = caffe2_pb2.NetDef() predict_net.ParseFromString(predict_net_f.read()) init_net_f.seek(0) init_net = caffe2_pb2.NetDef() init_net.ParseFromString(init_net_f.read()) x = predict_net.external_input[0] np.testing.assert_almost_equal(c2_native_run_net(init_net=init_net, predict_net=predict_net, inputs={x: x_val})[1], [y_val])
pytorch-master
caffe2/python/onnx/tests/conversion_test.py
# @package onnx # Module caffe2.python.onnx.tests.c2_ref_test import os import unittest from caffe2.python import core from caffe2.proto import caffe2_pb2 import onnx from onnx.helper import make_node, make_graph, make_tensor, make_tensor_value_info, make_model from caffe2.python.onnx.helper import c2_native_run_net, c2_native_run_op from onnx import mapping import caffe2.python.onnx.frontend as c2_onnx import caffe2.python.onnx.backend as c2 import numpy as np from caffe2.python.models.download import ModelDownloader from caffe2.python.onnx.tests.test_utils import TestCase import caffe2.python._import_c_extension as C class TestCaffe2Basic(TestCase): def test_dummy_name(self): g = C.DummyName() n1 = g.new_dummy_name() n2 = g.new_dummy_name() assert n1 != n2, "Got same names in different calls: {}".format(n1) def test_check_arguments(self): b2 = C.Caffe2Backend() node_def = make_node("Add", inputs=["X", "Y"], outputs=["Z"]) b2.convert_node(node_def.SerializeToString()) bad_node_def = make_node("Add", inputs=["X", "Y"], outputs=["Z"], foo=42, bar=56) with self.assertRaisesRegex(RuntimeError, "Don't know how to map unexpected argument (foo|bar)"): b2.convert_node(bad_node_def.SerializeToString()) def test_dynamicslice_3inputs_graph(self): node_def = make_node( "DynamicSlice", ["X1", "X2", "X3"], ["Y"]) graph_def = make_graph( [node_def], name="test", inputs=[make_tensor_value_info("X1", onnx.TensorProto.FLOAT, (2, 4)), make_tensor_value_info("X2", onnx.TensorProto.INT32, (1, 2)), make_tensor_value_info("X3", onnx.TensorProto.INT32, (1, 2))], outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, (1, 2))]) model_def = make_model(graph_def, producer_name='caffe2-ref-test') x = [[1,2,3,4],[5,6,7,8]] start = [0, 0] end = [-1, 4] prepared = c2.prepare(model_def) output = prepared.run(inputs=[np.array(x), np.array(start), np.array(end)]) self.assertSameOutputs(output[0], np.array(x)[0:-1, 0:4]) def test_dynamicslice_4inputs_graph(self): node_def = make_node( "DynamicSlice", ["X1", "X2", "X3", "axes"], ["Y"]) graph_def = make_graph( [node_def], name="test", inputs=[make_tensor_value_info("X1", onnx.TensorProto.FLOAT, (2, 4)), make_tensor_value_info("X2", onnx.TensorProto.INT32, (1, 2)), make_tensor_value_info("X3", onnx.TensorProto.INT32, (1, 2)), make_tensor_value_info("axes", onnx.TensorProto.INT32, (1, 2))], outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, (1, 2))]) model_def = make_model(graph_def, producer_name='caffe2-ref-test') x = [[1,2,3,4],[5,6,7,8]] start = [0, 1] end = [4, 5] axes = [1, 0] prepared = c2.prepare(model_def) output = prepared.run(inputs=[np.array(x), np.array(start), np.array(end), np.array(axes)]) self.assertSameOutputs(output[0], np.array(x)[1:5, 0:4]) def test_relu_graph(self): X = np.random.randn(3, 2).astype(np.float32) Y_ref = np.clip(X, 0, np.inf) node_def = make_node( "Relu", ["X"], ["Y"]) output = c2.run_node( node_def, {"X": X}) np.testing.assert_almost_equal(output.Y, Y_ref) graph_def = make_graph( [node_def], name="test", inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [3, 2])], outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [3, 2])]) c2_rep = c2.prepare(make_model(graph_def, producer_name='caffe2-ref-test')) output = c2_rep.run(X) np.testing.assert_almost_equal(output.Y, Y_ref) def test_elementwiselinear(self): X = np.random.randn(4, 2, 5, 7, 3).astype(np.float32) W = np.random.randn(21).astype(np.float32) B = np.random.randn(21).astype(np.float32) predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-elementwiselinear-net' predict_net.external_input[:] = ['X', 'W', 'B'] predict_net.external_output[:] = ['Y'] predict_net.op.extend([ core.CreateOperator( 'ElementwiseLinear', inputs=['X', 'W', 'B'], outputs=['Y'], axis=3, ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X, W, B]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape), 'W': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[W.dtype], W.shape), 'B': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[B.dtype], B.shape), }) onnx_outputs = c2.run_model(onnx_model, inputs=[X, W, B]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_initializer(self): X = np.array([[1, 2], [3, 4]]).astype(np.float32) Y = np.array([[1, 2], [3, 4]]).astype(np.float32) weight = np.array([[1, 0], [0, 1]]) graph_def = make_graph( [make_node("Add", ["X", "Y"], ["Z0"]), make_node("Cast", ["Z0"], ["Z"], to=onnx.TensorProto.FLOAT), make_node("Mul", ["Z", "weight"], ["W0"]), make_node("Tanh", ["W0"], ["W1"]), make_node("Sigmoid", ["W1"], ["W2"]), make_node("Scale", ["W2"], ["W3"], scale=-1.0)], name="test_initializer", inputs=[ make_tensor_value_info("X", onnx.TensorProto.FLOAT, (2, 2)), make_tensor_value_info("Y", onnx.TensorProto.FLOAT, (2, 2)), make_tensor_value_info("weight", onnx.TensorProto.FLOAT, (2, 2)), ], outputs=[ make_tensor_value_info("W3", onnx.TensorProto.FLOAT, (2, 2)) ], initializer=[make_tensor("weight", onnx.TensorProto.FLOAT, [2, 2], weight.flatten().astype(float))] ) def sigmoid(x): return 1 / (1 + np.exp(-x)) W_ref = -sigmoid(np.tanh((X + Y) * weight)) c2_rep = c2.prepare(make_model(graph_def, producer_name='caffe2-ref-test')) output = c2_rep.run({"X": X, "Y": Y}) np.testing.assert_almost_equal(output["W3"], W_ref) def test_reducemean(self): X = np.random.randn(4, 6, 10, 5, 3).astype(np.float32) predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-reducemean-net' predict_net.external_input[:] = ['X'] predict_net.external_output[:] = [ 'reduce_front_mean', 'reduce_back_mean', 'reduce_mean_0', 'reduce_mean_1', ] predict_net.op.extend([ core.CreateOperator( 'ReduceFrontMean', inputs=['X'], outputs=['reduce_front_mean'], num_reduce_dim=2, ), core.CreateOperator( 'ReduceBackMean', inputs=['X'], outputs=['reduce_back_mean'], num_reduce_dim=2, ), core.CreateOperator( 'ReduceMean', inputs=['X'], outputs=['reduce_mean_0'], axes=[1, 3], keepdims=0, ), core.CreateOperator( 'ReduceMean', inputs=['X'], outputs=['reduce_mean_1'], axes=[1, 3], keepdims=1, ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape) }) onnx_outputs = c2.run_model(onnx_model, inputs=[X]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_upsample(self): X = np.random.randn(1, 1, 2, 2).astype(np.float32) width_scale = 2.0 height_scale = 2.0 predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-upsample-net' predict_net.external_input[:] = ['X'] predict_net.external_output[:] = ['Y'] predict_net.op.extend([ core.CreateOperator( 'ResizeNearest', inputs=['X'], outputs=['Y'], width_scale=width_scale, height_scale=height_scale, ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape) }) onnx_outputs = c2.run_model(onnx_model, inputs=[X]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_fc(self): X_fake = np.zeros((3, 1, 3, 1, 7), dtype=np.float32) X = np.random.randn(5, 2, 3, 1, 7).astype(np.float32) W = np.random.randn(11, 21).astype(np.float32) B = np.random.randn(11).astype(np.float32) predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-fc-net' predict_net.external_input[:] = ['X', 'W', 'B'] predict_net.external_output[:] = ['Y'] predict_net.op.extend([ core.CreateOperator( 'FC', inputs=['X', 'W', 'B'], outputs=['Y'], axis=2, ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X, W, B]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X_fake.shape), 'W': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[W.dtype], W.shape), 'B': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[B.dtype], B.shape), }) onnx_outputs = c2.run_model(onnx_model, inputs=[X, W, B]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_gemm(self): # simple A = np.random.randn(3, 2).astype(np.float32) B = np.random.randn(2, 4).astype(np.float32) C = np.random.randn(3, 4).astype(np.float32) node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"]) output = c2.run_node(node_def, [A, B, C]) np.testing.assert_almost_equal(output["Y"], np.dot(A, B) + C) # transA A = np.transpose(A) node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], transA=1) output = c2.run_node(node_def, [A, B, C]) np.testing.assert_almost_equal( output["Y"], np.dot(np.transpose(A), B) + C) # revert A A = np.transpose(A) # transB B = np.transpose(B) node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], transB=1) output = c2.run_node(node_def, [A, B, C]) np.testing.assert_almost_equal( output["Y"], np.dot(A, np.transpose(B)) + C) # revert B B = np.transpose(B) # scale alpha = np.random.random() beta = np.random.random() node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta) output = c2.run_node(node_def, [A, B, C]) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, B) + beta * C) # setup broadcastable C C = np.random.randn(4).astype(np.float32) # broadcast for opset7 node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta) output = c2.run_node(node_def, [A, B, C], opset_version=7) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, B) + beta * C) # broadcast for opset3 and 6 node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta, broadcast=1) output = c2.run_node(node_def, [A, B, C], opset_version=6) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, B) + beta * C) # transB B = np.transpose(B) # transB and broadcast for opset7 node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta, transB=1) output = c2.run_node(node_def, [A, B, C], opset_version=7) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, np.transpose(B)) + beta * C) # transB and broadcast for opset3 and 6 node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta, broadcast=1, transB=1) output = c2.run_node(node_def, [A, B, C], opset_version=6) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, np.transpose(B)) + beta * C) # revert B B = np.transpose(B) # set a scalar to C C = np.random.randn(1).astype(np.float32) # scalar broadcast for opset7 node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta) output = c2.run_node(node_def, [A, B, C], opset_version=7) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, B) + beta * C) # scalar broadcast for opset3 and 6 node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=alpha, beta=beta, broadcast=1) output = c2.run_node(node_def, [A, B, C], opset_version=6) np.testing.assert_almost_equal( output["Y"], alpha * np.dot(A, B) + beta * C) def test_gemm_conversion(self): node_def = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=2., beta=3.) node_def_broadcast = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=2., beta=3., broadcast=1) node_def_transpose_b = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=2., beta=3., transB=1) node_def_transpose_b_broadcast = make_node( 'Gemm', ['A', 'B', 'C'], ["Y"], alpha=2., beta=3., transB=1, broadcast=1) backend = C.Caffe2Backend() # without broadcast and without shape info, gemm will be # converted to matmul + add _, op_strs = backend.convert_node(node_def.SerializeToString()) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add']) # opset7 # If C is a 1d tensor, gemm will be converted to FC/FCTransposed _, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString( ), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()], 7) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'FC']) _, op_strs = backend.convert_node(node_def.SerializeToString( ), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()], 7) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'FCTransposed']) # opset6 without broadcast(C should match A*B's dim) # The gemm will be converted to matmul + add, since the FC requires c # to be 1d tensor. _, op_strs = backend.convert_node(node_def.SerializeToString( ), [make_tensor_value_info("A", onnx.TensorProto.FLOAT, (3,2)).SerializeToString(), make_tensor_value_info("B", onnx.TensorProto.FLOAT, (2,3)).SerializeToString(), make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,3)).SerializeToString()], 6) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add']) # opset6 with broadcast # If C is a 1d tensor, gemm will be converted to FC/FCTransposed _, op_strs = backend.convert_node(node_def_transpose_b_broadcast.SerializeToString( ), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()], 6) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'FC']) _, op_strs = backend.convert_node(node_def_broadcast.SerializeToString( ), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (3,)).SerializeToString()], 6) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'FCTransposed']) # opset7 # If C is a scalar and B's last dim is 1, gemm will be converted to FC/FCTransposed _, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString( ), [make_tensor_value_info("B", onnx.TensorProto.FLOAT, (1,2)).SerializeToString(), make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()], 7) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'FC']) _, op_strs = backend.convert_node(node_def.SerializeToString( ), [make_tensor_value_info("B", onnx.TensorProto.FLOAT, (2,1)).SerializeToString(), make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()], 7) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'FCTransposed']) # If C is a scalar and B's last dim is not 1, gemm will be converted # to matmul + add. _, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString( ), [make_tensor_value_info("B", onnx.TensorProto.FLOAT, (2,2)).SerializeToString(), make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()], 7) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add']) # If C is a scalar and B's shape info is not available, # gemm will be converted to matmul + add. _, op_strs = backend.convert_node(node_def_transpose_b.SerializeToString( ), [make_tensor_value_info("C", onnx.TensorProto.FLOAT, (1,)).SerializeToString()], 7) op_names = [] for s in op_strs: op = caffe2_pb2.OperatorDef() op.ParseFromString(s) op_names.append(op.type) self.assertEqual(op_names, ['Scale', 'Scale', 'MatMul', 'Add']) def test_mergedim(self): X = np.random.randn(2, 3, 1, 5).astype(np.float32) predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-mergedim-net' predict_net.external_input[:] = ['X'] predict_net.external_output[:] = ['Y'] predict_net.op.extend([ core.CreateOperator( 'MergeDim', inputs=['X'], outputs=['Y'], ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape), }) onnx_outputs = c2.run_model(onnx_model, inputs=[X]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_tensor_filling_ops(self): for dtype in [ onnx.TensorProto.FLOAT, onnx.TensorProto.DOUBLE, onnx.TensorProto.BOOL, onnx.TensorProto.INT8, onnx.TensorProto.INT16, onnx.TensorProto.INT32, onnx.TensorProto.INT64, onnx.TensorProto.UINT8, onnx.TensorProto.UINT16, onnx.TensorProto.UINT32, ]: shape = (1, 2, 3) vals = np.random.randn(*shape) if dtype != onnx.TensorProto.BOOL: vals *= 5 vals = vals.astype( mapping.TENSOR_TYPE_TO_NP_TYPE[dtype]) tensor = make_tensor( name='test-tensor-{}'.format(dtype), data_type=dtype, dims=[1, 2, 3], vals=vals.flatten().tolist(), ) op = c2.Caffe2Backend._create_tensor_filling_op(tensor) self.assertEqual(len(op.input), 0) self.assertEqual(op.output, [tensor.name]) ws, output = c2_native_run_op(op, inputs=[]) self.assertEqual(len(output), 1) np.testing.assert_almost_equal(output[0], vals) np.testing.assert_almost_equal(ws.FetchBlob(op.output[0]), vals) def test_tensor_filling_ops_c_backend(self): for dtype in [ onnx.TensorProto.FLOAT, onnx.TensorProto.DOUBLE, onnx.TensorProto.BOOL, onnx.TensorProto.INT8, onnx.TensorProto.INT16, onnx.TensorProto.INT32, onnx.TensorProto.INT64, onnx.TensorProto.UINT8, onnx.TensorProto.UINT16, onnx.TensorProto.UINT32, ]: shape = (1, 2, 3) vals = np.random.randn(*shape) if dtype != onnx.TensorProto.BOOL: vals *= 5 vals = vals.astype( mapping.TENSOR_TYPE_TO_NP_TYPE[dtype]) tensor = make_tensor( name='test-tensor-{}'.format(dtype), data_type=dtype, dims=[1, 2, 3], vals=vals.flatten().tolist(), ) b = C.Caffe2Backend() op = caffe2_pb2.OperatorDef() op.ParseFromString(b._build_tensor_filling_op(tensor.SerializeToString(), '')) self.assertEqual(len(op.input), 0) self.assertEqual(op.output, [tensor.name]) ws, output = c2_native_run_op(op, inputs=[]) self.assertEqual(len(output), 1) np.testing.assert_almost_equal(output[0], vals) np.testing.assert_almost_equal(ws.FetchBlob(op.output[0]), vals) def test_concat(self): I0 = np.random.randn(20, 4).astype(np.float32) I1 = np.random.randn(20, 4).astype(np.float32) for i in range(2): predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-concat-net' predict_net.external_input[:] = ['I0', 'I1'] predict_net.external_output[:] = ['Y', 'output_dim'] predict_net.op.extend([ core.CreateOperator( 'Concat', inputs=['I0', 'I1'], outputs=['Y', 'output_dim'], axis=1, add_axis=(1 if i == 0 else 0), ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[I0, I1]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'I0': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[I0.dtype], I0.shape), 'I1': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[I1.dtype], I1.shape), }) onnx_outputs = c2.run_model(onnx_model, inputs=[I0, I1]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_slice(self): X = np.random.randn(1, 2, 3).astype(np.float32) starts = np.array([0, 1, 0], dtype=np.int32) ends = np.array([-1, 2, 3], dtype=np.int32) predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-slice-net' predict_net.external_input[:] = ['X'] predict_net.external_output[:] = ['Y'] predict_net.op.extend([ core.CreateOperator( 'Slice', inputs=['X'], outputs=['Y'], starts=starts, ends=ends, ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape) }) onnx_outputs = c2.run_model(onnx_model, inputs=[X]) self.assertSameOutputs(c2_outputs, onnx_outputs) def test_cast(self): X = np.random.randn(1, 2, 3).astype(np.float32) for to_type in ['INT8', caffe2_pb2.TensorProto.INT8, 'DOUBLE', caffe2_pb2.TensorProto.DOUBLE]: predict_net = caffe2_pb2.NetDef() predict_net.name = 'test-cast-net' predict_net.external_input[:] = ['X'] predict_net.external_output[:] = ['Y'] predict_net.op.extend([ core.CreateOperator( 'Cast', inputs=['X'], outputs=['Y'], to=to_type, ), ]) ws, c2_outputs = c2_native_run_net( init_net=None, predict_net=predict_net, inputs=[X]) onnx_model = c2_onnx.caffe2_net_to_onnx_model( predict_net=predict_net, value_info={ 'X': (onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[X.dtype], X.shape) }) onnx_outputs = c2.run_model(onnx_model, inputs=[X]) self.assertSameOutputs(c2_outputs, onnx_outputs) class TestCaffe2End2End(TestCase): def setUp(self): self.model_downloader = ModelDownloader('ONNX_MODELS') def _test_net(self, net_name, input_blob_dims=(1, 3, 224, 224), decimal=7): np.random.seed(seed=0) try: c2_init_net, c2_predict_net, value_info, debug_str = self.model_downloader.get_c2_model_dbg(net_name) except Exception as e: # catch IOError/OSError that is caused by FileNotFoundError and PermissionError # This is helpful because sometimes we get errors due to gfs not available # get_c2_model_dbg wraps URLError/HTTPErrors into generic Exception # Skip the tests if model can not be downloaded due to the any of the above print("\n_test_net exception: ", e) self.skipTest(str(e)) # start to run the model and compare outputs n, c, h, w = input_blob_dims data = np.random.randn(n, c, h, w).astype(np.float32) inputs = [data] _, c2_outputs = c2_native_run_net(c2_init_net, c2_predict_net, inputs, debug_str) del _ model = c2_onnx.caffe2_net_to_onnx_model( predict_net=c2_predict_net, init_net=c2_init_net, value_info=value_info, ) c2_ir = c2.prepare(model) onnx_outputs = c2_ir.run(inputs) self.assertSameOutputs(c2_outputs, onnx_outputs, decimal=decimal) @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_alexnet(self): self._test_net('bvlc_alexnet', decimal=4) @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_resnet50(self): self._test_net('resnet50') @unittest.skipIf( os.environ.get('JENKINS_URL') or os.environ.get('SKIP_IN_FB'), 'Taking too long to download!') def test_vgg16(self): self._test_net('vgg16') @unittest.skipIf( os.environ.get('JENKINS_URL') or os.environ.get('SKIP_IN_FB'), 'Taking too long to download!') def test_zfnet(self): self._test_net('zfnet') @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_inception_v1(self): self._test_net('inception_v1', decimal=2) @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_inception_v2(self): self._test_net('inception_v2') @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_squeezenet(self): self._test_net('squeezenet') @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_densenet121(self): self._test_net('densenet121') @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_bvlc_googlenet(self): self._test_net('bvlc_googlenet') @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_bvlc_reference_caffenet(self): self._test_net('bvlc_reference_caffenet') @unittest.skipIf( os.environ.get('SKIP_IN_FB'), 'Skip internally!') def test_bvlc_reference_rcnn_ilsvrc13(self): self._test_net('bvlc_reference_rcnn_ilsvrc13') if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/onnx/tests/c2_ref_test.py
################################################################################################### # ATTENTION! This test will most probably fail if you install TensorRT 6.0.1 only. # That's because it's shipped with older version of ONNX parser not supporting some # required features. To make it work please use new version: https://github.com/onnx/onnx-tensorrt # Just clone it and do something like this: # # ~/pt/third_party/onnx-tensorrt$ mkdir build/ # ~/pt/third_party/onnx-tensorrt$ cd build/ # ~/pt/third_party/onnx-tensorrt/build$ cmake .. # ~/pt/third_party/onnx-tensorrt/build$ make # ~/pt/third_party/onnx-tensorrt/build$ sudo cp libnvonnxparser.so.6.0.1 /usr/lib/x86_64-linux-gnu # # This note is valid for 6.0.1 release only. September 18th, 2019. ################################################################################################### import os import unittest from PIL import Image import numpy as np import torch import torchvision.models as models import pycuda.driver as cuda # This import causes pycuda to automatically manage CUDA context creation and cleanup. import pycuda.autoinit import tensorrt as trt TRT_LOGGER = trt.Logger(trt.Logger.WARNING) def allocate_buffers(engine): h_input = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(0)), dtype=trt.nptype(trt.float32)) h_output = cuda.pagelocked_empty(trt.volume(engine.get_binding_shape(1)), dtype=trt.nptype(trt.float32)) d_input = cuda.mem_alloc(h_input.nbytes) d_output = cuda.mem_alloc(h_output.nbytes) stream = cuda.Stream() return h_input, d_input, h_output, d_output, stream def load_normalized_test_case(input_shape, test_image, pagelocked_buffer, normalization_hint): def normalize_image(image): c, h, w = input_shape image_arr = np.asarray(image.resize((w, h), Image.ANTIALIAS)).transpose([2, 0, 1])\ .astype(trt.nptype(trt.float32)).ravel() if (normalization_hint == 0): return (image_arr / 255.0 - 0.45) / 0.225 elif (normalization_hint == 1): return (image_arr / 256.0 - 0.5) np.copyto(pagelocked_buffer, normalize_image(Image.open(test_image))) return test_image class Test_PT_ONNX_TRT(unittest.TestCase): def __enter__(self): return self def setUp(self): data_path = os.path.join(os.path.dirname(__file__), 'data') self.image_files=["binoculars.jpeg", "reflex_camera.jpeg", "tabby_tiger_cat.jpg"] for index, f in enumerate(self.image_files): self.image_files[index] = os.path.abspath(os.path.join(data_path, f)) if not os.path.exists(self.image_files[index]): raise FileNotFoundError(self.image_files[index] + " does not exist.") with open(os.path.abspath(os.path.join(data_path, "class_labels.txt")), 'r') as f: self.labels = f.read().split('\n') def build_engine_onnx(self, model_file): with trt.Builder(TRT_LOGGER) as builder, builder.create_network(flags = 1) as network, trt.OnnxParser(network, TRT_LOGGER) as parser: builder_config = builder.create_builder_config() builder_config.max_workspace_size = 1 << 33 with open(model_file, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): self.fail("ERROR: {}".format(parser.get_error(error))) return builder.build_engine(network, builder_config) def _test_model(self, model_name, input_shape = (3, 224, 224), normalization_hint = 0): model = getattr(models, model_name)(pretrained=True) shape = (1,) + input_shape dummy_input = (torch.randn(shape),) onnx_name = model_name + ".onnx" torch.onnx.export(model, dummy_input, onnx_name, input_names = [], output_names = [], verbose=False, export_params=True, opset_version=9) with self.build_engine_onnx(onnx_name) as engine: h_input, d_input, h_output, d_output, stream = allocate_buffers(engine) with engine.create_execution_context() as context: err_count = 0 for index, f in enumerate(self.image_files): test_case = load_normalized_test_case(input_shape, f,\ h_input, normalization_hint) cuda.memcpy_htod_async(d_input, h_input, stream) context.execute_async_v2(bindings=[d_input, d_output], stream_handle=stream.handle) cuda.memcpy_dtoh_async(h_output, d_output, stream) stream.synchronize() amax = np.argmax(h_output) pred = self.labels[amax] if "_".join(pred.split()) not in\ os.path.splitext(os.path.basename(test_case))[0]: err_count = err_count + 1 self.assertLessEqual(err_count, 1, "Too many recognition errors") def test_alexnet(self): self._test_model("alexnet", (3, 227, 227)) def test_resnet18(self): self._test_model("resnet18") def test_resnet34(self): self._test_model("resnet34") def test_resnet50(self): self._test_model("resnet50") def test_resnet101(self): self._test_model("resnet101") @unittest.skip("Takes 2m") def test_resnet152(self): self._test_model("resnet152") def test_resnet50_2(self): self._test_model("wide_resnet50_2") @unittest.skip("Takes 2m") def test_resnet101_2(self): self._test_model("wide_resnet101_2") def test_squeezenet1_0(self): self._test_model("squeezenet1_0") def test_squeezenet1_1(self): self._test_model("squeezenet1_1") def test_googlenet(self): self._test_model("googlenet") def test_inception_v3(self): self._test_model("inception_v3") def test_mnasnet0_5(self): self._test_model("mnasnet0_5", normalization_hint = 1) def test_mnasnet1_0(self): self._test_model("mnasnet1_0", normalization_hint = 1) def test_mobilenet_v2(self): self._test_model("mobilenet_v2", normalization_hint = 1) def test_shufflenet_v2_x0_5(self): self._test_model("shufflenet_v2_x0_5") def test_shufflenet_v2_x1_0(self): self._test_model("shufflenet_v2_x1_0") def test_vgg11(self): self._test_model("vgg11") def test_vgg11_bn(self): self._test_model("vgg11_bn") def test_vgg13(self): self._test_model("vgg13") def test_vgg13_bn(self): self._test_model("vgg13_bn") def test_vgg16(self): self._test_model("vgg16") def test_vgg16_bn(self): self._test_model("vgg16_bn") def test_vgg19(self): self._test_model("vgg19") def test_vgg19_bn(self): self._test_model("vgg19_bn") @unittest.skip("Takes 13m") def test_densenet121(self): self._test_model("densenet121") @unittest.skip("Takes 25m") def test_densenet161(self): self._test_model("densenet161") @unittest.skip("Takes 27m") def test_densenet169(self): self._test_model("densenet169") @unittest.skip("Takes 44m") def test_densenet201(self): self._test_model("densenet201") if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/trt/test_pt_onnx_trt.py
pytorch-master
caffe2/python/trt/__init__.py
## @package onnx #Module caffe2.python.trt.transform """ TensorRT related transformation Note that ONNX-TRT enforce an NCHW input! """ from caffe2.proto import caffe2_pb2 from caffe2.python import workspace import caffe2.python._import_c_extension as C import numpy as np def _dim_values_to_list(dim_values): return [x.dim_value for x in dim_values] def _get_output_shapes(output_value_infos): names = [x.name for x in output_value_infos] shapes = [_dim_values_to_list(x.type.tensor_type.shape.dim) for x in output_value_infos] return dict(zip(names, shapes)) def check_gpu_(): try: C.get_cuda_version() except Exception as _: raise Exception("TensorRT related functions require CUDA support") def convert_onnx_model_to_trt_op(onnx_model, max_batch_size=64, max_workspace_size=2*1024*1024, verbosity=1, debug_builder=False): """ Convert the whole ONNX model to a TensorRT C2 op """ check_gpu_() trt_str = C.onnx_to_trt_op(onnx_model.SerializeToString(), _get_output_shapes(onnx_model.graph.output), max_batch_size, max_workspace_size, verbosity, debug_builder) op = caffe2_pb2.OperatorDef() op.ParseFromString(trt_str) return op # Assume the workspace is already filled with init weights def _infer_shapes(pred_net, inputs): workspace.RunNetOnce(pred_net) hints = {} for op in pred_net.op: for o in op.output: if o not in hints: blob = workspace.FetchBlob(o) if hasattr(blob, 'shape'): hints[o] = blob.shape for i in op.input: if i not in hints: blob = workspace.FetchBlob(i) if hasattr(blob, 'shape'): hints[i] = blob.shape return hints def transform_caffe2_net( pred_net, input_shapes, populate_shapes = False, max_batch_size=64, max_workspace_size=2*1024*1024, verbosity=1, debug_builder=False, build_serializable_op=True): """ Transform the caffe2_net by collapsing TRT-runnable nodes into trt c2 ops """ check_gpu_() # Hacky way to infer shapes as not all our operators have shape inference function. # Normally this is not needed shape_hints = {} if populate_shapes: input_data = {} for k,v in input_shapes.items(): input_data[k] = np.random.randn(*v).astype(np.float32) shape_hints = _infer_shapes(pred_net, input_data) for k,v in input_shapes.items(): shape_hints[k] = v pred_net_str = C.transform_trt(pred_net.SerializeToString(), shape_hints, max_batch_size, max_workspace_size, verbosity, debug_builder, build_serializable_op) pred_net_cut = caffe2_pb2.NetDef() pred_net_cut.ParseFromString(pred_net_str) return pred_net_cut
pytorch-master
caffe2/python/trt/transform.py
from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import onnx import onnx.defs from onnx.helper import make_node, make_graph, make_tensor_value_info, make_model from onnx.backend.base import namedtupledict from caffe2.python.models.download import ModelDownloader import caffe2.python.onnx.backend as c2 from caffe2.python.onnx.workspace import Workspace from caffe2.python.trt.transform import convert_onnx_model_to_trt_op, transform_caffe2_net from caffe2.python.onnx.tests.test_utils import TestCase import numpy as np import os.path import time import unittest import tarfile import tempfile import shutil from six.moves.urllib.request import urlretrieve def _print_net(net): for i in net.external_input: print("Input: {}".format(i)) for i in net.external_output: print("Output: {}".format(i)) for op in net.op: print("Op {}".format(op.type)) for x in op.input: print(" input: {}".format(x)) for y in op.output: print(" output: {}".format(y)) def _base_url(opset_version): return 'https://s3.amazonaws.com/download.onnx/models/opset_{}'.format(opset_version) # TODO: This is copied from https://github.com/onnx/onnx/blob/master/onnx/backend/test/runner/__init__.py. Maybe we should # expose a model retrival API from ONNX def _download_onnx_model(model_name, opset_version): onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx'))) models_dir = os.getenv('ONNX_MODELS', os.path.join(onnx_home, 'models')) model_dir = os.path.join(models_dir, model_name) if not os.path.exists(os.path.join(model_dir, 'model.onnx')): if os.path.exists(model_dir): bi = 0 while True: dest = '{}.old.{}'.format(model_dir, bi) if os.path.exists(dest): bi += 1 continue shutil.move(model_dir, dest) break os.makedirs(model_dir) # On Windows, NamedTemporaryFile can not be opened for a # second time url = '{}/{}.tar.gz'.format(_base_url(opset_version), model_name) download_file = tempfile.NamedTemporaryFile(delete=False) try: download_file.close() print('Start downloading model {} from {}'.format( model_name, url)) urlretrieve(url, download_file.name) print('Done') with tarfile.open(download_file.name) as t: t.extractall(models_dir) except Exception as e: print('Failed to prepare data for model {}: {}'.format( model_name, e)) raise finally: os.remove(download_file.name) return model_dir class TensorRTOpTest(TestCase): def setUp(self): self.opset_version = onnx.defs.onnx_opset_version() def _test_relu_graph(self, X, batch_size, trt_max_batch_size): node_def = make_node("Relu", ["X"], ["Y"]) Y_c2 = c2.run_node(node_def, {"X": X}) graph_def = make_graph( [node_def], name="test", inputs=[make_tensor_value_info("X", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])], outputs=[make_tensor_value_info("Y", onnx.TensorProto.FLOAT, [batch_size, 1, 3, 2])]) model_def = make_model(graph_def, producer_name='relu-test') op_outputs = [x.name for x in model_def.graph.output] op = convert_onnx_model_to_trt_op(model_def, max_batch_size=trt_max_batch_size) device_option = core.DeviceOption(caffe2_pb2.CUDA, 0) op.device_option.CopyFrom(device_option) Y_trt = None ws = Workspace() with core.DeviceScope(device_option): ws.FeedBlob("X", X) ws.RunOperatorsOnce([op]) output_values = [ws.FetchBlob(name) for name in op_outputs] Y_trt = namedtupledict('Outputs', op_outputs)(*output_values) np.testing.assert_almost_equal(Y_c2, Y_trt) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_relu_graph_simple(self): X = np.random.randn(1, 1, 3, 2).astype(np.float32) self._test_relu_graph(X, 1, 50) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_relu_graph_big_batch(self): X = np.random.randn(52, 1, 3, 2).astype(np.float32) self._test_relu_graph(X, 52, 50) def _test_onnx_importer(self, model_name, data_input_index, opset_version=onnx.defs.onnx_opset_version()): model_dir = _download_onnx_model(model_name, opset_version) model_def = onnx.load(os.path.join(model_dir, 'model.onnx')) input_blob_dims = [int(x.dim_value) for x in model_def.graph.input[data_input_index].type.tensor_type.shape.dim] op_inputs = [x.name for x in model_def.graph.input] op_outputs = [x.name for x in model_def.graph.output] print("{}".format(op_inputs)) data = np.random.randn(*input_blob_dims).astype(np.float32) Y_c2 = c2.run_model(model_def, {op_inputs[data_input_index]: data}) op = convert_onnx_model_to_trt_op(model_def, verbosity=3) device_option = core.DeviceOption(caffe2_pb2.CUDA, 0) op.device_option.CopyFrom(device_option) Y_trt = None ws = Workspace() with core.DeviceScope(device_option): ws.FeedBlob(op_inputs[data_input_index], data) if opset_version >= 5: # Some newer models from ONNX Zoo come with pre-set "data_0" input ws.FeedBlob("data_0", data) ws.RunOperatorsOnce([op]) output_values = [ws.FetchBlob(name) for name in op_outputs] Y_trt = namedtupledict('Outputs', op_outputs)(*output_values) np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_resnet50(self): self._test_onnx_importer('resnet50', 0, 9) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_bvlc_alexnet(self): self._test_onnx_importer('bvlc_alexnet', 0, 9) @unittest.skip("Until fixing Unsqueeze op") def test_densenet121(self): self._test_onnx_importer('densenet121', -1, 3) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_inception_v1(self): self._test_onnx_importer('inception_v1', -3, 9) @unittest.skip("Until fixing Unsqueeze op") def test_inception_v2(self): self._test_onnx_importer('inception_v2', 0, 9) @unittest.skip('Need to revisit our ChannelShuffle exporter to avoid generating 5D tensor') def test_shufflenet(self): self._test_onnx_importer('shufflenet', 0) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_squeezenet(self): self._test_onnx_importer('squeezenet', -1, 9) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_vgg16(self): self._test_onnx_importer('vgg16', 0, 9) @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_vgg19(self): self._test_onnx_importer('vgg19', -2, 9) class TensorRTTransformTest(TestCase): def setUp(self): self.model_downloader = ModelDownloader() def _add_head_tail(self, pred_net, new_head, new_tail): orig_head = pred_net.external_input[0] orig_tail = pred_net.external_output[0] # Add head head = caffe2_pb2.OperatorDef() head.type = "Copy" head.input.append(new_head) head.output.append(orig_head) dummy = caffe2_pb2.NetDef() dummy.op.extend(pred_net.op) del pred_net.op[:] pred_net.op.extend([head]) pred_net.op.extend(dummy.op) pred_net.external_input[0] = new_head # Add tail tail = caffe2_pb2.OperatorDef() tail.type = "Copy" tail.input.append(orig_tail) tail.output.append(new_tail) pred_net.op.extend([tail]) pred_net.external_output[0] = new_tail @unittest.skipIf(not workspace.C.use_trt, "No TensortRT support") def test_resnet50_core(self): N = 2 warmup = 20 repeat = 100 print("Batch size: {}, repeat inference {} times, warmup {} times".format(N, repeat, warmup)) init_net, pred_net, _ = self.model_downloader.get_c2_model('resnet50') self._add_head_tail(pred_net, 'real_data', 'real_softmax') input_blob_dims = (N, 3, 224, 224) input_name = "real_data" device_option = core.DeviceOption(caffe2_pb2.CUDA, 0) init_net.device_option.CopyFrom(device_option) pred_net.device_option.CopyFrom(device_option) for op in pred_net.op: op.device_option.CopyFrom(device_option) op.engine = 'CUDNN' net_outputs = pred_net.external_output Y_c2 = None data = np.random.randn(*input_blob_dims).astype(np.float32) c2_time = 1 workspace.SwitchWorkspace("gpu_test", True) with core.DeviceScope(device_option): workspace.FeedBlob(input_name, data) workspace.RunNetOnce(init_net) workspace.CreateNet(pred_net) for _ in range(warmup): workspace.RunNet(pred_net.name) start = time.time() for _ in range(repeat): workspace.RunNet(pred_net.name) end = time.time() c2_time = end - start output_values = [workspace.FetchBlob(name) for name in net_outputs] Y_c2 = namedtupledict('Outputs', net_outputs)(*output_values) workspace.ResetWorkspace() # Fill the workspace with the weights with core.DeviceScope(device_option): workspace.RunNetOnce(init_net) # Cut the graph start = time.time() pred_net_cut = transform_caffe2_net(pred_net, {input_name: input_blob_dims}, build_serializable_op=False) del init_net, pred_net pred_net_cut.device_option.CopyFrom(device_option) for op in pred_net_cut.op: op.device_option.CopyFrom(device_option) #_print_net(pred_net_cut) Y_trt = None input_name = pred_net_cut.external_input[0] print("C2 runtime: {}s".format(c2_time)) with core.DeviceScope(device_option): workspace.FeedBlob(input_name, data) workspace.CreateNet(pred_net_cut) end = time.time() print("Conversion time: {:.2f}s".format(end -start)) for _ in range(warmup): workspace.RunNet(pred_net_cut.name) start = time.time() for _ in range(repeat): workspace.RunNet(pred_net_cut.name) end = time.time() trt_time = end - start print("TRT runtime: {}s, improvement: {}%".format(trt_time, (c2_time-trt_time)/c2_time*100)) output_values = [workspace.FetchBlob(name) for name in net_outputs] Y_trt = namedtupledict('Outputs', net_outputs)(*output_values) np.testing.assert_allclose(Y_c2, Y_trt, rtol=1e-3)
pytorch-master
caffe2/python/trt/test_trt.py
import functools from hypothesis import given, settings, HealthCheck import hypothesis.strategies as st import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestStorm(hu.HypothesisTestCase): @given(inputs=hu.tensors(n=3), grad_sq_sum=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=1.0, allow_nan=False, allow_infinity=False), momentum=st.floats(min_value=0.1, max_value=100.0, allow_nan=False, allow_infinity=False), beta=st.floats(min_value=0.1, max_value=10.0, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_storm_dense(self, inputs, grad_sq_sum, lr, momentum, beta, gc, dc): param, moment, grad = inputs grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Storm", ["param", "moment", "grad_sq_sum", "grad", "lr"], ["param", "moment", "grad_sq_sum"], momentum=momentum, beta=beta, device_option=gc ) def ref_dense(param, moment, grad_sq_sum, grad, lr, momentum, beta): grad_sq_sum_out = grad_sq_sum + np.sum(grad * grad) nlr = lr * np.power(beta + grad_sq_sum_out, -1.0 / 3.0) alpha = momentum * np.square(nlr) moment_out = grad + (1 - alpha) * (moment - grad) param_out = param + nlr * moment_out return (param_out.astype(np.float32), moment_out.astype(np.float32), grad_sq_sum_out.astype(np.float32)) self.assertReferenceChecks( gc, op, [param, moment, grad_sq_sum, grad, lr], functools.partial(ref_dense, momentum=momentum, beta=beta) ) # Suppress filter_too_much health check. # Likely caused by `assume` call falling through too often. @settings(suppress_health_check=[HealthCheck.filter_too_much]) @given(inputs=hu.tensors(n=3), grad_sq_sum=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=1.0, allow_nan=False, allow_infinity=False), momentum=st.floats(min_value=0.1, max_value=100.0, allow_nan=False, allow_infinity=False), beta=st.floats(min_value=0.1, max_value=10.0, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_storm_sparse(self, inputs, grad_sq_sum, lr, momentum, beta, gc, dc): param, moment, grad = inputs grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32) lr = np.array([lr], dtype=np.float32) # Create an indexing array containing values that are lists of indices, # which index into grad indices = np.random.choice(np.arange(grad.shape[0]), size=np.random.randint(grad.shape[0]), replace=False) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "SparseStorm", ["param", "moment", "grad_sq_sum", "grad", "indices", "lr"], ["param", "moment", "grad_sq_sum"], momentum=momentum, beta=beta, device_option=gc) def ref_sparse(param, moment, grad_sq_sum, grad, indices, lr, momentum, beta): param_out = np.copy(param) moment_out = np.copy(moment) grad_sq_sum_out = np.copy(grad_sq_sum) grad_sq_sum_out = grad_sq_sum + np.sum(grad * grad) nlr = lr * np.power(beta + grad_sq_sum_out, -1.0 / 3.0) alpha = momentum * np.square(nlr) for i, index in enumerate(indices): gi = grad[i] moment_out[index] = gi + (1 - alpha) * (moment[index] - gi) param_out[index] = param[index] + nlr * moment_out[index] return (param_out.astype(np.float32), moment_out.astype(np.float32), grad_sq_sum_out.astype(np.float32)) self.assertReferenceChecks( gc, op, [param, moment, grad_sq_sum, grad, indices, lr], functools.partial(ref_sparse, momentum=momentum, beta=beta) ) @given(inputs=hu.tensors(n=2), grad_sq_sum=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=1.0, allow_nan=False, allow_infinity=False), momentum=st.floats(min_value=0.1, max_value=100.0, allow_nan=False, allow_infinity=False), beta=st.floats(min_value=0.1, max_value=10.0, allow_nan=False, allow_infinity=False), data_strategy=st.data(), **hu.gcs_cpu_only) def test_storm_sparse_empty(self, inputs, grad_sq_sum, lr, momentum, beta, data_strategy, gc, dc): param, moment = inputs grad_sq_sum = np.array([grad_sq_sum], dtype=np.float32) lr = np.array([lr], dtype=np.float32) grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32) indices = np.empty(shape=(0,), dtype=np.int64) op = core.CreateOperator( "SparseStorm", ["param", "moment", "grad_sq_sum", "grad", "indices", "lr"], ["param", "moment", "grad_sq_sum"], momentum=momentum, beta=beta, device_option=gc) def ref_sparse_empty(param, moment, grad_sq_sum, grad, indices, lr, momentum, beta): param_out = np.copy(param) moment_out = np.copy(moment) grad_sq_sum_out = np.copy(grad_sq_sum) return (param_out.astype(np.float32), moment_out.astype(np.float32), grad_sq_sum_out.astype(np.float32)) self.assertReferenceChecks( gc, op, [param, moment, grad_sq_sum, grad, indices, lr], functools.partial(ref_sparse_empty, momentum=momentum, beta=beta) )
pytorch-master
caffe2/python/operator_test/storm_test.py
import inspect import numpy as np from hypothesis import assume, given, settings import hypothesis.strategies as st from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestMatMul(serial.SerializedTestCase): @serial.given( M=st.integers(min_value=1, max_value=10), K=st.integers(min_value=1, max_value=10), N=st.integers(min_value=1, max_value=10), trans_a=st.booleans(), trans_b=st.booleans(), **hu.gcs ) def test_matmul(self, M, K, N, trans_a, trans_b, gc, dc): X = np.random.rand(M, K).astype(np.float32) - 0.5 if trans_a: X = X.transpose() Y = np.random.rand(K, N).astype(np.float32) - 0.5 if trans_b: Y = Y.transpose() op = core.CreateOperator( 'MatMul', ['X', 'Y'], 'out', trans_a=trans_a, trans_b=trans_b ) def matmul_ref(X, Y, trans_a, trans_b): XX = X.transpose() if trans_a else X YY = Y.transpose() if trans_b else Y return (XX.dot(YY), ) # Check against numpy reference self.assertReferenceChecks(gc, op, [X, Y, trans_a, trans_b], matmul_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, Y], [0]) # Gradient check wrt X self.assertGradientChecks(gc, op, [X, Y], 0, [0]) # Gradient check wrt Y self.assertGradientChecks(gc, op, [X, Y], 1, [0]) @given( M=st.integers(min_value=1, max_value=10), K=st.integers(min_value=1, max_value=10), N=st.integers(min_value=1, max_value=10), axis_a=st.sampled_from([-3, -2, -1, 1, 2, 3]), axis_b=st.sampled_from([-3, -2, -1, 1, 2, 3]), trans_a=st.booleans(), trans_b=st.booleans(), **hu.gcs ) @settings(deadline=10000) def test_matmul_axis( self, M, K, N, axis_a, axis_b, trans_a, trans_b, gc, dc ): X = np.random.rand(M, K).astype(np.float32) - 0.5 if trans_a: X = X.transpose() shape_x = [X.shape[0], 1, 1, 1] shape_x[axis_a] = X.shape[1] X = X.reshape(*shape_x) Y = np.random.rand(K, N).astype(np.float32) - 0.5 if trans_b: Y = Y.transpose() shape_y = [Y.shape[0], 1, 1, 1] shape_y[axis_b] = Y.shape[1] Y = Y.reshape(*shape_y) op = core.CreateOperator( 'MatMul', ['X', 'Y'], 'out', axis_a=axis_a, axis_b=axis_b, trans_a=trans_a, trans_b=trans_b ) def size_to_dim(X, axis): dim = 1 for i in range(axis): dim *= X.shape[i] return dim def size_from_dim(X, axis): dim = 1 for i in range(axis, X.ndim): dim *= X.shape[i] return dim def reshape(X, axis): dim_0, dim_1 = size_to_dim(X, axis), size_from_dim(X, axis) return X.reshape(dim_0, dim_1) def canonical_axis(axis, ndim): return ndim + axis if axis < 0 else axis def matmul_ref(X, Y, axis_a, axis_b, trans_a, trans_b): can_axis_a = canonical_axis(axis_a, X.ndim) can_axis_b = canonical_axis(axis_b, Y.ndim) X, Y = reshape(X, can_axis_a), reshape(Y, can_axis_b) XX = X.transpose() if trans_a else X YY = Y.transpose() if trans_b else Y return (XX.dot(YY), ) # Check against numpy reference self.assertReferenceChecks( gc, op, [X, Y, axis_a, axis_b, trans_a, trans_b], matmul_ref ) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, Y], [0]) # Gradient check wrt X self.assertGradientChecks(gc, op, [X, Y], 0, [0]) # Gradient check wrt Y self.assertGradientChecks(gc, op, [X, Y], 1, [0]) class TestBatchMatMul(serial.SerializedTestCase): @settings(max_examples=30, deadline=None) @given( C=st.integers(min_value=0, max_value=3), # number of batch dims M=st.integers(min_value=1, max_value=10), K=st.integers(min_value=1, max_value=10), N=st.integers(min_value=1, max_value=10), trans_a=st.booleans(), trans_b=st.booleans(), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs ) def test_batch_matmul(self, C, M, K, N, trans_a, trans_b, dtype, gc, dc): if dtype == np.float16: # fp16 is only supported with CUDA/HIP assume(core.IsGPUDeviceType(gc.device_type)) dc = [d for d in dc if core.IsGPUDeviceType(d.device_type)] batch_dims = np.random.randint( low=1, high=3, size=C, dtype=np.int64).tolist() X = np.random.rand(*(batch_dims + [M, K])).astype(dtype) - 0.5 if trans_a: X = X.swapaxes(-1, -2) Y = np.random.rand(*(batch_dims + [K, N])).astype(dtype) - 0.5 if trans_b: Y = Y.swapaxes(-1, -2) op = core.CreateOperator( 'BatchMatMul', ['X', 'Y'], 'out', trans_a=trans_a, trans_b=trans_b ) def matmul_ref(X, Y, trans_a, trans_b, dtype): XX = (X.swapaxes(-1, -2) if trans_a else X).astype(np.float32) YY = (Y.swapaxes(-1, -2) if trans_b else Y).astype(np.float32) return (np.matmul(XX, YY).astype(dtype),) # relaxing the "threshold" for fp16 to 150x of the default def relax_fp16_check(check_func, *args, **kwargs): # inspect the default "threshold" value in check_func argspec = inspect.getargspec(check_func) threshold = argspec.defaults[ argspec.args.index('threshold') - (len(argspec.args) - len(argspec.defaults))] if dtype == np.float16: threshold = 150 * threshold check_func(*args, threshold=threshold, **kwargs) # Check against numpy reference relax_fp16_check(self.assertReferenceChecks, gc, op, [X, Y, trans_a, trans_b, dtype], matmul_ref) # Check over multiple devices relax_fp16_check(self.assertDeviceChecks, dc, op, [X, Y], [0]) # Gradient check wrt X relax_fp16_check(self.assertGradientChecks, gc, op, [X, Y], 0, [0]) # Gradient check wrt Y relax_fp16_check(self.assertGradientChecks, gc, op, [X, Y], 1, [0]) def _test_batch_matmul_with_broadcast_common( self, X, Y, dtype, gc, dc, trans_a=None, trans_b=None, ): if trans_a is not None and trans_b is not None: op = core.CreateOperator( 'BatchMatMul', ['X', 'Y'], 'out', trans_a=trans_a, trans_b=trans_b, broadcast=1 ) else: op = core.CreateOperator( 'BatchMatMul', ['X', 'Y'], 'out', broadcast=1 ) def matmul_ref(X, Y, trans_a, trans_b, dtype): XX = (X.swapaxes(-1, -2) if trans_a else X).astype(np.float32) YY = (Y.swapaxes(-1, -2) if trans_b else Y).astype(np.float32) return (np.matmul(XX, YY).astype(dtype),) # Check against numpy reference self.assertReferenceChecks(gc, op, [X, Y, trans_a, trans_b, dtype], matmul_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, Y], [0]) @given( C_1=st.integers(min_value=0, max_value=3), # number of batch dims C_2=st.integers(min_value=0, max_value=3), M=st.integers(min_value=1, max_value=10), K=st.integers(min_value=1, max_value=10), N=st.integers(min_value=1, max_value=10), trans_a=st.booleans(), trans_b=st.booleans(), **hu.gcs ) @settings(deadline=10000) def test_numpy_batch_matmul(self, C_1, C_2, M, K, N, trans_a, trans_b, gc, dc): dtype = np.float32 batch_dims = np.random.randint( low=0, high=3, size=max(C_1, C_2), dtype=np.int64).tolist() lbd = len(batch_dims) X = np.random.rand(*(batch_dims[lbd - C_1:] + [M, K])).astype(dtype) - 0.5 if trans_a: X = X.swapaxes(-1, -2) Y = np.random.rand(*(batch_dims[lbd - C_2:] + [K, N])).astype(dtype) - 0.5 if trans_b: Y = Y.swapaxes(-1, -2) self._test_batch_matmul_with_broadcast_common(X, Y, dtype, gc, dc, trans_a, trans_b) @settings(max_examples=30, deadline=None) @given( K=st.integers(min_value=1, max_value=10), **hu.gcs ) def test_numpy_batch_matmul_1d(self, K, gc, dc): dtype = np.float32 X = np.random.rand(K).astype(dtype) - 0.5 # TODO: test trans_a and trans_b Y = np.random.rand(K).astype(dtype) - 0.5 self._test_batch_matmul_with_broadcast_common(X, Y, dtype, gc, dc) @settings(max_examples=30, deadline=None) @given( K=st.integers(min_value=1, max_value=10), N=st.integers(min_value=1, max_value=10), **hu.gcs ) def test_numpy_batch_matmul_1d_2d(self, K, N, gc, dc): dtype = np.float32 X = np.random.rand(K).astype(dtype) - 0.5 # TODO: test trans_a and trans_b Y = np.random.rand(*[K, N]).astype(dtype) - 0.5 self._test_batch_matmul_with_broadcast_common(X, Y, dtype, gc, dc) @settings(max_examples=30, deadline=None) @given( M=st.integers(min_value=1, max_value=10), K=st.integers(min_value=1, max_value=10), **hu.gcs ) def test_numpy_batch_matmul_2d_1d(self, M, K, gc, dc): dtype = np.float32 X = np.random.rand(*[M, K]).astype(dtype) - 0.5 # TODO: test trans_a and trans_b Y = np.random.rand(K).astype(dtype) - 0.5 self._test_batch_matmul_with_broadcast_common(X, Y, dtype, gc, dc) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/matmul_op_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np import numpy.testing as npt from hypothesis import given, settings import hypothesis.strategies as st import functools def primefac(n): ret = [] divisor = 2 while divisor * divisor <= n: while (n % divisor) == 0: ret.append(divisor) n = n // divisor divisor = divisor + 1 if n > 1: ret.append(n) return ret class TestReBatchingQueue(TestCase): def test_rebatching_queue_single_enqueue_dequeue(self): net = core.Net('net') tensors = [ net.ConstantFill([], 1, value=1.0, run_once=False) for times in range(3) ] queue = net.CreateRebatchingQueue([], 1, capacity=10, num_blobs=1) net.EnqueueRebatchingQueue([queue, tensors[0]], []) net.EnqueueRebatchingQueue([queue, tensors[1]], []) net.EnqueueRebatchingQueue([queue, tensors[2]], []) results = [ net.DequeueRebatchingQueue([queue], 1), net.DequeueRebatchingQueue([queue], 1), net.DequeueRebatchingQueue([queue], 1), ] workspace.RunNetOnce(net) for idx in range(3): self.assertEquals(workspace.FetchBlob(results[idx]), [1.0]) def test_rebatching_queue_multi_enqueue_dequeue(self): net = core.Net('net') workspace.FeedBlob( "tensors", np.array([x for x in range(10)], np.int32) ) queue = net.CreateRebatchingQueue([], 1, capacity=10, num_blobs=1) net.EnqueueRebatchingQueue([queue, "tensors"], [], enqueue_batch=True) results = [ net.DequeueRebatchingQueue([queue], 1, num_elements=5), net.DequeueRebatchingQueue([queue], 1, num_elements=5), ] workspace.RunNetOnce(net) npt.assert_array_equal( workspace.FetchBlob(results[0]), workspace.FetchBlob("tensors")[:5] ) npt.assert_array_equal( workspace.FetchBlob(results[1]), workspace.FetchBlob("tensors")[5:] ) def test_rebatching_queue_closes_properly(self): net = core.Net('net') workspace.FeedBlob( "tensors", np.array([x for x in range(10)], np.int32) ) queue = net.CreateRebatchingQueue([], 1, capacity=10, num_blobs=1) net.EnqueueRebatchingQueue([queue, "tensors"], 0, enqueue_batch=True) net.CloseRebatchingQueue([queue], 0) results = [ net.DequeueRebatchingQueue([queue], 1, num_elements=5), net.DequeueRebatchingQueue([queue], 1, num_elements=5), ] workspace.RunNetOnce(net) npt.assert_array_equal( workspace.FetchBlob(results[0]), workspace.FetchBlob("tensors")[:5] ) npt.assert_array_equal( workspace.FetchBlob(results[1]), workspace.FetchBlob("tensors")[5:] ) # Enqueuing more should fail now since the queue is closed net.EnqueueRebatchingQueue([queue, "tensors"], [], enqueue_batch=True) with self.assertRaises(RuntimeError): workspace.RunNetOnce(net) # Dequeuing more should fail now since the queue is closed results = [ net.DequeueRebatchingQueue([queue], 1, num_elements=5), ] with self.assertRaises(RuntimeError): workspace.RunNetOnce(net) def test_rebatching_queue_multiple_components(self): NUM_BLOBS = 4 NUM_ELEMENTS = 10 net = core.Net('net') workspace.blobs['complex_tensor'] = np.array( [[x, x + 1] for x in range(NUM_ELEMENTS)], dtype=np.int32 ) tensors = [ net.GivenTensorIntFill( [], 1, shape=[NUM_ELEMENTS], values=[x for x in range(NUM_ELEMENTS)] ), net.GivenTensorFill( [], 1, shape=[NUM_ELEMENTS], values=[x * 1.0 for x in range(NUM_ELEMENTS)] ), net.GivenTensorBoolFill( [], 1, shape=[NUM_ELEMENTS], values=[(x % 2 == 0) for x in range(NUM_ELEMENTS)] ), 'complex_tensor', ] queue = net.CreateRebatchingQueue( [], 1, capacity=10, num_blobs=NUM_BLOBS ) net.EnqueueRebatchingQueue([queue] + tensors, [], enqueue_batch=True) results = net.DequeueRebatchingQueue([queue], NUM_BLOBS, num_elements=5) workspace.RunNetOnce(net) for idx in range(NUM_BLOBS): npt.assert_array_equal( workspace.FetchBlob(results[idx]), workspace.FetchBlob(tensors[idx])[:5] ) @given( num_producers=st.integers(1, 5), num_consumers=st.integers(1, 5), producer_input_size=st.integers(1, 10), producer_num_iterations=st.integers(1, 10), capacity=st.integers(1, 10) ) @settings(deadline=10000) def test_rebatching_parallel_producer_consumer( self, num_producers, num_consumers, producer_input_size, producer_num_iterations, capacity ): ### Init ### total_inputs = producer_num_iterations * producer_input_size * num_producers inputs = [] init_net = core.Net('init_net') queue = init_net.CreateRebatchingQueue( [], 1, capacity=capacity, num_blobs=1 ) ### Producers ### producer_steps = [] for i in range(num_producers): name = 'producer_%d' % i net = core.Net(name) values = [ producer_input_size * i + x for x in range(producer_input_size) ] for _ in range(producer_num_iterations): inputs.extend(values) tensors = net.GivenTensorIntFill( [], 1, shape=[producer_input_size], values=values ) net.EnqueueRebatchingQueue([queue, tensors], [], enqueue_batch=True) step = core.execution_step( name, net, num_iter=producer_num_iterations ) producer_steps.append(step) producer_step = core.execution_step( 'producer', [ core.execution_step( 'producers', producer_steps, concurrent_substeps=True ) ] ) ### Consumers ### outputs = [] def append(ins, outs): # Extend is atomic outputs.extend(ins[0].data.tolist()) consumer_steps = [] for i in range(num_consumers): # This is just a way of deterministally read all the elements. # We make `num_consumers` almost equal splits # (the reminder goes to the last consumer). num_elements_to_read = total_inputs // num_consumers if i == num_consumers - 1: num_elements_to_read = num_elements_to_read \ + total_inputs % num_consumers # If we have nothing to read this consumer will be idle if (num_elements_to_read == 0): continue # Now we have to make a split on number of iterations and the read # size for each iteration. This is again just one of many # deterministic ways of doing it. We factorize the total number of # elements we have to read and assign half of the factors to the # iterations half to the read size. factors = list(primefac(num_elements_to_read)) num_elements_per_iteration = functools.reduce( lambda x, y: x * y, factors[len(factors) // 2:], 1 ) num_iterations = functools.reduce( lambda x, y: x * y, factors[:len(factors) // 2], 1 ) name = 'consumer_%d' % i net = core.Net(name) blobs = net.DequeueRebatchingQueue( [queue], 1, num_elements=num_elements_per_iteration ) net.Python(append)([blobs], 0) consumer_steps.append( core.execution_step(name, net, num_iter=num_iterations) ) consumer_step = core.execution_step( 'consumer', consumer_steps, concurrent_substeps=True ) init_step = core.execution_step('init', init_net) worker_step = core.execution_step( 'worker', [consumer_step, producer_step], concurrent_substeps=True ) ### Execute Plan ### plan = core.Plan('test') plan.AddStep(init_step) plan.AddStep(worker_step) self.ws.run(plan) ### Check Results ### # We check that the outputs are a permutation of inputs inputs.sort() outputs.sort() self.assertEquals(inputs, outputs) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/rebatching_queue_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import itertools as it import numpy as np class TestMomentsOp(serial.SerializedTestCase): def run_moments_test(self, X, axes, keepdims, gc, dc): if axes is None: op = core.CreateOperator( "Moments", ["X"], ["mean", "variance"], keepdims=keepdims, ) else: op = core.CreateOperator( "Moments", ["X"], ["mean", "variance"], axes=axes, keepdims=keepdims, ) def ref(X): mean = np.mean(X, axis=None if axes is None else tuple( axes), keepdims=keepdims) variance = np.var(X, axis=None if axes is None else tuple( axes), keepdims=keepdims) return [mean, variance] self.assertReferenceChecks(gc, op, [X], ref) self.assertDeviceChecks(dc, op, [X], [0, 1]) self.assertGradientChecks(gc, op, [X], 0, [0, 1]) @serial.given(X=hu.tensor(dtype=np.float32), keepdims=st.booleans(), num_axes=st.integers(1, 4), **hu.gcs) def test_moments(self, X, keepdims, num_axes, gc, dc): self.run_moments_test(X, None, keepdims, gc, dc) num_dims = len(X.shape) if num_dims < num_axes: self.run_moments_test(X, range(num_dims), keepdims, gc, dc) else: for axes in it.combinations(range(num_dims), num_axes): self.run_moments_test(X, axes, keepdims, gc, dc)
pytorch-master
caffe2/python/operator_test/moments_op_test.py
from caffe2.python import workspace, core, rnn_cell from caffe2.python.model_helper import ModelHelper from caffe2.python.rnn.rnn_cell_test_util import tanh import caffe2.python.hypothesis_test_util as hu from hypothesis import given from hypothesis import settings as ht_settings import hypothesis.strategies as st import numpy as np import unittest def basic_rnn_reference(input, hidden_initial, i2h_w, i2h_b, gate_w, gate_b, seq_lengths, drop_states, use_sequence_lengths): D = hidden_initial.shape[-1] T = input.shape[0] N = input.shape[1] if seq_lengths is not None: seq_lengths = (np.ones(shape=(N, D)) * seq_lengths.reshape(N, 1)).astype(np.int32) ret = [] hidden_prev = hidden_initial for t in range(T): input_fc = np.dot(input[t], i2h_w.T) + i2h_b recur_fc = np.dot(hidden_prev, gate_w.T) + gate_b hidden_t = tanh(input_fc + recur_fc) if seq_lengths is not None: valid = (t < seq_lengths).astype(np.int32) assert valid.shape == (N, D), (valid.shape, (N, D)) hidden_t = hidden_t * valid + \ hidden_prev * (1 - valid) * (1 - drop_states) ret.append(hidden_t) hidden_prev = hidden_t return ret class BasicRNNCellTest(hu.HypothesisTestCase): @given( seed=st.integers(0, 2**32 - 1), seq_length=st.integers(min_value=1, max_value=5), batch_size=st.integers(min_value=1, max_value=5), input_size=st.integers(min_value=1, max_value=5), hidden_size=st.integers(min_value=1, max_value=5), drop_states=st.booleans(), sequence_lengths=st.booleans(), **hu.gcs ) @ht_settings(max_examples=15) def test_basic_rnn(self, seed, seq_length, batch_size, input_size, hidden_size, drop_states, sequence_lengths, gc, dc): np.random.seed(seed) seq_lengths_data = np.random.randint( 1, seq_length + 1, size=(batch_size,)).astype(np.int32) input_blob_data = np.random.randn( seq_length, batch_size, input_size).astype(np.float32) initial_h_data = np.random.randn( batch_size, hidden_size).astype(np.float32) gates_t_w_data = np.random.randn( hidden_size, hidden_size).astype(np.float32) gates_t_b_data = np.random.randn( hidden_size).astype(np.float32) i2h_w_data = np.random.randn( hidden_size, input_size).astype(np.float32) i2h_b_data = np.random.randn( hidden_size).astype(np.float32) with core.DeviceScope(gc): with hu.temp_workspace(): workspace.FeedBlob( 'input_blob', input_blob_data, device_option=gc) workspace.FeedBlob( 'seq_lengths', seq_lengths_data, device_option=gc) workspace.FeedBlob( 'initial_h', initial_h_data, device_option=gc) workspace.FeedBlob( 'basic_rnn/gates_t_w', gates_t_w_data, device_option=gc) workspace.FeedBlob( 'basic_rnn/gates_t_b', gates_t_b_data, device_option=gc) workspace.FeedBlob( 'basic_rnn/i2h_w', i2h_w_data, device_option=gc) workspace.FeedBlob( 'basic_rnn/i2h_b', i2h_b_data, device_option=gc) model = ModelHelper(name='model') hidden_t_all, _ = rnn_cell.BasicRNN( model, 'input_blob', 'seq_lengths' if sequence_lengths else None, ['initial_h'], input_size, hidden_size, "basic_rnn", activation='tanh', forward_only=True, drop_states=drop_states) workspace.RunNetOnce(model.net) result = workspace.FetchBlob(hidden_t_all) reference = basic_rnn_reference( input_blob_data, initial_h_data, i2h_w_data, i2h_b_data, gates_t_w_data, gates_t_b_data, seq_lengths_data if sequence_lengths else None, drop_states=drop_states, use_sequence_lengths=sequence_lengths ) np.testing.assert_allclose(result, reference, atol=1e-4, rtol=1e-4) if __name__ == "__main__": workspace.GlobalInit([ 'caffe2', '--caffe2_log_level=0', ]) unittest.main()
pytorch-master
caffe2/python/operator_test/basic_rnn_test.py
import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, workspace from hypothesis import given class TestListwiseL2rOps(hu.HypothesisTestCase): def ref_lambda_rank_loss( self, y, r, use_ndcg_as_loss, use_idcg_normalization, use_exp_gain ): n = len(y) def get_discounts(v): x = np.argsort(v) d = [0 for _ in range(n)] for i in range(n): d[x[i]] = 1.0 / np.log2(n - i + 1.0) return d def sigm(x): return 1 / (1 + np.exp(-x)) def log_sigm(x): return -np.log(1 + np.exp(-x)) dy = np.zeros(n) loss = 0 if np.sum(np.abs(r)) < 1e-6: return loss, dy if use_ndcg_as_loss and (not use_exp_gain): g = [r[i] for i in range(n)] else: g = [2 ** r[i] for i in range(n)] d = get_discounts(r) idcg = sum([g[i] * d[i] for i in range(n)]) if use_idcg_normalization: session_weight = max(idcg, 1e-5) else: session_weight = 1 d = get_discounts(y) if use_ndcg_as_loss: dcg = sum(g[i] * d[i] for i in range(n)) loss = (idcg - dcg) / session_weight for i in range(n): for j in range(n): if i == j: continue lambda_weight = np.abs((g[i] - g[j]) * (d[i] - d[j])) rank_loss = -log_sigm(y[i] - y[j] if r[i] > r[j] else y[j] - y[i]) rank_dy = (0.0 if r[i] > r[j] else 1.0) - sigm(-y[i] + y[j]) if not use_ndcg_as_loss: loss += lambda_weight * rank_loss / session_weight dy[i] += lambda_weight * rank_dy / session_weight return loss, dy @given(n=st.integers(1, 20), k=st.integers(2, 5), m=st.integers(3, 5)) def test_lambda_rank_loss(self, n, k, m): y = np.random.rand(n * m).astype(np.float32) r = np.random.randint(k, size=n * m).astype(np.float32) # m sessions of length n session_lengths = np.repeat(n, m).astype(np.int32) ref_loss = np.empty(0) ref_ndcg_loss = np.empty(0) ref_ndcg_loss_no_exp = np.empty(0) ref_dcg_loss = np.empty(0) ref_dcg_loss_no_exp = np.empty(0) ref_dy = np.empty(0) ref_dy_no_exp = np.empty(0) ref_dcg_dy = np.empty(0) ref_dcg_dy_no_exp = np.empty(0) for i in range(m): r_loss, r_dy = self.ref_lambda_rank_loss( y[(i) * n : (i + 1) * n], r[(i) * n : (i + 1) * n], False, True, False ) r_ndcg_loss, _ = self.ref_lambda_rank_loss( y[(i) * n : (i + 1) * n], r[(i) * n : (i + 1) * n], True, True, True ) r_ndcg_loss_no_exp, r_dy_no_exp = self.ref_lambda_rank_loss( y[(i) * n : (i + 1) * n], r[(i) * n : (i + 1) * n], True, True, False ) r_dcg_loss, r_dcg_dy = self.ref_lambda_rank_loss( y[(i) * n : (i + 1) * n], r[(i) * n : (i + 1) * n], True, False, True ) r_dcg_loss_no_exp, r_dcg_dy_no_exp = self.ref_lambda_rank_loss( y[(i) * n : (i + 1) * n], r[(i) * n : (i + 1) * n], True, False, False ) ref_loss = np.append(ref_loss, r_loss) ref_dy = np.append(ref_dy, r_dy) ref_ndcg_loss = np.append(ref_ndcg_loss, r_ndcg_loss) ref_ndcg_loss_no_exp = np.append(ref_ndcg_loss_no_exp, r_ndcg_loss_no_exp) ref_dy_no_exp = np.append(ref_dy_no_exp, r_dy_no_exp) ref_dcg_loss = np.append(ref_dcg_loss, r_dcg_loss) ref_dcg_dy = np.append(ref_dcg_dy, r_dcg_dy) ref_dcg_loss_no_exp = np.append(ref_dcg_loss_no_exp, r_dcg_loss_no_exp) ref_dcg_dy_no_exp = np.append(ref_dcg_dy_no_exp, r_dcg_dy_no_exp) dloss = np.random.random(m).astype(np.float32) workspace.blobs["y"] = y workspace.blobs["r"] = r workspace.blobs["session_lengths"] = session_lengths workspace.blobs["dloss"] = dloss op = core.CreateOperator( "LambdaRankNdcg", ["y", "r", "session_lengths"], ["loss", "dy"], use_ndcg_as_loss=False, use_idcg_normalization=True, use_exp_gain=False, ) workspace.RunOperatorOnce(op) loss = workspace.blobs["loss"] dy = workspace.blobs["dy"] np.testing.assert_allclose(loss, ref_loss, rtol=1e-5, atol=1e-6) np.testing.assert_allclose(dy, ref_dy, rtol=1e-5, atol=1e-6) op = core.CreateOperator( "LambdaRankNdcg", ["y", "r", "session_lengths"], ["loss", "dy"], use_ndcg_as_loss=True, use_idcg_normalization=True, use_exp_gain=True, ) workspace.RunOperatorOnce(op) loss = workspace.blobs["loss"] dy = workspace.blobs["dy"] np.testing.assert_allclose(loss, ref_ndcg_loss, rtol=1e-5, atol=1e-6) np.testing.assert_allclose(dy, ref_dy, rtol=1e-5, atol=1e-6) op = core.CreateOperator( "LambdaRankNdcgGradient", ["y", "session_lengths", "dy", "dloss"], ["dy_back"], ) workspace.RunOperatorOnce(op) dy_back = workspace.blobs["dy_back"] for i in range(m): np.testing.assert_allclose( dy_back[i * n : (i + 1) * n], dloss[i] * ref_dy[i * n : (i + 1) * n], rtol=1e-5, atol=1e-6, ) op = core.CreateOperator( "LambdaRankNdcg", ["y", "r", "session_lengths"], ["loss", "dy"], use_ndcg_as_loss=True, use_idcg_normalization=True, use_exp_gain=False, ) workspace.RunOperatorOnce(op) loss = workspace.blobs["loss"] dy = workspace.blobs["dy"] np.testing.assert_allclose(loss, ref_ndcg_loss_no_exp, rtol=1e-5, atol=1e-6) np.testing.assert_allclose(dy, ref_dy_no_exp, rtol=1e-5, atol=1e-6) op = core.CreateOperator( "LambdaRankNdcgGradient", ["y", "session_lengths", "dy", "dloss"], ["dy_back"], ) workspace.RunOperatorOnce(op) dy_back = workspace.blobs["dy_back"] for i in range(m): np.testing.assert_allclose( dy_back[i * n : (i + 1) * n], dloss[i] * ref_dy_no_exp[i * n : (i + 1) * n], rtol=1e-5, atol=1e-6, ) op = core.CreateOperator( "LambdaRankNdcg", ["y", "r", "session_lengths"], ["loss", "dy"], use_ndcg_as_loss=True, use_idcg_normalization=False, use_exp_gain=True, ) workspace.RunOperatorOnce(op) loss = workspace.blobs["loss"] dy = workspace.blobs["dy"] np.testing.assert_allclose(loss, ref_dcg_loss, rtol=1e-5, atol=1e-6) np.testing.assert_allclose(dy, ref_dcg_dy, rtol=1e-5, atol=1e-6) op = core.CreateOperator( "LambdaRankNdcgGradient", ["y", "session_lengths", "dy", "dloss"], ["dy_back"], ) workspace.RunOperatorOnce(op) dy_back = workspace.blobs["dy_back"] for i in range(m): np.testing.assert_allclose( dy_back[i * n : (i + 1) * n], dloss[i] * ref_dcg_dy[i * n : (i + 1) * n], rtol=1e-5, atol=1e-6, ) op = core.CreateOperator( "LambdaRankNdcg", ["y", "r", "session_lengths"], ["loss", "dy"], use_ndcg_as_loss=True, use_idcg_normalization=False, use_exp_gain=False, ) workspace.RunOperatorOnce(op) loss = workspace.blobs["loss"] dy = workspace.blobs["dy"] np.testing.assert_allclose(loss, ref_dcg_loss_no_exp, rtol=1e-5, atol=1e-6) np.testing.assert_allclose(dy, ref_dcg_dy_no_exp, rtol=1e-5, atol=1e-6) op = core.CreateOperator( "LambdaRankNdcgGradient", ["y", "session_lengths", "dy", "dloss"], ["dy_back"], ) workspace.RunOperatorOnce(op) dy_back = workspace.blobs["dy_back"] for i in range(m): np.testing.assert_allclose( dy_back[i * n : (i + 1) * n], dloss[i] * ref_dcg_dy_no_exp[i * n : (i + 1) * n], rtol=1e-5, atol=1e-6, )
pytorch-master
caffe2/python/operator_test/listwise_l2r_operator_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st from hypothesis import given, settings import numpy as np class TestClipTensorByScalingOp(serial.SerializedTestCase): @given(n=st.integers(5, 8), d=st.integers(2, 4), threshold=st.floats(0.1, 10), additional_threshold=st.floats(0.1, 10), use_additional_threshold=st.booleans(), inplace=st.booleans(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_clip_tensor_by_scaling(self, n, d, threshold, additional_threshold, use_additional_threshold, inplace, gc, dc): tensor = np.random.rand(n, d).astype(np.float32) val = np.array(np.linalg.norm(tensor)) additional_threshold = np.array([additional_threshold]).astype(np.float32) def clip_tensor_by_scaling_ref(tensor_data, val_data, additional_threshold=None): if additional_threshold is not None: final_threshold = threshold * additional_threshold else: final_threshold = threshold if val_data > final_threshold: ratio = final_threshold / float(val_data) tensor_data = tensor_data * ratio return [tensor_data] op = core.CreateOperator( "ClipTensorByScaling", ["tensor", "val"] if not use_additional_threshold else ( ["tensor", "val", "additional_threshold"]), ['Y'] if not inplace else ["tensor"], threshold=threshold, ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[tensor, val] if not use_additional_threshold else ( [tensor, val, additional_threshold]), reference=clip_tensor_by_scaling_ref, ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/clip_tensor_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.extra.numpy as hnp import hypothesis.strategies as st import numpy as np @st.composite def id_list_batch(draw): num_inputs = draw(st.integers(1, 3)) batch_size = draw(st.integers(5, 10)) values_dtype = draw(st.sampled_from([np.int32, np.int64])) inputs = [] for _ in range(num_inputs): size = draw(st.integers(5, 10)) values = draw(hnp.arrays(values_dtype, size, st.integers(1, 10))) lengths = draw(hu.lengths(len(values), min_segments=batch_size, max_segments=batch_size)) inputs.append(lengths) inputs.append(values) return inputs def merge_id_lists_ref(*args): n = len(args) assert n > 0 assert n % 2 == 0 batch_size = len(args[0]) num_inputs = int(n / 2) lengths = np.array([np.insert(args[2 * i], 0, 0) for i in range(num_inputs)]) values = [args[2 * i + 1] for i in range(num_inputs)] offsets = [np.cumsum(lengths[j]) for j in range(num_inputs)] def merge_arrays(vs, offs, j): concat = np.concatenate([vs[i][offs[i][j]:offs[i][j + 1]] for i in range(num_inputs)]) return np.sort(np.unique(concat)) merged = [merge_arrays(values, offsets, j) for j in range(batch_size)] merged_lengths = np.array([len(x) for x in merged]) merged_values = np.concatenate(merged) return merged_lengths, merged_values class TestMergeIdListsOp(serial.SerializedTestCase): def test_merge_id_lists_ref(self): # Verify that the reference implementation is correct! lengths_0 = np.array([3, 0, 4], dtype=np.int32) values_0 = np.array([1, 5, 6, 2, 4, 5, 6], dtype=np.int64) lengths_1 = np.array([3, 2, 1], dtype=np.int32) values_1 = np.array([5, 8, 9, 14, 9, 5], dtype=np.int64) merged_lengths, merged_values = merge_id_lists_ref( lengths_0, values_0, lengths_1, values_1) expected_lengths = np.array([5, 2, 4], dtype=np.int32) expected_values = np.array([1, 5, 6, 8, 9, 9, 14, 2, 4, 5, 6], dtype=np.int64) np.testing.assert_array_equal(merged_lengths, expected_lengths) np.testing.assert_array_equal(merged_values, expected_values) @serial.given(inputs=id_list_batch(), **hu.gcs_cpu_only) def test_merge_id_lists_op(self, inputs, gc, dc): num_inputs = int(len(inputs) / 2) op = core.CreateOperator( "MergeIdLists", ["{prefix}_{i}".format(prefix=p, i=i) for i in range(num_inputs) for p in ["lengths", "values"]], ["merged_lengths", "merged_values"] ) self.assertDeviceChecks(dc, op, inputs, [0]) self.assertReferenceChecks(gc, op, inputs, merge_id_lists_ref)
pytorch-master
caffe2/python/operator_test/merge_id_lists_op_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import unittest class TestSoftplus(hu.HypothesisTestCase): @given(X=hu.tensor(), **hu.gcs) @settings(deadline=10000) def test_softplus(self, X, gc, dc): op = core.CreateOperator("Softplus", ["X"], ["Y"]) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/softplus_op_test.py
from hypothesis import given import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestFlatten(hu.HypothesisTestCase): @given(X=hu.tensor(min_dim=2, max_dim=4), **hu.gcs) def test_flatten(self, X, gc, dc): for axis in range(X.ndim + 1): op = core.CreateOperator( "Flatten", ["X"], ["Y"], axis=axis) def flatten_ref(X): shape = X.shape outer = np.prod(shape[:axis]).astype(int) inner = np.prod(shape[axis:]).astype(int) return np.copy(X).reshape(outer, inner), self.assertReferenceChecks(gc, op, [X], flatten_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X], [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/flatten_op_test.py
from caffe2.python import core, workspace from hypothesis import assume, given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestReductionOps(serial.SerializedTestCase): @serial.given(n=st.integers(5, 8), **hu.gcs) def test_elementwise_sum(self, n, gc, dc): X = np.random.rand(n).astype(np.float32) def sum_op(X): return [np.sum(X)] op = core.CreateOperator( "SumElements", ["X"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=sum_op, ) self.assertGradientChecks( device_option=gc, op=op, inputs=[X], outputs_to_check=0, outputs_with_grads=[0], ) @given(n=st.integers(5, 8), **hu.gcs) @settings(deadline=10000) def test_elementwise_int_sum(self, n, gc, dc): X = np.random.rand(n).astype(np.int32) def sum_op(X): return [np.sum(X)] op = core.CreateOperator( "SumElementsInt", ["X"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=sum_op, ) @given(n=st.integers(1, 65536), dtype=st.sampled_from([np.float32, np.float16]), **hu.gcs) @settings(deadline=10000) def test_elementwise_sqrsum(self, n, dtype, gc, dc): if dtype == np.float16: # fp16 is only supported with CUDA/HIP assume(gc.device_type == workspace.GpuDeviceType) dc = [d for d in dc if d.device_type == workspace.GpuDeviceType] X = np.random.rand(n).astype(dtype) def sumsqr_op(X): return [np.sum(X * X)] op = core.CreateOperator( "SumSqrElements", ["X"], ["y"] ) threshold = 0.01 if dtype == np.float16 else 0.005 self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=sumsqr_op, threshold=threshold, ) @given(n=st.integers(5, 8), **hu.gcs) def test_elementwise_avg(self, n, gc, dc): X = np.random.rand(n).astype(np.float32) def avg_op(X): return [np.mean(X)] op = core.CreateOperator( "SumElements", ["X"], ["y"], average=1 ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=avg_op, ) self.assertGradientChecks( device_option=gc, op=op, inputs=[X], outputs_to_check=0, outputs_with_grads=[0], ) @serial.given(batch_size=st.integers(1, 3), m=st.integers(1, 3), n=st.integers(1, 4), **hu.gcs) def test_rowwise_max(self, batch_size, m, n, gc, dc): X = np.random.rand(batch_size, m, n).astype(np.float32) def rowwise_max(X): return [np.max(X, axis=2)] op = core.CreateOperator( "RowwiseMax", ["x"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=rowwise_max, ) @serial.given(batch_size=st.integers(1, 3), m=st.integers(1, 3), n=st.integers(1, 4), **hu.gcs) def test_columnwise_max(self, batch_size, m, n, gc, dc): X = np.random.rand(batch_size, m, n).astype(np.float32) def columnwise_max(X): return [np.max(X, axis=1)] op = core.CreateOperator( "ColwiseMax", ["x"], ["y"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=columnwise_max, ) # Test shape inference logic net = core.Net("test_shape_inference") workspace.FeedBlob("x", X) output = net.ColwiseMax(["x"], ["y"]) (shapes, types) = workspace.InferShapesAndTypes([net]) workspace.RunNetOnce(net) self.assertEqual(shapes[output], list(workspace.blobs[output].shape)) self.assertEqual(shapes[output], [X.shape[0]] + [X.shape[2]]) self.assertEqual(types[output], core.DataType.FLOAT)
pytorch-master
caffe2/python/operator_test/reduction_ops_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestCTCGreedyDecoderOp(serial.SerializedTestCase): @given( batch=st.sampled_from([2, 4, 128, 256]), max_time=st.sampled_from([2, 10, 30, 50]), num_classes=st.sampled_from([2, 10, 26, 40]), merge_repeated=st.sampled_from([True, False]), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_ctc_greedy_decoder( self, batch, max_time, num_classes, merge_repeated, gc, dc ): def input_generater(): inputs = np.random.rand(max_time, batch, num_classes)\ .astype(np.float32) seq_len = np.random.randint(1, max_time + 1, size=batch)\ .astype(np.int32) return inputs, seq_len def ref_ctc_decoder(inputs, seq_len): merge = merge_repeated output_len = np.array([]).astype(np.int32) val = np.array([]).astype(np.int32) for i in range(batch): prev_id = 0 t_dec = 0 len_i = seq_len[i] if seq_len is not None else max_time for t in range(len_i): max_id = np.argmax(inputs[t, i, :]) if max_id == 0: prev_id = max_id continue if max_id == prev_id and merge: prev_id = max_id continue t_dec += 1 val = np.append(val, max_id) prev_id = max_id output_len = np.append(output_len, t_dec) return [output_len, val] def ref_ctc_decoder_max_time(inputs): return ref_ctc_decoder(inputs, None) inputs, seq_len = input_generater() op = core.CreateOperator('CTCGreedyDecoder', ['INPUTS', 'SEQ_LEN'], ['OUTPUT_LEN', 'VALUES'], merge_repeated=merge_repeated) self.assertReferenceChecks( device_option=gc, op=op, inputs=[inputs, seq_len], reference=ref_ctc_decoder, ) op_1 = core.CreateOperator('CTCGreedyDecoder', ['INPUTS'], ['OUTPUT_LEN', 'VALUES'], merge_repeated=merge_repeated) self.assertReferenceChecks( device_option=gc, op=op_1, inputs=[inputs], reference=ref_ctc_decoder_max_time, ) @given( batch=st.sampled_from([2, 4, 128, 256]), max_time=st.sampled_from([2, 10, 30, 50]), num_classes=st.sampled_from([2, 10, 26, 40]), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_ctc_greedy_decoder_no_merge_arg( self, batch, max_time, num_classes, gc, dc ): def input_generater(): inputs = np.random.rand(max_time, batch, num_classes)\ .astype(np.float32) seq_len = np.random.randint(1, max_time + 1, size=batch)\ .astype(np.int32) return inputs, seq_len def ref_ctc_decoder_no_merge_arg(inputs, seq_len): merge = True output_len = np.array([]).astype(np.int32) val = np.array([]).astype(np.int32) for i in range(batch): prev_id = 0 t_dec = 0 len_i = seq_len[i] if seq_len is not None else max_time for t in range(len_i): max_id = np.argmax(inputs[t, i, :]) if max_id == 0: prev_id = max_id continue if max_id == prev_id and merge: prev_id = max_id continue t_dec += 1 val = np.append(val, max_id) prev_id = max_id output_len = np.append(output_len, t_dec) return [output_len, val] def ref_ctc_decoder_max_time(inputs): return ref_ctc_decoder_no_merge_arg(inputs, None) inputs, seq_len = input_generater() op = core.CreateOperator('CTCGreedyDecoder', ['INPUTS'], ['OUTPUT_LEN', 'VALUES']) self.assertReferenceChecks( device_option=gc, op=op, inputs=[inputs], reference=ref_ctc_decoder_max_time, ) if __name__ == "__main__": import random random.seed(2603) unittest.main()
pytorch-master
caffe2/python/operator_test/ctc_greedy_decoder_op_test.py
from caffe2.python import core from hypothesis import given import caffe2.python.hypothesis_test_util as hu import numpy as np class TestBucketizeOp(hu.HypothesisTestCase): @given( x=hu.tensor( min_dim=1, max_dim=2, dtype=np.float32, elements=hu.floats(min_value=-5, max_value=5)), **hu.gcs) def test_bucketize_op(self, x, gc, dc): length = np.random.randint(low=1, high=5) boundaries = np.random.randn(length) * 5 boundaries.sort() def ref(x, boundaries): bucket_idx = np.digitize(x, boundaries, right=True) return [bucket_idx] op = core.CreateOperator('Bucketize', ["X"], ["INDICES"], boundaries=boundaries) self.assertReferenceChecks(gc, op, [x, boundaries], ref) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/bucketize_op_test.py
import numpy as np from hypothesis import given, settings import hypothesis.strategies as st from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestClip(serial.SerializedTestCase): @given(X=hu.tensor(min_dim=0), min_=st.floats(min_value=-2, max_value=0), max_=st.floats(min_value=0, max_value=2), inplace=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_clip(self, X, min_, max_, inplace, gc, dc): # go away from the origin point to avoid kink problems if np.isscalar(X): X = np.array([], dtype=np.float32) else: X[np.abs(X - min_) < 0.05] += 0.1 X[np.abs(X - max_) < 0.05] += 0.1 def clip_ref(X): X = X.clip(min_, max_) return (X,) op = core.CreateOperator( "Clip", ["X"], ["Y" if not inplace else "X"], min=min_, max=max_) self.assertReferenceChecks(gc, op, [X], clip_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X], [0]) # Gradient check wrt X self.assertGradientChecks(gc, op, [X], 0, [0]) @given(X=hu.tensor(min_dim=0), inplace=st.booleans(), **hu.gcs) def test_clip_default(self, X, inplace, gc, dc): # go away from the origin point to avoid kink problems if np.isscalar(X): X = np.array([], dtype=np.float32) else: X += 0.04 * np.sign(X) def clip_ref(X): return (X,) op = core.CreateOperator( "Clip", ["X"], ["Y" if not inplace else "X"]) self.assertReferenceChecks(gc, op, [X], clip_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X], [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/clip_op_test.py
from caffe2.python import brew, core, utils, workspace import caffe2.python.hip_test_util as hiputl import caffe2.python.hypothesis_test_util as hu from caffe2.python.model_helper import ModelHelper import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, assume, settings import hypothesis.strategies as st import numpy as np import unittest class TestSpatialBN(serial.SerializedTestCase): @serial.given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), inplace=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_spatialbn_test_mode_3d( self, size, input_channels, batch_size, seed, order, epsilon, inplace, engine, gc, dc): op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["X" if inplace else "Y"], order=order, is_test=True, epsilon=epsilon, engine=engine, ) def reference_spatialbn_test(X, scale, bias, mean, var): if order == "NCHW": scale = scale[np.newaxis, :, np.newaxis, np.newaxis, np.newaxis] bias = bias[np.newaxis, :, np.newaxis, np.newaxis, np.newaxis] mean = mean[np.newaxis, :, np.newaxis, np.newaxis, np.newaxis] var = var[np.newaxis, :, np.newaxis, np.newaxis, np.newaxis] return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,) np.random.seed(1701) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand(batch_size, input_channels, size, size, size)\ .astype(np.float32) - 0.5 if order == "NHWC": X = utils.NCHW2NHWC(X) self.assertReferenceChecks(gc, op, [X, scale, bias, mean, var], reference_spatialbn_test) self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0]) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), inplace=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_spatialbn_test_mode_1d( self, size, input_channels, batch_size, seed, order, epsilon, inplace, engine, gc, dc): # Currently MIOPEN SpatialBN only supports 2D if hiputl.run_in_hip(gc, dc): assume(engine != "CUDNN") op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["X" if inplace else "Y"], order=order, is_test=True, epsilon=epsilon, engine=engine, ) def reference_spatialbn_test(X, scale, bias, mean, var): if order == "NCHW": scale = scale[np.newaxis, :, np.newaxis] bias = bias[np.newaxis, :, np.newaxis] mean = mean[np.newaxis, :, np.newaxis] var = var[np.newaxis, :, np.newaxis] return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,) np.random.seed(1701) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2) self.assertReferenceChecks(gc, op, [X, scale, bias, mean, var], reference_spatialbn_test) self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0]) @given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), engine=st.sampled_from(["", "CUDNN"]), inplace=st.booleans(), **hu.gcs) def test_spatialbn_test_mode( self, size, input_channels, batch_size, seed, order, epsilon, inplace, engine, gc, dc): # Currently HIP SpatialBN only supports NCHW if hiputl.run_in_hip(gc, dc): assume(order == "NCHW") op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["X" if inplace else "Y"], order=order, is_test=True, epsilon=epsilon, engine=engine ) def reference_spatialbn_test(X, scale, bias, mean, var): if order == "NCHW": scale = scale[np.newaxis, :, np.newaxis, np.newaxis] bias = bias[np.newaxis, :, np.newaxis, np.newaxis] mean = mean[np.newaxis, :, np.newaxis, np.newaxis] var = var[np.newaxis, :, np.newaxis, np.newaxis] return ((X - mean) / np.sqrt(var + epsilon) * scale + bias,) np.random.seed(1701) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2).swapaxes(2, 3) self.assertReferenceChecks(gc, op, [X, scale, bias, mean, var], reference_spatialbn_test) self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0]) @given(size=st.integers(1, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), epsilon=st.floats(1e-5, 1e-2), momentum=st.floats(0.5, 0.9), engine=st.sampled_from(["", "CUDNN"]), inplace=st.sampled_from([True, False]), **hu.gcs) def test_spatialbn_train_mode( self, size, input_channels, batch_size, seed, order, epsilon, momentum, inplace, engine, gc, dc): # Currently HIP SpatialBN only supports NCHW if hiputl.run_in_hip(gc, dc): assume(order == "NCHW") assume(batch_size == 0 or batch_size * size * size > 1) op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "running_mean", "running_var"], ["X" if inplace else "Y", "running_mean", "running_var", "saved_mean", "saved_var"], order=order, is_test=False, epsilon=epsilon, momentum=momentum, engine=engine, ) np.random.seed(1701) scale = np.random.randn(input_channels).astype(np.float32) bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.randn( batch_size, input_channels, size, size).astype(np.float32) if order == "NHWC": X = np.transpose(X, (0, 2, 3, 1)) def batch_norm_ref(X, scale, bias, running_mean, running_var): if batch_size == 0: Y = np.zeros(X.shape) saved_mean = np.zeros(running_mean.shape) saved_var = np.zeros(running_var.shape) return (Y, running_mean, running_var, saved_mean, saved_var) if order == "NHWC": X = np.transpose(X, (0, 3, 1, 2)) C = X.shape[1] reduce_size = batch_size * size * size saved_mean = np.mean(X, (0, 2, 3)) saved_var = np.var(X, (0, 2, 3)) if reduce_size == 1: unbias_scale = float('inf') else: unbias_scale = reduce_size / (reduce_size - 1) running_mean = momentum * running_mean + ( 1.0 - momentum) * saved_mean running_var = momentum * running_var + ( 1.0 - momentum) * unbias_scale * saved_var std = np.sqrt(saved_var + epsilon) broadcast_shape = (1, C, 1, 1) Y = (X - np.reshape(saved_mean, broadcast_shape)) / np.reshape( std, broadcast_shape) * np.reshape( scale, broadcast_shape) + np.reshape(bias, broadcast_shape) if order == "NHWC": Y = np.transpose(Y, (0, 2, 3, 1)) return (Y, running_mean, running_var, saved_mean, 1.0 / std) self.assertReferenceChecks(gc, op, [X, scale, bias, mean, var], batch_norm_ref) self.assertDeviceChecks(dc, op, [X, scale, bias, mean, var], [0, 1, 2, 3, 4]) @given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), momentum=st.floats(0.5, 0.9), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=None, max_examples=50) def test_spatialbn_train_mode_gradient_check( self, size, input_channels, batch_size, seed, order, epsilon, momentum, engine, gc, dc): # Currently HIP SpatialBN only supports NCHW if hiputl.run_in_hip(gc, dc): assume(order == "NCHW") op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["Y", "mean", "var", "saved_mean", "saved_var"], order=order, is_test=False, epsilon=epsilon, momentum=momentum, engine=engine ) np.random.seed(seed) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2).swapaxes(2, 3) for input_to_check in [0, 1, 2]: # dX, dScale, dBias self.assertGradientChecks(gc, op, [X, scale, bias, mean, var], input_to_check, [0]) @given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), order=st.sampled_from(["NCHW", "NHWC"]), epsilon=st.floats(min_value=1e-5, max_value=1e-2), momentum=st.floats(min_value=0.5, max_value=0.9), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_spatialbn_train_mode_gradient_check_1d( self, size, input_channels, batch_size, seed, order, epsilon, momentum, engine, gc, dc): # Currently MIOPEN SpatialBN only supports 2D if hiputl.run_in_hip(gc, dc): assume(engine != "CUDNN") op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var"], ["Y", "mean", "var", "saved_mean", "saved_var"], order=order, is_test=False, epsilon=epsilon, momentum=momentum, engine=engine, ) np.random.seed(seed) scale = np.random.rand(input_channels).astype(np.float32) + 0.5 bias = np.random.rand(input_channels).astype(np.float32) - 0.5 mean = np.random.randn(input_channels).astype(np.float32) var = np.random.rand(input_channels).astype(np.float32) + 0.5 X = np.random.rand( batch_size, input_channels, size).astype(np.float32) - 0.5 if order == "NHWC": X = X.swapaxes(1, 2) for input_to_check in [0, 1, 2]: # dX, dScale, dBias self.assertGradientChecks(gc, op, [X, scale, bias, mean, var], input_to_check, [0], stepsize=0.01) @given(N=st.integers(0, 5), C=st.integers(1, 10), H=st.integers(1, 5), W=st.integers(1, 5), epsilon=st.floats(1e-5, 1e-2), momentum=st.floats(0.5, 0.9), order=st.sampled_from(["NCHW", "NHWC"]), num_batches=st.integers(2, 5), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_spatial_bn_multi_batch( self, N, C, H, W, epsilon, momentum, order, num_batches, in_place, engine, gc, dc): if in_place: outputs = ["Y", "mean", "var", "batch_mean", "batch_var"] else: outputs = ["Y", "mean", "var", "saved_mean", "saved_var"] op = core.CreateOperator( "SpatialBN", ["X", "scale", "bias", "mean", "var", "batch_mean", "batch_var"], outputs, order=order, is_test=False, epsilon=epsilon, momentum=momentum, num_batches=num_batches, engine=engine, ) if order == "NCHW": X = np.random.randn(N, C, H, W).astype(np.float32) else: X = np.random.randn(N, H, W, C).astype(np.float32) scale = np.random.randn(C).astype(np.float32) bias = np.random.randn(C).astype(np.float32) mean = np.random.randn(C).astype(np.float32) var = np.random.rand(C).astype(np.float32) batch_mean = np.random.rand(C).astype(np.float32) - 0.5 batch_var = np.random.rand(C).astype(np.float32) + 1.0 inputs = [X, scale, bias, mean, var, batch_mean, batch_var] def spatial_bn_multi_batch_ref( X, scale, bias, mean, var, batch_mean, batch_var): if N == 0: batch_mean = np.zeros(C).astype(np.float32) batch_var = np.zeros(C).astype(np.float32) else: size = num_batches * N * H * W batch_mean /= size batch_var = batch_var / size - np.square(batch_mean) mean = momentum * mean + (1.0 - momentum) * batch_mean var = momentum * var + (1.0 - momentum) * ( size / (size - 1)) * batch_var batch_var = 1.0 / np.sqrt(batch_var + epsilon) if order == "NCHW": scale = np.reshape(scale, (C, 1, 1)) bias = np.reshape(bias, (C, 1, 1)) batch_mean = np.reshape(batch_mean, (C, 1, 1)) batch_var = np.reshape(batch_var, (C, 1, 1)) Y = (X - batch_mean) * batch_var * scale + bias if order == "NCHW": batch_mean = np.reshape(batch_mean, (C)) batch_var = np.reshape(batch_var, (C)) return (Y, mean, var, batch_mean, batch_var) self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=spatial_bn_multi_batch_ref, ) self.assertDeviceChecks(dc, op, inputs, [0, 1, 2, 3, 4]) @given(N=st.integers(0, 5), C=st.integers(1, 10), H=st.integers(1, 5), W=st.integers(1, 5), epsilon=st.floats(1e-5, 1e-2), order=st.sampled_from(["NCHW", "NHWC"]), num_batches=st.integers(2, 5), in_place=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=None) def test_spatial_bn_multi_batch_grad( self, N, C, H, W, epsilon, order, num_batches, in_place, engine, gc, dc): if in_place: outputs = ["dX", "dscale_sum", "dbias_sum"] else: outputs = ["dX", "dscale", "dbias"] op = core.CreateOperator( "SpatialBNGradient", ["X", "scale", "dY", "mean", "rstd", "dscale_sum", "dbias_sum"], outputs, order=order, epsilon=epsilon, num_batches=num_batches, engine=engine, ) if order == "NCHW": dY = np.random.randn(N, C, H, W).astype(np.float32) X = np.random.randn(N, C, H, W).astype(np.float32) else: dY = np.random.randn(N, H, W, C).astype(np.float32) X = np.random.randn(N, H, W, C).astype(np.float32) scale = np.random.randn(C).astype(np.float32) mean = np.random.randn(C).astype(np.float32) rstd = np.random.rand(C).astype(np.float32) dscale_sum = np.random.randn(C).astype(np.float32) dbias_sum = np.random.randn(C).astype(np.float32) inputs = [X, scale, dY, mean, rstd, dscale_sum, dbias_sum] def spatial_bn_multi_batch_grad_ref( X, scale, dY, mean, rstd, dscale_sum, dbias_sum): if N == 0: dscale = np.zeros(C).astype(np.float32) dbias = np.zeros(C).astype(np.float32) alpha = np.zeros(C).astype(np.float32) beta = np.zeros(C).astype(np.float32) gamma = np.zeros(C).astype(np.float32) else: dscale = dscale_sum / num_batches dbias = dbias_sum / num_batches alpha = scale * rstd beta = -alpha * dscale * rstd / (N * H * W) gamma = alpha * (mean * dscale * rstd - dbias) / (N * H * W) if order == "NCHW": alpha = np.reshape(alpha, (C, 1, 1)) beta = np.reshape(beta, (C, 1, 1)) gamma = np.reshape(gamma, (C, 1, 1)) dX = alpha * dY + beta * X + gamma return (dX, dscale, dbias) self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=spatial_bn_multi_batch_grad_ref, ) self.assertDeviceChecks(dc, op, inputs, [0, 1, 2]) @given(size=st.integers(7, 10), input_channels=st.integers(1, 10), batch_size=st.integers(0, 3), seed=st.integers(0, 65535), epsilon=st.floats(1e-5, 1e-2), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) def test_spatialbn_brew_wrapper( self, size, input_channels, batch_size, seed, epsilon, engine, gc, dc): np.random.seed(seed) X = np.random.rand( batch_size, input_channels, size, size).astype(np.float32) workspace.FeedBlob('X', X) model = ModelHelper(name='test_spatialbn_brew_wrapper') brew.spatial_bn( model, 'X', 'Y', input_channels, epsilon=epsilon, is_test=False, ) workspace.RunNetOnce(model.param_init_net) workspace.RunNetOnce(model.net) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/spatial_bn_op_test.py
import unittest import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core, utils, workspace from hypothesis import assume, given def _cudnn_supports(dilation=False, nhwc=False): """Return True if cuDNN supports this configuration.""" v = workspace.GetCuDNNVersion() if dilation and v < 6000: # Dilation not supported until v6 return False if dilation and nhwc: # Dilation and NHWC not supported together return False return True def _conv_1d_output_size(size, kernel, pad, dilation, stride): return max(1, int((size + pad * 2 - (dilation * (kernel - 1) + 1)) / stride) + 1) def _conv_2d_output_size(size, kernel, pad_h, pad_w, dilation, stride_h, stride_w): return [ _conv_1d_output_size(size, kernel, pad_h, dilation, stride_h), _conv_1d_output_size(size, kernel, pad_w, dilation, stride_w), ] def _conv_2d_offsets_dims( batch_size, size, kernel, pad_h, pad_w, dilation, stride_h, stride_w, deformable_group, ): dims = [batch_size, 2 * kernel * kernel * deformable_group] dims.extend( _conv_2d_output_size(size, kernel, pad_h, pad_w, dilation, stride_h, stride_w) ) return dims def _conv_2d_random_offsets(batch_size, kernel, dims, num_deformable_group): o = [] for y0 in range(0, kernel): for x0 in range(0, kernel): # stay away from integer offsets which correspond to "ridges" on the # interpolated surface resulting in less precise estimates x = np.random.randint(0, kernel) + np.random.uniform(0.05, 0.95) y = np.random.randint(0, kernel) + np.random.uniform(0.05, 0.95) o.append(y - y0) o.append(x - x0) o = o * num_deformable_group e = [] for v in o: e.append([[v] * dims[1]] * dims[0]) return np.array([e] * batch_size).astype(np.float32) def _conv_2d_shuffle_offsets( batch_size, kernel, dims, num_deformable_group, input_channels, output_channels ): o = [] w0 = [[0 for x in range(kernel)] for y in range(kernel)] for y0 in range(0, kernel): for x0 in range(0, kernel): x = np.random.randint(0, kernel) y = np.random.randint(0, kernel) o.append(y - y0) o.append(x - x0) w0[y][x] += 1 o = o * num_deformable_group e = [] for v in o: e.append([[v] * int(dims[1])] * int(dims[0])) w0 = [[w0] * input_channels] * output_channels return ( np.array([e] * batch_size).astype(np.float32), utils.NCHW2NHWC(np.array(w0).astype(np.float32)), ) class TestConvolution(hu.HypothesisTestCase): @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given( stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW"]), engine=st.sampled_from(["", "CUDNN", "MKLDNN"]), use_bias=st.booleans(), deformable_group=st.integers(1, 3), **hu.gcs_gpu_only ) def test_null_offset_convolution( self, stride, pad, kernel, dilation, size, input_channels, output_channels, batch_size, order, engine, use_bias, deformable_group, gc, dc, ): dkernel = dilation * (kernel - 1) + 1 if gc.device_type == caffe2_pb2.CUDA and engine == "CUDNN": assume(_cudnn_supports(dilation=(dilation > 1), nhwc=(order == "NHWC"))) assume(engine != "MKLDNN" or use_bias is True) op = core.CreateOperator( "DeformConv", ["X", "o", "w", "b"] if use_bias else ["X", "o", "w"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, deformable_group=deformable_group, ) offset_dims = _conv_2d_offsets_dims( batch_size, size, kernel, pad, pad, dilation, stride, stride, deformable_group, ) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) o = np.zeros(tuple(offset_dims), np.float32) w = ( np.random.rand(output_channels, kernel, kernel, input_channels).astype( np.float32 ) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, o, w, b] if use_bias else [X, o, w] # Error handling path. if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if input_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if output_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return def reference_conv_op(*args): reference_op = core.CreateOperator( "Conv", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y0"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, device_option=gc, ) workspace.RunOperatorOnce(reference_op) reference_blob = workspace.FetchBlob("Y0") return (reference_blob,) self.assertReferenceChecks(gc, op, inputs, reference_conv_op) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given( stride=st.integers(1, 3), pad=st.integers(0, 0), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW"]), engine=st.sampled_from(["", "CUDNN", "MKLDNN"]), use_bias=st.booleans(), deformable_group=st.integers(1, 4), **hu.gcs_gpu_only ) def test_flat_input_convolution( self, stride, pad, kernel, dilation, size, input_channels, output_channels, batch_size, order, engine, use_bias, deformable_group, gc, dc, ): dkernel = dilation * (kernel - 1) + 1 if gc.device_type == caffe2_pb2.CUDA and engine == "CUDNN": assume(_cudnn_supports(dilation=(dilation > 1), nhwc=(order == "NHWC"))) assume(engine != "MKLDNN" or use_bias is True) op = core.CreateOperator( "DeformConv", ["X", "o", "w", "b"] if use_bias else ["X", "o", "w"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, deformable_group=deformable_group, ) X = np.ones((batch_size, size, size, input_channels), np.float32) - 0.5 output_size = _conv_2d_output_size( size, kernel, pad, pad, dilation, stride, stride ) o = _conv_2d_random_offsets(batch_size, kernel, output_size, deformable_group) w = np.ones((output_channels, kernel, kernel, input_channels), np.float32) - 0.5 b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, o, w, b] if use_bias else [X, o, w] # Error handling path. if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if input_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if output_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return def reference_conv_op(*args): reference_op = core.CreateOperator( "Conv", ["X", "w", "b"] if use_bias else ["X", "w"], ["Y0"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, device_option=gc, ) workspace.RunOperatorOnce(reference_op) reference_blob = workspace.FetchBlob("Y0") return (reference_blob,) self.assertReferenceChecks(gc, op, inputs, reference_conv_op) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given( stride=st.integers(1, 1), pad=st.integers(0, 0), kernel=st.integers(1, 5), dilation=st.integers(1, 1), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW"]), engine=st.sampled_from(["", "CUDNN", "MKLDNN"]), use_bias=st.booleans(), deformable_group=st.integers(1, 4), **hu.gcs_gpu_only ) def test_shuffle_input_convolution( self, stride, pad, kernel, dilation, size, input_channels, output_channels, batch_size, order, engine, use_bias, deformable_group, gc, dc, ): dkernel = dilation * (kernel - 1) + 1 if gc.device_type == caffe2_pb2.CUDA and engine == "CUDNN": assume(_cudnn_supports(dilation=(dilation > 1), nhwc=(order == "NHWC"))) assume(engine != "MKLDNN" or use_bias is True) op = core.CreateOperator( "DeformConv", ["X", "o", "w", "b"] if use_bias else ["X", "o", "w"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, deformable_group=deformable_group, ) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) output_size = _conv_2d_output_size( size, kernel, pad, pad, dilation, stride, stride ) o, w0 = _conv_2d_shuffle_offsets( batch_size, kernel, output_size, deformable_group, input_channels, output_channels, ) w = np.ones((output_channels, kernel, kernel, input_channels), np.float32) b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) w0 = utils.NHWC2NCHW(w0) inputs = [X, o, w, b] if use_bias else [X, o, w] # Error handling path. if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if input_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if output_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return def reference_conv_op(*args): with core.DeviceScope(gc): workspace.FeedBlob("w0", w0) reference_op = core.CreateOperator( "Conv", ["X", "w0", "b"] if use_bias else ["X", "w0"], ["Y0"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, device_option=gc, ) workspace.RunOperatorOnce(reference_op) reference_blob = workspace.FetchBlob("Y0") return (reference_blob,) self.assertReferenceChecks(gc, op, inputs, reference_conv_op) # CUDNN does NOT support different padding values and we skip it @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given( stride_h=st.integers(1, 3), stride_w=st.integers(1, 3), pad_h=st.integers(0, 3), pad_w=st.integers(0, 3), kernel=st.integers(2, 5), size=st.integers(1, 8), input_channels=st.integers(1, 3), output_channels=st.integers(1, 3), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW"]), shared_buffer=st.booleans(), use_bias=st.booleans(), deformable_group=st.integers(1, 3), **hu.gcs_gpu_only ) def test_conv_separate_stride_pad_gradients( self, stride_h, stride_w, pad_h, pad_w, kernel, size, input_channels, output_channels, batch_size, order, shared_buffer, use_bias, deformable_group, gc, dc, ): op = core.CreateOperator( "DeformConv", ["X", "o", "w", "b"] if use_bias else ["X", "o", "w"], ["Y"], stride_h=stride_h, stride_w=stride_w, pad_t=pad_h, pad_l=pad_w, pad_b=pad_h, pad_r=pad_w, kernel=kernel, order=order, shared_buffer=int(shared_buffer), deformable_group=deformable_group, ) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) output_size = _conv_2d_output_size( size, kernel, pad_h, pad_w, 1, stride_h, stride_w ) o = _conv_2d_random_offsets(batch_size, kernel, output_size, deformable_group) w = ( np.random.rand(output_channels, kernel, kernel, input_channels).astype( np.float32 ) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, o, w, b] if use_bias else [X, o, w] # Error handling path. if size + pad_h * 2 < kernel or size + pad_w * 2 < kernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if input_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if output_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) @unittest.skipIf(not workspace.has_gpu_support, "No gpu support") @given( stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), input_channels=st.integers(1, 8), output_channels=st.integers(1, 8), batch_size=st.integers(1, 3), order=st.sampled_from(["NCHW"]), engine=st.sampled_from(["", "CUDNN", "MKLDNN"]), use_bias=st.booleans(), deformable_group=st.integers(1, 3), **hu.gcs_gpu_only ) def test_conv_gradients( self, stride, pad, kernel, dilation, size, input_channels, output_channels, batch_size, order, engine, use_bias, deformable_group, gc, dc, ): dkernel = dilation * (kernel - 1) + 1 if gc.device_type == caffe2_pb2.CUDA and engine == "CUDNN": assume(_cudnn_supports(dilation=(dilation > 1), nhwc=(order == "NHWC"))) assume(engine != "MKLDNN" or use_bias is True) op = core.CreateOperator( "DeformConv", ["X", "o", "w", "b"] if use_bias else ["X", "o", "w"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, engine=engine, deformable_group=deformable_group, ) X = ( np.random.rand(batch_size, size, size, input_channels).astype(np.float32) - 0.5 ) output_size = _conv_2d_output_size( size, kernel, pad, pad, dilation, stride, stride ) o = _conv_2d_random_offsets(batch_size, kernel, output_size, deformable_group) w = ( np.random.rand(output_channels, kernel, kernel, input_channels).astype( np.float32 ) - 0.5 ) b = np.random.rand(output_channels).astype(np.float32) - 0.5 if order == "NCHW": X = utils.NHWC2NCHW(X) w = utils.NHWC2NCHW(w) inputs = [X, o, w, b] if use_bias else [X, o, w] # Error handling path. if size + pad + pad < dkernel or size + pad + pad < dkernel: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if input_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return if output_channels % deformable_group != 0: with self.assertRaises(RuntimeError): self.assertDeviceChecks(dc, op, inputs, [0]) return self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/deform_conv_test.py
import numpy as np from hypothesis import given, settings, assume import hypothesis.strategies as st from caffe2.python import core, utils, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestLocallyConnectedOp(serial.SerializedTestCase): @given(N=st.integers(1, 3), C=st.integers(1, 3), H=st.integers(1, 5), W=st.integers(1, 5), M=st.integers(1, 3), kernel=st.integers(1, 3), op_name=st.sampled_from(["LC", "LC2D"]), order=st.sampled_from(["NCHW", "NHWC"]), use_bias=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_lc_2d( self, N, C, H, W, M, kernel, op_name, order, use_bias, gc, dc): if H < kernel: kernel = H if W < kernel: kernel = W assume(C == kernel * N) op = core.CreateOperator( op_name, ["X", "W", "b"] if use_bias else ["X", "W"], ["Y"], kernels=[kernel, kernel], order=order, engine="", ) Y_H = H - kernel + 1 Y_W = W - kernel + 1 if order == "NCHW": X = np.random.rand(N, C, H, W).astype(np.float32) - 0.5 W = np.random.rand(Y_H, Y_W, M, C, kernel, kernel).astype(np.float32) - 0.5 else: X = np.random.rand(N, H, W, C).astype(np.float32) - 0.5 W = np.random.rand(Y_H, Y_W, M, kernel, kernel, C).astype(np.float32) - 0.5 b = np.random.rand(Y_H, Y_W, M).astype(np.float32) - 0.5 inputs = [X, W, b] if use_bias else [X, W] def lc_2d_nchw(X, W, b=None): N, C, XH, XW = X.shape YH, YW, M, _, KH, KW = W.shape def conv(n, m, yh, yw): sum = b[yh, yw, m] if b is not None else 0 for c in range(C): for kh in range(KH): for kw in range(KW): hh = yh + kh ww = yw + kw sum += X[n, c, hh, ww] * W[yh, yw, m, c, kh, kw] return sum output = np.zeros((N, M, YH, YW), dtype=np.float32) for n in range(N): for m in range(M): for yh in range(YH): for yw in range(YW): output[n, m, yh, yw] = conv(n, m, yh, yw) return [output] def lc_2d_nhwc(X, W, b=None): XT = utils.NHWC2NCHW(X) WT = np.transpose(W, [0, 1, 2, 5, 3, 4]) output = lc_2d_nchw(XT, WT, b) return [utils.NCHW2NHWC(output[0])] ref_op = lc_2d_nchw if order == "NCHW" else lc_2d_nhwc self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=ref_op, ) self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) @given(N=st.integers(1, 3), C=st.integers(1, 3), size=st.integers(1, 5), M=st.integers(1, 3), kernel=st.integers(1, 3), op_name=st.sampled_from(["LC", "LC1D"]), use_bias=st.booleans(), **hu.gcs) @settings(deadline=None) # Increased timeout from 1 second to 5 for ROCM def test_lc_1d(self, N, C, size, M, kernel, op_name, use_bias, gc, dc): if size < kernel: kernel = size op = core.CreateOperator( op_name, ["X", "W", "b"] if use_bias else ["X", "W"], ["Y"], kernels=[kernel], order="NCHW", engine="", ) L = size - kernel + 1 X = np.random.rand(N, C, size).astype(np.float32) - 0.5 W = np.random.rand(L, M, C, kernel).astype(np.float32) - 0.5 b = np.random.rand(L, M).astype(np.float32) - 0.5 inputs = [X, W, b] if use_bias else [X, W] def lc_1d_nchw(X, W, b=None): N, C, XL = X.shape YL, M, _, KL = W.shape def conv(n, m, yl): sum = b[yl, m] if b is not None else 0 for c in range(C): for kl in range(KL): ll = yl + kl sum += X[n, c, ll] * W[yl, m, c, kl] return sum output = np.zeros((N, M, YL), dtype=np.float32) for n in range(N): for m in range(M): for yl in range(YL): output[n, m, yl] = conv(n, m, yl) return [output] self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=lc_1d_nchw, ) self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) @given(N=st.integers(1, 1), C=st.integers(1, 1), T=st.integers(2, 2), H=st.integers(2, 2), W=st.integers(2, 2), M=st.integers(1, 1), kernel=st.integers(2, 2), op_name=st.sampled_from(["LC", "LC3D"]), use_bias=st.booleans(), **hu.gcs) @settings(deadline=None) def test_lc_3d(self, N, C, T, H, W, M, kernel, op_name, use_bias, gc, dc): if T < kernel: kernel = T if H < kernel: kernel = H if W < kernel: kernel = W op = core.CreateOperator( op_name, ["X", "W", "b"] if use_bias else ["X", "W"], ["Y"], kernels=[kernel, kernel, kernel], order="NCHW", engine="", ) Y_T = T - kernel + 1 Y_H = H - kernel + 1 Y_W = W - kernel + 1 X = np.random.rand(N, C, T, H, W).astype(np.float32) - 0.5 W = np.random.rand(Y_T, Y_H, Y_W, M, C, kernel, kernel, kernel).astype(np.float32) - 0.5 b = np.random.rand(Y_T, Y_H, Y_W, M).astype(np.float32) - 0.5 inputs = [X, W, b] if use_bias else [X, W] def lc_3d_nchw(X, W, b=None): N, C, XT, XH, XW = X.shape YT, YH, YW, M, _, KT, KH, KW = W.shape def conv(n, m, yt, yh, yw): sum = b[yt, yh, yw, m] if b is not None else 0 for c in range(C): for kt in range(KT): for kh in range(KH): for kw in range(KW): tt = yt + kt hh = yh + kh ww = yw + kw sum += X[n, c, tt, hh, ww] * \ W[yt, yh, yw, m, c, kt, kh, kw] return sum output = np.zeros((N, M, YT, YH, YW), dtype=np.float32) for n in range(N): for m in range(M): for yt in range(YT): for yh in range(YH): for yw in range(YW): output[n, m, yt, yh, yw] = conv( n, m, yt, yh, yw) return [output] self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=lc_3d_nchw, ) self.assertDeviceChecks(dc, op, inputs, [0]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0])
pytorch-master
caffe2/python/operator_test/locally_connected_op_test.py
import numpy as np from scipy.sparse import coo_matrix from hypothesis import given, settings import hypothesis.strategies as st from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestSparseGradient(hu.HypothesisTestCase): @given(M=st.integers(min_value=5, max_value=20), N=st.integers(min_value=5, max_value=20), K=st.integers(min_value=5, max_value=15), sparsity=st.floats(min_value=0.1, max_value=1.0), **hu.gcs_cpu_only) @settings(deadline=10000) def test_sparse_gradient(self, M, N, K, sparsity, gc, dc): X = np.random.randn(M, K).astype(np.float32) X[X > sparsity] = 0 X_coo = coo_matrix(X) val, key, seg = X_coo.data, X_coo.col, X_coo.row val = val.astype(np.float32) key = key.astype(np.int64) seg = seg.astype(np.int32) Y = np.random.randn(K, N).astype(np.float32) op = core.CreateOperator( 'SparseUnsortedSegmentWeightedSum', ['Y', 'val', 'key', 'seg'], ['out'], num_segments=M) # Gradient check wrt Y self.assertGradientChecks( gc, op, [Y, val, key, seg], 0, [0]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/sparse_gradient_checker_test.py
from caffe2.python import core from hypothesis import given, settings from hypothesis import strategies as st import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import numpy as np import unittest class TestMathOps(serial.SerializedTestCase): @given(X=hu.tensor(), exponent=st.floats(min_value=2.0, max_value=3.0), **hu.gcs) def test_elementwise_power(self, X, exponent, gc, dc): # negative integer raised with non-integer exponent is domain error X = np.abs(X) def powf(X): return (X ** exponent,) def powf_grad(g_out, outputs, fwd_inputs): return (exponent * (fwd_inputs[0] ** (exponent - 1)) * g_out,) op = core.CreateOperator( "Pow", ["X"], ["Y"], exponent=exponent) self.assertReferenceChecks(gc, op, [X], powf, output_to_grad="Y", grad_reference=powf_grad, ensure_outputs_are_inferred=True) @given(X=hu.tensor(), exponent=st.floats(min_value=-3.0, max_value=3.0), **hu.gcs) @settings(deadline=10000) def test_sign(self, X, exponent, gc, dc): def signf(X): return [np.sign(X)] op = core.CreateOperator( "Sign", ["X"], ["Y"]) self.assertReferenceChecks( gc, op, [X], signf, ensure_outputs_are_inferred=True) self.assertDeviceChecks(dc, op, [X], [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/math_ops_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import numpy as np import unittest class TestTrigonometricOp(serial.SerializedTestCase): @given( X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)), **hu.gcs) @settings(deadline=None, max_examples=50) def test_acos(self, X, gc, dc): self.assertTrigonometricChecks("Acos", X, lambda x: (np.arccos(X),), gc, dc) @given( X=hu.tensor(elements=hu.floats(min_value=-0.7, max_value=0.7)), **hu.gcs) @settings(deadline=None, max_examples=50) def test_asin(self, X, gc, dc): self.assertTrigonometricChecks("Asin", X, lambda x: (np.arcsin(X),), gc, dc) @given( X=hu.tensor(elements=hu.floats(min_value=-100, max_value=100)), **hu.gcs) @settings(deadline=None, max_examples=50) def test_atan(self, X, gc, dc): self.assertTrigonometricChecks("Atan", X, lambda x: (np.arctan(X),), gc, dc) @given( X=hu.tensor(elements=hu.floats(min_value=-0.5, max_value=0.5)), **hu.gcs) @settings(deadline=None, max_examples=50) def test_tan(self, X, gc, dc): self.assertTrigonometricChecks("Tan", X, lambda x: (np.tan(X),), gc, dc) def assertTrigonometricChecks(self, op_name, input, reference, gc, dc): op = core.CreateOperator(op_name, ["X"], ["Y"]) self.assertReferenceChecks(gc, op, [input], reference) self.assertDeviceChecks(dc, op, [input], [0]) self.assertGradientChecks(gc, op, [input], 0, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/trigonometric_op_test.py
import numpy as np from hypothesis import given, assume, settings import hypothesis.strategies as st from caffe2.python import core, model_helper, brew, utils import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import unittest class TestInstanceNorm(serial.SerializedTestCase): def _get_inputs(self, N, C, H, W, order): input_data = np.random.rand(N, C, H, W).astype(np.float32) if order == 'NHWC': # Allocate in the same order as NCHW and transpose to make sure # the inputs are identical on freshly-seeded calls. input_data = utils.NCHW2NHWC(input_data) elif order != "NCHW": raise Exception('unknown order type ({})'.format(order)) scale_data = np.random.rand(C).astype(np.float32) bias_data = np.random.rand(C).astype(np.float32) return input_data, scale_data, bias_data def _get_op(self, device_option, store_mean, store_inv_stdev, epsilon, order, inplace=False): outputs = ['output' if not inplace else "input"] if store_mean or store_inv_stdev: outputs += ['mean'] if store_inv_stdev: outputs += ['inv_stdev'] op = core.CreateOperator( 'InstanceNorm', ['input', 'scale', 'bias'], outputs, order=order, epsilon=epsilon, device_option=device_option) return op def _feed_inputs(self, input_blobs, device_option): names = ['input', 'scale', 'bias'] for name, blob in zip(names, input_blobs): self.ws.create_blob(name).feed(blob, device_option=device_option) @given(gc=hu.gcs['gc'], dc=hu.gcs['dc'], N=st.integers(1, 4), C=st.integers(1, 4), H=st.integers(2, 4), W=st.integers(2, 4), order=st.sampled_from(['NCHW', 'NHWC']), epsilon=st.floats(1e-6, 1e-4), store_mean=st.booleans(), seed=st.integers(0, 1000), store_inv_stdev=st.booleans()) @settings(deadline=10000) def test_instance_norm_gradients( self, gc, dc, N, C, H, W, order, store_mean, store_inv_stdev, epsilon, seed): np.random.seed(seed) # force store_inv_stdev if store_mean to match existing forward pass # implementation store_inv_stdev |= store_mean op = self._get_op( device_option=gc, store_mean=store_mean, store_inv_stdev=store_inv_stdev, epsilon=epsilon, order=order) input_data = np.arange(N * C * H * W).astype(np.float32) np.random.shuffle(input_data) if order == "NCHW": input_data = input_data.reshape(N, C, H, W) else: input_data = input_data.reshape(N, H, W, C) scale_data = np.random.randn(C).astype(np.float32) bias_data = np.random.randn(C).astype(np.float32) input_blobs = (input_data, scale_data, bias_data) output_indices = [0] # if store_inv_stdev is turned on, store_mean must also be forced on if store_mean or store_inv_stdev: output_indices += [1] if store_inv_stdev: output_indices += [2] self.assertDeviceChecks(dc, op, input_blobs, output_indices) # The gradient only flows from output #0 since the other two only # store the temporary mean and inv_stdev buffers. # Check dl/dinput self.assertGradientChecks(gc, op, input_blobs, 0, [0]) # Check dl/dscale self.assertGradientChecks(gc, op, input_blobs, 1, [0]) # Check dl/dbias self.assertGradientChecks(gc, op, input_blobs, 2, [0]) @given(gc=hu.gcs['gc'], dc=hu.gcs['dc'], N=st.integers(2, 10), C=st.integers(3, 10), H=st.integers(5, 10), W=st.integers(7, 10), seed=st.integers(0, 1000), epsilon=st.floats(1e-6, 1e-4), store_mean=st.booleans(), store_inv_stdev=st.booleans()) def test_instance_norm_layout(self, gc, dc, N, C, H, W, store_mean, store_inv_stdev, epsilon, seed): # force store_inv_stdev if store_mean to match existing forward pass # implementation store_inv_stdev |= store_mean outputs = {} for order in ('NCHW', 'NHWC'): np.random.seed(seed) input_blobs = self._get_inputs(N, C, H, W, order) self._feed_inputs(input_blobs, device_option=gc) op = self._get_op( device_option=gc, store_mean=store_mean, store_inv_stdev=store_inv_stdev, epsilon=epsilon, order=order) self.ws.run(op) outputs[order] = self.ws.blobs['output'].fetch() np.testing.assert_allclose( outputs['NCHW'], utils.NHWC2NCHW(outputs["NHWC"]), atol=1e-4, rtol=1e-4) @serial.given(gc=hu.gcs['gc'], dc=hu.gcs['dc'], N=st.integers(2, 10), C=st.integers(3, 10), H=st.integers(5, 10), W=st.integers(7, 10), order=st.sampled_from(['NCHW', 'NHWC']), epsilon=st.floats(1e-6, 1e-4), store_mean=st.booleans(), seed=st.integers(0, 1000), store_inv_stdev=st.booleans(), inplace=st.booleans()) def test_instance_norm_reference_check( self, gc, dc, N, C, H, W, order, store_mean, store_inv_stdev, epsilon, seed, inplace): np.random.seed(seed) # force store_inv_stdev if store_mean to match existing forward pass # implementation store_inv_stdev |= store_mean if order != "NCHW": assume(not inplace) inputs = self._get_inputs(N, C, H, W, order) op = self._get_op( device_option=gc, store_mean=store_mean, store_inv_stdev=store_inv_stdev, epsilon=epsilon, order=order, inplace=inplace) def ref(input_blob, scale_blob, bias_blob): if order == 'NHWC': input_blob = utils.NHWC2NCHW(input_blob) mean_blob = input_blob.reshape((N, C, -1)).mean(axis=2) inv_stdev_blob = 1.0 / \ np.sqrt(input_blob.reshape((N, C, -1)).var(axis=2) + epsilon) # _bc indicates blobs that are reshaped for broadcast scale_bc = scale_blob[np.newaxis, :, np.newaxis, np.newaxis] mean_bc = mean_blob[:, :, np.newaxis, np.newaxis] inv_stdev_bc = inv_stdev_blob[:, :, np.newaxis, np.newaxis] bias_bc = bias_blob[np.newaxis, :, np.newaxis, np.newaxis] normalized_blob = scale_bc * (input_blob - mean_bc) * inv_stdev_bc \ + bias_bc if order == 'NHWC': normalized_blob = utils.NCHW2NHWC(normalized_blob) if not store_mean and not store_inv_stdev: return normalized_blob, elif not store_inv_stdev: return normalized_blob, mean_blob else: return normalized_blob, mean_blob, inv_stdev_blob self.assertReferenceChecks(gc, op, inputs, ref) @given(gc=hu.gcs['gc'], dc=hu.gcs['dc'], N=st.integers(2, 10), C=st.integers(3, 10), H=st.integers(5, 10), W=st.integers(7, 10), order=st.sampled_from(['NCHW', 'NHWC']), epsilon=st.floats(1e-6, 1e-4), store_mean=st.booleans(), seed=st.integers(0, 1000), store_inv_stdev=st.booleans()) def test_instance_norm_device_check( self, gc, dc, N, C, H, W, order, store_mean, store_inv_stdev, epsilon, seed): np.random.seed(seed) # force store_inv_stdev if store_mean to match existing forward pass # implementation store_inv_stdev |= store_mean inputs = self._get_inputs(N, C, H, W, order) op = self._get_op( device_option=gc, store_mean=store_mean, store_inv_stdev=store_inv_stdev, epsilon=epsilon, order=order) self.assertDeviceChecks(dc, op, inputs, [0]) @given(is_test=st.booleans(), N=st.integers(2, 10), C=st.integers(3, 10), H=st.integers(5, 10), W=st.integers(7, 10), order=st.sampled_from(['NCHW', 'NHWC']), epsilon=st.floats(1e-6, 1e-4), seed=st.integers(0, 1000)) def test_instance_norm_model_helper( self, N, C, H, W, order, epsilon, seed, is_test): np.random.seed(seed) model = model_helper.ModelHelper(name="test_model") brew.instance_norm( model, 'input', 'output', C, epsilon=epsilon, order=order, is_test=is_test) input_blob = np.random.rand(N, C, H, W).astype(np.float32) if order == 'NHWC': input_blob = utils.NCHW2NHWC(input_blob) self.ws.create_blob('input').feed(input_blob) self.ws.create_net(model.param_init_net).run() self.ws.create_net(model.net).run() if is_test: scale = self.ws.blobs['output_s'].fetch() assert scale is not None assert scale.shape == (C, ) bias = self.ws.blobs['output_b'].fetch() assert bias is not None assert bias.shape == (C, ) output_blob = self.ws.blobs['output'].fetch() if order == 'NHWC': output_blob = utils.NHWC2NCHW(output_blob) assert output_blob.shape == (N, C, H, W) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/operator_test/instance_norm_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np lengths = [[0], [1, 2], [1, 0, 2, 0]] features1 = [[], [1, 2, 2], [[1, 1], [2, 2], [2, 2]] ] features2 = [[], [2, 4, 4], [[2, 2], [4, 4], [4, 4]] ] lengths_exp = [[1], [1, 2], [1, 1, 2, 1]] features1_exp = [[0], [1, 2, 2], [[1, 1], [0, 0], [2, 2], [2, 2], [0, 0]]] features2_exp = [[0], [2, 4, 4], [[2, 2], [0, 0], [4, 4], [4, 4], [0, 0]]] class TestEmptySampleOps(TestCase): def test_emptysample(self): for i in range(0, 3): PadEmptyTest = core.CreateOperator( 'PadEmptySamples', ['lengths', 'features1', 'features2'], ['out_lengths', 'out_features1', 'out_features2'], ) workspace.FeedBlob( 'lengths', np.array(lengths[i], dtype=np.int32)) workspace.FeedBlob( 'features1', np.array(features1[i], dtype=np.int64)) workspace.FeedBlob( 'features2', np.array(features2[i], dtype=np.int64)) workspace.RunOperatorOnce(PadEmptyTest) np.testing.assert_allclose( lengths_exp[i], workspace.FetchBlob('out_lengths'), atol=1e-4, rtol=1e-4, err_msg='Mismatch in lengths') np.testing.assert_allclose( features1_exp[i], workspace.FetchBlob('out_features1'), atol=1e-4, rtol=1e-4, err_msg='Mismatch in features1') np.testing.assert_allclose( features2_exp[i], workspace.FetchBlob('out_features2'), atol=1e-4, rtol=1e-4, err_msg='Mismatch in features2') if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/emptysample_ops_test.py
import numpy as np from hypothesis import given, settings import hypothesis.strategies as st from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestAssert(hu.HypothesisTestCase): @given( dtype=st.sampled_from(['bool_', 'int32', 'int64']), shape=st.lists(elements=st.integers(1, 10), min_size=1, max_size=4), **hu.gcs) @settings(deadline=10000) def test_assert(self, dtype, shape, gc, dc): test_tensor = np.random.rand(*shape).astype(np.dtype(dtype)) op = core.CreateOperator('Assert', ['X'], []) def assert_ref(X): return [] try: self.assertReferenceChecks(gc, op, [test_tensor], assert_ref) except Exception: assert(not np.all(test_tensor))
pytorch-master
caffe2/python/operator_test/assert_test.py
from hypothesis import given, settings import numpy as np import unittest from caffe2.proto import caffe2_pb2, hsm_pb2 from caffe2.python import workspace, core, gradient_checker import caffe2.python.hypothesis_test_util as hu import caffe2.python.hsm_util as hsmu # User inputs tree using protobuf file or, in this case, python utils # The hierarchy in this test looks as shown below. Note that the final subtrees # (with word_ids as leaves) have been collapsed for visualization # * # / \ # * 5,6,7,8 # / \ # 0,1,2 3,4 tree = hsm_pb2.TreeProto() words = [[0, 1, 2], [3, 4], [5, 6, 7, 8]] node1 = hsmu.create_node_with_words(words[0], "node1") node2 = hsmu.create_node_with_words(words[1], "node2") node3 = hsmu.create_node_with_words(words[2], "node3") node4 = hsmu.create_node_with_nodes([node1, node2], "node4") node = hsmu.create_node_with_nodes([node4, node3], "node5") tree.root_node.MergeFrom(node) # structure: # node5: [0, 2, ["node4", "node3"]] # offset, length, "node4, node3" # node4: [2, 2, ["node1", "node2"]] # node1: [4, 3, [0, 1 ,2]] # node2: [7, 2, [3, 4] # node3: [9, 4, [5, 6, 7, 8] struct = [[0, 2, ["node4", "node3"], "node5"], [2, 2, ["node1", "node2"], "node4"], [4, 3, [0, 1, 2], "node1"], [7, 2, [3, 4], "node2"], [9, 4, [5, 6, 7, 8], "node3"]] # Internal util to translate input tree to list of (word_id,path). serialized # hierarchy is passed into the operator_def as a string argument, hierarchy_proto = hsmu.create_hierarchy(tree) arg = caffe2_pb2.Argument() arg.name = "hierarchy" arg.s = hierarchy_proto.SerializeToString() beam = 5 args_search = [] arg_search = caffe2_pb2.Argument() arg_search.name = "tree" arg_search.s = tree.SerializeToString() args_search.append(arg_search) arg_search = caffe2_pb2.Argument() arg_search.name = "beam" arg_search.f = beam args_search.append(arg_search) class TestHsm(hu.HypothesisTestCase): def test_hsm_search(self): samples = 10 dim_in = 5 X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5 w = np.random.rand(hierarchy_proto.size, dim_in) \ .astype(np.float32) - 0.5 b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5 labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \ .astype(np.int32) workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", X) workspace.FeedBlob("weights", w) workspace.FeedBlob("bias", b) workspace.FeedBlob("labels", labels) op = core.CreateOperator( 'HSoftmaxSearch', ['data', 'weights', 'bias'], ['names', 'scores'], 'HSoftmaxSearch', arg=args_search) workspace.RunOperatorOnce(op) names = workspace.FetchBlob('names') scores = workspace.FetchBlob('scores') def simulation_hsm_search(): names = [] scores = [] for line in struct: s, e = line[0], line[0] + line[1] score = np.dot(X, w[s:e].transpose()) + b[s:e] score = np.exp(score - np.max(score, axis=1, keepdims=True)) score /= score.sum(axis=1, keepdims=True) score = -np.log(score) score = score.transpose() idx = -1 for j, n in enumerate(names): if n == line[3]: idx = j score += scores[j] if idx == -1: score[score > beam] = np.inf else: score[score - scores[idx] > beam] = np.inf for i, name in enumerate(line[2]): scores.append(score[i]) names.append(name) scores = np.vstack(scores) return names, scores.transpose() p_names, p_scores = simulation_hsm_search() idx = np.argsort(p_scores, axis=1) p_scores = np.sort(p_scores, axis=1) p_names = np.array(p_names)[idx] for i in range(names.shape[0]): for j in range(names.shape[1]): if names[i][j]: self.assertEquals( names[i][j], p_names[i][j].item().encode('utf-8')) self.assertAlmostEqual( scores[i][j], p_scores[i][j], delta=0.001) def test_hsm_run_once(self): workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", np.random.randn(1000, 100).astype(np.float32)) workspace.FeedBlob("weights", np.random.randn(1000, 100).astype(np.float32)) workspace.FeedBlob("bias", np.random.randn(1000).astype(np.float32)) workspace.FeedBlob("labels", np.random.rand(1000).astype(np.int32) * 9) op = core.CreateOperator( 'HSoftmax', ['data', 'weights', 'bias', 'labels'], ['output', 'intermediate_output'], 'HSoftmax', arg=[arg]) self.assertTrue(workspace.RunOperatorOnce(op)) # Test to check value of sum of squared losses in forward pass for given # input def test_hsm_forward(self): cpu_device_option = caffe2_pb2.DeviceOption() grad_checker = gradient_checker.GradientChecker( 0.01, 0.05, cpu_device_option, "default") samples = 9 dim_in = 5 X = np.zeros((samples, dim_in)).astype(np.float32) + 1 w = np.zeros((hierarchy_proto.size, dim_in)).astype(np.float32) + 1 b = np.array([i for i in range(hierarchy_proto.size)])\ .astype(np.float32) labels = np.array([i for i in range(samples)]).astype(np.int32) workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", X) workspace.FeedBlob("weights", w) workspace.FeedBlob("bias", b) workspace.FeedBlob("labels", labels) op = core.CreateOperator( 'HSoftmax', ['data', 'weights', 'bias', 'labels'], ['output', 'intermediate_output'], 'HSoftmax', arg=[arg]) grad_ops, g_input = core.GradientRegistry.GetGradientForOp( op, [s + '_grad' for s in op.output]) loss, _ = grad_checker.GetLossAndGrad( op, grad_ops, [X, w, b, labels], op.input, 0, g_input[0], [0] ) self.assertAlmostEqual(loss, 44.269, delta=0.001) # Test to compare gradient calculated using the gradient operator and the # symmetric derivative calculated using Euler Method # TODO : convert to both cpu and gpu test when ready. @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_hsm_gradient(self, gc, dc): samples = 10 dim_in = 5 X = np.random.rand(samples, dim_in).astype(np.float32) - 0.5 w = np.random.rand(hierarchy_proto.size, dim_in) \ .astype(np.float32) - 0.5 b = np.random.rand(hierarchy_proto.size).astype(np.float32) - 0.5 labels = np.array([np.random.randint(0, 8) for i in range(samples)]) \ .astype(np.int32) workspace.GlobalInit(['caffe2']) workspace.FeedBlob("data", X) workspace.FeedBlob("weights", w) workspace.FeedBlob("bias", b) workspace.FeedBlob("labels", labels) op = core.CreateOperator( 'HSoftmax', ['data', 'weights', 'bias', 'labels'], ['output', 'intermediate_output'], 'HSoftmax', arg=[arg]) self.assertDeviceChecks(dc, op, [X, w, b, labels], [0]) for i in range(3): self.assertGradientChecks(gc, op, [X, w, b, labels], i, [0]) def test_huffman_tree_hierarchy(self): workspace.GlobalInit(['caffe2']) labelSet = list(range(0, 6)) counts = [1, 2, 3, 4, 5, 6] labels = sum([[l] * c for (l, c) in zip(labelSet, counts)], []) Y = np.array(labels).astype(np.int64) workspace.FeedBlob("labels", Y) arg = caffe2_pb2.Argument() arg.name = 'num_classes' arg.i = 6 op = core.CreateOperator( 'HuffmanTreeHierarchy', ['labels'], ['huffman_tree'], 'HuffmanTreeHierarchy', arg=[arg]) workspace.RunOperatorOnce(op) huffmanTreeOutput = workspace.FetchBlob('huffman_tree') treeOutput = hsm_pb2.TreeProto() treeOutput.ParseFromString(huffmanTreeOutput[0]) treePathOutput = hsmu.create_hierarchy(treeOutput) label_to_path = {} for path in treePathOutput.paths: label_to_path[path.word_id] = path def checkPath(label, indices, code): path = label_to_path[label] self.assertEqual(len(path.path_nodes), len(code)) self.assertEqual(len(path.path_nodes), len(code)) for path_node, index, target in \ zip(path.path_nodes, indices, code): self.assertEqual(path_node.index, index) self.assertEqual(path_node.target, target) checkPath(0, [0, 4, 6, 8], [1, 0, 0, 0]) checkPath(1, [0, 4, 6, 8], [1, 0, 0, 1]) checkPath(2, [0, 4, 6], [1, 0, 1]) checkPath(3, [0, 2], [0, 0]) checkPath(4, [0, 2], [0, 1]) checkPath(5, [0, 4], [1, 1]) if __name__ == '__main__': unittest.main()
pytorch-master
caffe2/python/operator_test/hsm_test.py
from caffe2.python import core, workspace from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import itertools as it class TestReduceOps(serial.SerializedTestCase): def run_reduce_op_test_impl( self, op_name, X, axes, keepdims, ref_func, gc, dc, allow_broadcast_fastpath): extra_args = dict(allow_broadcast_fastpath=True) if allow_broadcast_fastpath else {} if axes is None: op = core.CreateOperator( op_name, ["X"], ["Y"], keepdims=keepdims, **extra_args, ) else: op = core.CreateOperator( op_name, ["X"], ["Y"], axes=axes, keepdims=keepdims, **extra_args, ) def ref(X): return [ref_func( X, axis=None if axes is None else tuple(axes), keepdims=keepdims)] with self.set_disable_serialized_check(allow_broadcast_fastpath): self.assertReferenceChecks(gc, op, [X], ref) self.assertDeviceChecks(dc, op, [X], [0]) self.assertGradientChecks(gc, op, [X], 0, [0]) def run_reduce_op_test( self, op_name, X, keepdims, num_axes, ref_func, gc, dc, allow_broadcast_fastpath=False): self.run_reduce_op_test_impl( op_name, X, None, keepdims, ref_func, gc, dc, allow_broadcast_fastpath) num_dims = len(X.shape) if num_dims < num_axes: self.run_reduce_op_test_impl( op_name, X, range(num_dims), keepdims, ref_func, gc, dc, allow_broadcast_fastpath) else: for axes in it.combinations(range(num_dims), num_axes): self.run_reduce_op_test_impl( op_name, X, axes, keepdims, ref_func, gc, dc, allow_broadcast_fastpath) @serial.given( X=hu.tensor(max_dim=3, dtype=np.float32), keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(), num_axes=st.integers(1, 3), **hu.gcs) def test_reduce_min(self, X, keepdims, allow_broadcast_fastpath, num_axes, gc, dc): X_dims = X.shape X_size = X.size X = np.arange(X_size, dtype=np.float32) np.random.shuffle(X) X = X.reshape(X_dims) self.run_reduce_op_test( "ReduceMin", X, keepdims, num_axes, np.min, gc, dc, allow_broadcast_fastpath=allow_broadcast_fastpath) @serial.given( X=hu.tensor(max_dim=3, dtype=np.float32), keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(), num_axes=st.integers(1, 3), **hu.gcs) def test_reduce_max(self, X, keepdims, allow_broadcast_fastpath, num_axes, gc, dc): X_dims = X.shape X_size = X.size X = np.arange(X_size, dtype=np.float32) np.random.shuffle(X) X = X.reshape(X_dims) self.run_reduce_op_test( "ReduceMax", X, keepdims, num_axes, np.max, gc, dc, allow_broadcast_fastpath=allow_broadcast_fastpath) @given(n=st.integers(0, 5), m=st.integers(0, 5), k=st.integers(0, 5), t=st.integers(0, 5), keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(), num_axes=st.integers(1, 3), **hu.gcs) @settings(deadline=10000) def test_reduce_sum(self, n, m, k, t, keepdims, allow_broadcast_fastpath, num_axes, gc, dc): X = np.random.randn(n, m, k, t).astype(np.float32) self.run_reduce_op_test( "ReduceSum", X, keepdims, num_axes, np.sum, gc, dc, allow_broadcast_fastpath=allow_broadcast_fastpath) @serial.given(X=hu.tensor(dtype=np.float32), keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(), num_axes=st.integers(1, 4), **hu.gcs) def test_reduce_mean(self, X, keepdims, allow_broadcast_fastpath, num_axes, gc, dc): self.run_reduce_op_test( "ReduceMean", X, keepdims, num_axes, np.mean, gc, dc, allow_broadcast_fastpath=allow_broadcast_fastpath) @given(n=st.integers(1, 3), m=st.integers(1, 3), k=st.integers(1, 3), keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(), num_axes=st.integers(1, 3), **hu.gcs_cpu_only) @settings(deadline=10000) def test_reduce_l1(self, n, m, k, keepdims, allow_broadcast_fastpath, num_axes, gc, dc): X = np.arange(n * m * k, dtype=np.float32) - 0.5 np.random.shuffle(X) X = X.reshape((m, n, k)) self.run_reduce_op_test( "ReduceL1", X, keepdims, num_axes, getNorm(1), gc, dc, allow_broadcast_fastpath=allow_broadcast_fastpath) @serial.given(n=st.integers(1, 5), m=st.integers(1, 5), k=st.integers(1, 5), keepdims=st.booleans(), allow_broadcast_fastpath=st.booleans(), num_axes=st.integers(1, 3), **hu.gcs_cpu_only) def test_reduce_l2(self, n, m, k, keepdims, allow_broadcast_fastpath, num_axes, gc, dc): X = np.random.randn(n, m, k).astype(np.float32) self.run_reduce_op_test( "ReduceL2", X, keepdims, num_axes, getNorm(2), gc, dc, allow_broadcast_fastpath=allow_broadcast_fastpath) def getNorm(p): if p == 1: def norm(X, axis, keepdims): return np.sum(np.abs(X), axis=axis, keepdims=keepdims) elif p == 2: def norm(X, axis, keepdims): return np.sqrt(np.sum(np.power(X, 2), axis=axis, keepdims=keepdims)) else: raise RuntimeError("Only L1 and L2 norms supported") return norm class TestReduceFrontReductions(serial.SerializedTestCase): def grad_variant_input_test(self, grad_op_name, X, ref, num_reduce_dim): workspace.ResetWorkspace() Y = np.array(ref(X)[0]).astype(np.float32) dY = np.array(np.random.rand(*Y.shape)).astype(np.float32) shape = np.array(X.shape).astype(np.int64) workspace.FeedBlob("X", X) workspace.FeedBlob("dY", dY) workspace.FeedBlob("shape", shape) grad_op = core.CreateOperator( grad_op_name, ["dY", "X"], ["dX"], num_reduce_dim=num_reduce_dim) grad_op1 = core.CreateOperator( grad_op_name, ["dY", "shape"], ["dX1"], num_reduce_dim=num_reduce_dim) workspace.RunOperatorOnce(grad_op) workspace.RunOperatorOnce(grad_op1) dX = workspace.FetchBlob("dX") dX1 = workspace.FetchBlob("dX1") np.testing.assert_array_equal(dX, dX1) def max_op_test( self, op_name, num_reduce_dim, gc, dc, in_data, in_names, ref_max): op = core.CreateOperator( op_name, in_names, ["outputs"], num_reduce_dim=num_reduce_dim ) self.assertReferenceChecks( device_option=gc, op=op, inputs=in_data, reference=ref_max, ) # Skip gradient check because it is too unreliable with max. # Just check CPU and CUDA have same results Y = np.array(ref_max(*in_data)[0]).astype(np.float32) dY = np.array(np.random.rand(*Y.shape)).astype(np.float32) if len(in_data) == 2: grad_in_names = ["dY", in_names[0], "Y", in_names[1]] grad_in_data = [dY, in_data[0], Y, in_data[1]] else: grad_in_names = ["dY", in_names[0], "Y"] grad_in_data = [dY, in_data[0], Y] grad_op = core.CreateOperator( op_name + "Gradient", grad_in_names, ["dX"], num_reduce_dim=num_reduce_dim ) self.assertDeviceChecks(dc, grad_op, grad_in_data, [0]) def reduce_op_test(self, op_name, op_ref, in_data, in_names, num_reduce_dims, device): op = core.CreateOperator( op_name, in_names, ["outputs"], num_reduce_dim=num_reduce_dims ) self.assertReferenceChecks( device_option=device, op=op, inputs=in_data, reference=op_ref ) self.assertGradientChecks( device, op, in_data, 0, [0], stepsize=1e-2, threshold=1e-2) @given(num_reduce_dim=st.integers(0, 4), **hu.gcs) @settings(deadline=10000) def test_reduce_front_sum(self, num_reduce_dim, gc, dc): X = np.random.rand(7, 4, 3, 5).astype(np.float32) def ref_sum(X): return [np.sum(X, axis=(tuple(range(num_reduce_dim))))] self.reduce_op_test( "ReduceFrontSum", ref_sum, [X], ["input"], num_reduce_dim, gc) self.grad_variant_input_test( "ReduceFrontSumGradient", X, ref_sum, num_reduce_dim) @given(num_reduce_dim=st.integers(0, 4), seed=st.integers(0, 4), **hu.gcs) def test_reduce_front_sum_empty_batch(self, num_reduce_dim, seed, gc, dc): np.random.seed(seed) X = np.random.rand(0, 4, 3, 5).astype(np.float32) def ref_sum(X): return [np.sum(X, axis=(tuple(range(num_reduce_dim))))] self.reduce_op_test( "ReduceFrontSum", ref_sum, [X], ["input"], num_reduce_dim, gc) self.grad_variant_input_test( "ReduceFrontSumGradient", X, ref_sum, num_reduce_dim) # test the second iteration not_empty_X = np.random.rand(2, 4, 3, 5).astype(np.float32) net = core.Net('test') with core.DeviceScope(gc): net.ReduceFrontSum( ['X'], ['output'], num_reduce_dim=num_reduce_dim ) workspace.CreateNet(net) workspace.FeedBlob('X', not_empty_X) workspace.RunNet(workspace.GetNetName(net)) output = workspace.FetchBlob('output') np.testing.assert_allclose( output, ref_sum(not_empty_X)[0], atol=1e-3) workspace.FeedBlob('X', X) workspace.RunNet(workspace.GetNetName(net)) output = workspace.FetchBlob('output') np.testing.assert_allclose(output, ref_sum(X)[0], atol=1e-3) @given(**hu.gcs) @settings(deadline=None) def test_reduce_front_sum_with_length(self, dc, gc): num_reduce_dim = 1 X = np.random.rand(2, 3, 4, 5).astype(np.float32) batch_size = int(np.prod([2, 3, 4, 5][num_reduce_dim:])) d = 120 // batch_size lengths = np.random.randint(1, d, size=batch_size).astype(np.int32) def ref_sum(X, lengths): Y = X.reshape(d, lengths.size) rv = np.zeros((lengths.size, 1)).astype(np.float32) for ii in range(lengths.size): rv[ii] = np.sum(Y[:lengths[ii], ii]) return [rv.reshape((2, 3, 4, 5)[num_reduce_dim:])] self.reduce_op_test( "ReduceFrontSum", ref_sum, [X, lengths], ["input", "lengths"], num_reduce_dim, gc) @given(num_reduce_dim=st.integers(0, 4), **hu.gcs) @settings(deadline=10000) def test_reduce_front_mean(self, num_reduce_dim, gc, dc): X = np.random.rand(6, 7, 8, 2).astype(np.float32) def ref_mean(X): return [np.mean(X, axis=(tuple(range(num_reduce_dim))))] self.reduce_op_test( "ReduceFrontMean", ref_mean, [X], ["input"], num_reduce_dim, gc) self.grad_variant_input_test( "ReduceFrontMeanGradient", X, ref_mean, num_reduce_dim) @given(**hu.gcs) @settings(deadline=10000) def test_reduce_front_mean_with_length(self, dc, gc): num_reduce_dim = 1 X = np.random.rand(2, 3, 4, 5).astype(np.float32) batch_size = int(np.prod([2, 3, 4, 5][num_reduce_dim:])) d = 120 // batch_size lengths = np.random.randint(1, d, size=batch_size).astype(np.int32) def ref_mean(X, lengths): Y = X.reshape(d, lengths.size) rv = np.zeros((lengths.size, 1)).astype(np.float32) for ii in range(lengths.size): rv[ii] = np.mean(Y[:lengths[ii], ii]) return [rv.reshape((2, 3, 4, 5)[num_reduce_dim:])] self.reduce_op_test( "ReduceFrontMean", ref_mean, [X, lengths], ["input", "lengths"], num_reduce_dim, gc) @serial.given(num_reduce_dim=st.integers(0, 4), **hu.gcs) def test_reduce_front_max(self, num_reduce_dim, gc, dc): X = np.random.rand(6, 7, 8, 2).astype(np.float32) def ref_frontmax(X): return [np.max(X, axis=(tuple(range(num_reduce_dim))))] self.max_op_test( "ReduceFrontMax", num_reduce_dim, gc, dc, [X], ["X"], ref_frontmax) @given(**hu.gcs) def test_reduce_front_max_with_length(self, dc, gc): num_reduce_dim = 1 X = np.random.rand(2, 3, 4, 5).astype(np.float32) batch_size = int(np.prod([2, 3, 4, 5][num_reduce_dim:])) d = 120 // batch_size lengths = np.random.randint(1, d, size=batch_size).astype(np.int32) def ref_max(X, lengths): Y = X.reshape(d, lengths.size) rv = np.zeros((lengths.size, 1)).astype(np.float32) for ii in range(lengths.size): rv[ii] = np.max(Y[:lengths[ii], ii]) return [rv.reshape((2, 3, 4, 5)[num_reduce_dim:])] self.max_op_test( "ReduceFrontMax", num_reduce_dim, gc, dc, [X, lengths], ["X", "lengths"], ref_max) @serial.given(num_reduce_dim=st.integers(0, 4), **hu.gcs) def test_reduce_back_max(self, num_reduce_dim, gc, dc): X = np.random.rand(6, 7, 8, 2).astype(np.float32) def ref_backmax(X): return [np.max(X, axis=(0, 1, 2, 3)[4 - num_reduce_dim:])] self.max_op_test( "ReduceBackMax", num_reduce_dim, gc, dc, [X], ["X"], ref_backmax) @given(**hu.gcs) def test_reduce_back_max_with_length(self, gc, dc): num_reduce_dim = 1 X = np.random.rand(2, 3, 4, 5).astype(np.float32) batch_size = int(np.prod([2, 3, 4, 5][:4 - num_reduce_dim])) d = 120 // batch_size lengths = np.random.randint(1, d, size=batch_size).astype(np.int32) def ref_max(X, lengths): Y = X.reshape(lengths.size, d) rv = np.zeros((lengths.size, 1)).astype(np.float32) for ii in range(lengths.size): rv[ii] = np.max(Y[ii, :lengths[ii]]) return [rv.reshape((2, 3, 4, 5)[:4 - num_reduce_dim])] self.max_op_test( "ReduceBackMax", num_reduce_dim, gc, dc, [X, lengths], ["X", "lengths"], ref_max) @given(**hu.gcs) @settings(deadline=10000) def test_reduce_back_sum(self, dc, gc): num_reduce_dim = 1 X = np.random.rand(6, 7, 8, 2).astype(np.float32) def ref_sum(X): return [np.sum(X, axis=(0, 1, 2, 3)[4 - num_reduce_dim:])] self.reduce_op_test( "ReduceBackSum", ref_sum, [X], ["input"], num_reduce_dim, gc) self.grad_variant_input_test( "ReduceBackSumGradient", X, ref_sum, num_reduce_dim) @given(**hu.gcs) @settings(deadline=10000) def test_reduce_back_sum_with_length(self, dc, gc): num_reduce_dim = 1 X = np.random.rand(2, 3, 4, 5).astype(np.float32) batch_size = int(np.prod([2, 3, 4, 5][:4 - num_reduce_dim])) d = 120 // batch_size lengths = np.random.randint(1, d, size=batch_size).astype(np.int32) def ref_sum(X, lengths): Y = X.reshape(lengths.size, d) rv = np.zeros((lengths.size, 1)).astype(np.float32) for ii in range(lengths.size): rv[ii] = np.sum(Y[ii, :lengths[ii]]) return [rv.reshape((2, 3, 4, 5)[:4 - num_reduce_dim])] self.reduce_op_test( "ReduceBackSum", ref_sum, [X, lengths], ["input", "lengths"], num_reduce_dim, gc) @given(num_reduce_dim=st.integers(0, 4), **hu.gcs) @settings(deadline=10000) def test_reduce_back_mean(self, num_reduce_dim, dc, gc): X = np.random.rand(6, 7, 8, 2).astype(np.float32) def ref_mean(X): return [np.mean(X, axis=(0, 1, 2, 3)[4 - num_reduce_dim:])] self.reduce_op_test( "ReduceBackMean", ref_mean, [X], ["input"], num_reduce_dim, gc) self.grad_variant_input_test( "ReduceBackMeanGradient", X, ref_mean, num_reduce_dim) @given(**hu.gcs) @settings(deadline=None) def test_reduce_back_mean_with_length(self, dc, gc): num_reduce_dim = 1 X = np.random.rand(2, 3, 4, 5).astype(np.float32) batch_size = int(np.prod([2, 3, 4, 5][:4 - num_reduce_dim])) d = 120 // batch_size lengths = np.random.randint(1, d, size=batch_size).astype(np.int32) def ref_mean(X, lengths): Y = X.reshape(lengths.size, d) rv = np.zeros((lengths.size, 1)).astype(np.float32) for ii in range(lengths.size): rv[ii] = np.mean(Y[ii, :lengths[ii]]) return [rv.reshape((2, 3, 4, 5)[:4 - num_reduce_dim])] self.reduce_op_test( "ReduceBackMean", ref_mean, [X, lengths], ["input", "lengths"], num_reduce_dim, gc)
pytorch-master
caffe2/python/operator_test/reduce_ops_test.py
import caffe2.python.serialized_test.serialized_test_util as serial def pytest_addoption(parser): parser.addoption( '-G', '--generate-serialized', action='store_true', dest='generate', help='generate output files (default=false, compares to current files)', ) parser.addoption( '-O', '--output', default=serial.DATA_DIR, dest='output', help='output directory (default: %(default)s)' ) parser.addoption( '-D', '--disable-serialized-check', action='store_true', dest='disable', help='disable checking serialized tests' ) parser.addoption( '-C', '--disable-gen-coverage', action='store_true', dest='disable_coverage', help='disable generating coverage markdown file' ) def pytest_configure(config): generate = config.getoption('generate', default=False) output = config.getoption('output', default=serial.DATA_DIR) disable = config.getoption('disable', default=False) disable_coverage = config.getoption('disable_coverage', default=False) serial._output_context.__setattr__('should_generate_output', generate) serial._output_context.__setattr__('output_dir', output) serial._output_context.__setattr__('disable_serialized_check', disable) serial._output_context.__setattr__('disable_gen_coverage', disable_coverage)
pytorch-master
caffe2/python/operator_test/conftest.py
from caffe2.proto import caffe2_pb2 from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, assume, settings import hypothesis.strategies as st import numpy as np import unittest class TestMomentumSGD(serial.SerializedTestCase): @given(n=st.integers(4, 8), nesterov=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_momentum_sgd(self, n, nesterov, gc, dc): param = np.random.rand(n).astype(np.float32) grad = np.random.rand(n).astype(np.float32) lr = np.random.rand(1).astype(np.float32) param_momentum = np.random.rand(n).astype(np.float32) momentum = 0.9 def momentum_sgd(grad, param_momentum, lr, param=None): if not nesterov: adjusted_gradient = lr * grad + momentum * param_momentum if param is None: return [adjusted_gradient, adjusted_gradient] else: paramup = param - adjusted_gradient return [adjusted_gradient, adjusted_gradient, paramup] else: m_new = momentum * param_momentum + lr * grad grad_new = (1 + momentum) * m_new - momentum * param_momentum if param is None: return [grad_new, m_new] else: paramup = param - grad_new return [grad_new, m_new, paramup] op = core.CreateOperator( "MomentumSGDUpdate", ["grad", "param_momentum", "lr", "param"], ["grad", "param_momentum", "param"], momentum=momentum, nesterov=int(nesterov), ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[grad, param_momentum, lr, param], reference=momentum_sgd ) op_noparam = core.CreateOperator( "MomentumSGD", ["grad", "param_momentum", "lr"], ["grad", "param_momentum"], momentum=momentum, nesterov=int(nesterov), ) self.assertReferenceChecks( device_option=gc, op=op_noparam, inputs=[grad, param_momentum, lr], reference=momentum_sgd ) @given( inputs=hu.tensors(n=3), momentum=st.floats(min_value=0.1, max_value=0.9), nesterov=st.booleans(), lr=st.floats(min_value=0.1, max_value=0.9), data_strategy=st.data(), **hu.gcs ) @settings(deadline=10000) def test_sparse_momentum_sgd( self, inputs, momentum, nesterov, lr, data_strategy, gc, dc ): w, grad, m = inputs # Create an indexing array containing values which index into grad indices = data_strategy.draw( hu.tensor( max_dim=1, min_value=1, max_value=grad.shape[0], dtype=np.int64, elements=st.sampled_from(np.arange(grad.shape[0])), ), ) # Verify that the generated indices are unique assume( np.array_equal( np.unique(indices.flatten()), np.sort(indices.flatten()))) # Sparsify grad grad = grad[indices] # Make momentum >= 0 m = np.abs(m) # Convert lr to a numpy array lr = np.asarray([lr], dtype=np.float32) op = core.CreateOperator( "SparseMomentumSGDUpdate", ["grad", "m", "lr", "param", "indices"], ["adjusted_grad", "m", "param"], momentum=momentum, nesterov=int(nesterov), device_option=gc ) # Reference def momentum_sgd(grad, m, lr): lr = lr[0] if not nesterov: adjusted_gradient = lr * grad + momentum * m return (adjusted_gradient, adjusted_gradient) else: m_new = momentum * m + lr * grad return ((1 + momentum) * m_new - momentum * m, m_new) def sparse(grad, m, lr, param, i): grad_new, m_new = momentum_sgd(grad, m[i], lr) m[i] = m_new param[i] -= grad_new return (grad_new, m, param) self.assertReferenceChecks( gc, op, [grad, m, lr, w, indices], sparse) @unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/31368") @unittest.skipIf(not workspace.has_gpu_support, "No gpu support.") @given(n=st.integers(4, 8), nesterov=st.booleans(), **hu.gcs) def test_fp16momentum_sgd(self, n, nesterov, gc, dc): assume(core.IsGPUDeviceType(gc.device_type)) gpuvers = workspace.GetDeviceProperties(0)["major"] if gc.device_type == caffe2_pb2.CUDA and gpuvers < 6: print("No FP16 support because major version {} < 6".format(gpuvers)) return param = np.random.rand(n).astype(np.float16) grad = np.random.rand(n).astype(np.float16) lr = np.random.rand(1).astype(np.float32) param_momentum = np.random.rand(n).astype(np.float16) momentum = 0.9 def momentum_sgd(grad, param_momentum, lr, param=None): if not nesterov: adjusted_gradient = lr * grad + momentum * param_momentum paramup = param - adjusted_gradient return [adjusted_gradient, adjusted_gradient, paramup] else: m_new = momentum * param_momentum + lr * grad grad_new = (1 + momentum) * m_new - momentum * param_momentum paramup = param - grad_new return [grad_new, m_new, paramup] op = core.CreateOperator( "FP16MomentumSGDUpdate", ["grad", "param_momentum", "lr", "param"], ["grad", "param_momentum", "param"], momentum=momentum, nesterov=int(nesterov), weight_decay=0.0, ) threshold = 1e-3 if (gc.device_type == caffe2_pb2.HIP) else 1e-4 self.assertReferenceChecks( device_option=gc, op=op, inputs=[grad, param_momentum, lr, param], reference=momentum_sgd, threshold=threshold ) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/momentum_sgd_test.py
from hypothesis import given import numpy as np import hypothesis.strategies as st from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu @st.composite def _dev_options(draw): op_dev = draw(st.sampled_from(hu.device_options)) if op_dev == hu.cpu_do: # the CPU op can only handle CPU tensor input_blob_dev = hu.cpu_do else: input_blob_dev = draw(st.sampled_from(hu.device_options)) return op_dev, input_blob_dev class TestEnsureCPUOutputOp(hu.HypothesisTestCase): @given( input=hu.tensor(dtype=np.float32), dev_options=_dev_options() ) def test_ensure_cpu_output(self, input, dev_options): op_dev, input_blob_dev = dev_options net = core.Net('test_net') data = net.GivenTensorFill( [], ["data"], values=input, shape=input.shape, device_option=input_blob_dev ) data_cpu = net.EnsureCPUOutput( [data], ["data_cpu"], device_option=op_dev ) workspace.RunNetOnce(net) data_cpu_value = workspace.FetchBlob(data_cpu) np.testing.assert_allclose(input, data_cpu_value)
pytorch-master
caffe2/python/operator_test/ensure_cpu_output_op_test.py
from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import numpy as np class TestPercentileOp(hu.HypothesisTestCase): def _test_percentile_op( self, original_inp, value_to_pct_map, dist_lengths, expected_values ): op = core.CreateOperator( 'Percentile', ['original_values', 'value_to_pct_map', 'dist_lengths'], ['percentile_values'] ) workspace.FeedBlob('original_values', np.array( original_inp, dtype=np.float32)) workspace.FeedBlob( 'value_to_pct_map', np.array(value_to_pct_map, dtype=np.float32)) workspace.FeedBlob('dist_lengths', np.array( dist_lengths, dtype=np.int32)) workspace.RunOperatorOnce(op) np.testing.assert_array_almost_equal( workspace.FetchBlob('percentile_values'), np.array(expected_values), decimal=5 ) self._test_shape_inference( original_inp, value_to_pct_map, dist_lengths, expected_values ) def _test_shape_inference( self, original_inp, value_to_pct_map, dist_lengths, expected_values ): net = core.Net('test_shape_inference') result = net.Percentile( ['original_values', 'value_to_pct_map', 'dist_lengths'], ['percentile_values'] ) workspace.FeedBlob('original_values', np.array( original_inp, dtype=np.float32)) workspace.FeedBlob( 'value_to_pct_map', np.array(value_to_pct_map, dtype=np.float32)) workspace.FeedBlob('dist_lengths', np.array( dist_lengths, dtype=np.int32)) (shapes, types) = workspace.InferShapesAndTypes([net]) workspace.RunNetOnce(net) self.assertEqual(shapes[result], list(workspace.blobs[result].shape)) self.assertEqual(shapes[result], list(workspace.blobs['original_values'].shape)) self.assertEqual(types[result], core.DataType.FLOAT) def test_percentile_op_with_only_one_dist(self): self._test_percentile_op( original_inp=[[5]], value_to_pct_map=[[5, 0.4]], dist_lengths=[1], expected_values=[[0.4]] ) def test_percentile_op_with_all_elements_in_map(self): self._test_percentile_op( original_inp=[[3, 4], [10, 4]], value_to_pct_map=[[3, 0.3], [4, 0.6], [10, 0.8], [4, 0.5], [5, 0.6]], dist_lengths=[3, 2], expected_values=[[0.3, 0.5], [0.8, 0.5]], ) def test_percentile_op_with_same_value(self): self._test_percentile_op( original_inp=[[1, 1], [1, 2]], value_to_pct_map=[[1, 0.1], [4, 0.4], [2, 0.5]], dist_lengths=[2, 1], expected_values=[[0.1, 0.0], [0.1, 0.5]] ) def test_percentile_op_with_elements_bigger_than_map_range(self): self._test_percentile_op( original_inp=[[1, 5], [3, 4]], value_to_pct_map=[[1, 0.1], [4, 0.4], [2, 0.1], [3, 0.3]], dist_lengths=[2, 2], expected_values=[[0.1, 1.], [0.3, 1.0]] ) def test_percentile_op_with_elements_smaller_than_map_range(self): self._test_percentile_op( original_inp=[[1], [5], [6]], value_to_pct_map=[[2, 0.2], [5, 0.5], [7, 0.5]], dist_lengths=[3], expected_values=[[0.0], [0.5], [0.5]] ) def test_percentile_op_with_interpolation(self): self._test_percentile_op( original_inp=[[3, 2, 5], [6, 7, 8]], value_to_pct_map=[[1, 0.1], [4, 0.7], [4.5, 0.8], [6, 0.5], [8, 0.9], [8, 0.6]], dist_lengths=[3, 2, 1], expected_values=[[0.5, 0.0, 0.0], [1.0, 0.7, 0.6]] ) def test_percentile_op_with_large_sample_size_per_dist(self): self._test_percentile_op( original_inp=[[3, 1], [5, 7]], value_to_pct_map=[[3, 0.5], [4, 0.6], [5, 0.7], [1, 0.2], [2, 0.3], [5, 0.8]], dist_lengths=[3, 3], expected_values=[[0.5, 0.2], [0.7, 1.0]] ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/percentile_op_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np import unittest class TestRMSNormOp(hu.HypothesisTestCase): @given( M=st.integers(0, 8), N=st.integers(1, 16), eps=st.floats(0, 1e-3), dtype=st.sampled_from([np.float32, np.float64]), **hu.gcs, ) @settings(deadline=None) def test_rms_norm(self, M, N, eps, dtype, gc, dc): X = (np.random.randn(M, N) * 2.0 + 1.0).astype(dtype) gamma = np.random.randn(N).astype(dtype) beta = np.random.randn(N).astype(dtype) op = core.CreateOperator( "RMSNorm", ["X", "gamma", "beta"], ["Y", "rrms"], eps=eps, ) def rms_norm_ref(X, gamma, beta): rrms = 1.0 / np.sqrt(np.mean(np.square(X), axis=1) + eps) Y = X * np.expand_dims(rrms, axis=1) * gamma + beta return Y, rrms inputs = [X, gamma, beta] self.assertReferenceChecks(gc, op, inputs, rms_norm_ref) self.assertDeviceChecks(dc, op, inputs, [0, 1]) for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/rms_norm_op_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestConditionalOp(serial.SerializedTestCase): @serial.given(rows_num=st.integers(1, 10000), **hu.gcs_cpu_only) def test_conditional(self, rows_num, gc, dc): op = core.CreateOperator( "Conditional", ["condition", "data_t", "data_f"], "output" ) data_t = np.random.random((rows_num, 10, 20)).astype(np.float32) data_f = np.random.random((rows_num, 10, 20)).astype(np.float32) condition = np.random.choice(a=[True, False], size=rows_num) def ref(condition, data_t, data_f): output = [ data_t[i] if condition[i] else data_f[i] for i in range(rows_num) ] return (output,) self.assertReferenceChecks(gc, op, [condition, data_t, data_f], ref)
pytorch-master
caffe2/python/operator_test/conditional_test.py
from caffe2.python import core, workspace from caffe2.python.core import CreatePythonOperator import caffe2.python.hypothesis_test_util as hu from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest class PythonOpTest(hu.HypothesisTestCase): @given(x=hu.tensor(), n=st.integers(min_value=1, max_value=20), w=st.integers(min_value=1, max_value=20)) @settings(deadline=10000) def test_simple_python_op(self, x, n, w): def g(input_, output): output[...] = input_ def f(inputs, outputs): outputs[0].reshape(inputs[0].shape) g(inputs[0].data, outputs[0].data) ops = [CreatePythonOperator(f, ["x"], [str(i)]) for i in range(n)] net = core.Net("net") net.Proto().op.extend(ops) net.Proto().type = "dag" net.Proto().num_workers = w iters = 100 plan = core.Plan("plan") plan.AddStep(core.ExecutionStep("test-step", net, iters)) workspace.FeedBlob("x", x) workspace.RunPlan(plan.Proto().SerializeToString()) for i in range(n): y = workspace.FetchBlob(str(i)) np.testing.assert_almost_equal(x, y) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/python_op_test.py
import itertools import numpy as np import tempfile import unittest import os from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu class TestMap(hu.HypothesisTestCase): def test_create_map(self): dtypes = [core.DataType.INT32, core.DataType.INT64] for key_dtype, value_dtype in itertools.product(dtypes, dtypes): op = core.CreateOperator( 'CreateMap', [], ['map'], key_dtype=key_dtype, value_dtype=value_dtype, ) workspace.RunOperatorOnce(op) self.assertTrue(workspace.HasBlob('map')) def test_map(self): def test_map_func(KEY_T, VALUE_T): model_file = os.path.join(tempfile.mkdtemp(), 'db') key_data = np.asarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=KEY_T) value_data = np.asarray([2, 3, 3, 3, 3, 2, 3, 3, 3, 3], dtype=VALUE_T) workspace.FeedBlob("key_data", key_data) workspace.FeedBlob("value_data", value_data) save_net = core.Net("save_net") save_net.KeyValueToMap(["key_data", "value_data"], "map_data") save_net.Save( ["map_data"], [], db=model_file, db_type="minidb", absolute_path=True ) workspace.RunNetOnce(save_net) workspace.ResetWorkspace() load_net = core.Net("load_net") load_net.Load( [], ["map_data"], db=model_file, db_type="minidb", load_all=True, absolute_path=True ) load_net.MapToKeyValue("map_data", ["key_data", "value_data"]) workspace.RunNetOnce(load_net) key_data2 = workspace.FetchBlob("key_data") value_data2 = workspace.FetchBlob("value_data") assert(set(zip(key_data, value_data)) == set(zip(key_data2, value_data2))) test_map_func(np.int64, np.int64) test_map_func(np.int64, np.int32) test_map_func(np.int32, np.int32) test_map_func(np.int32, np.int64) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/map_ops_test.py
from caffe2.python import core, workspace from caffe2.proto import caffe2_pb2 from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np def _one_hots(): index_size = st.integers(min_value=1, max_value=5) lengths = st.lists( elements=st.integers(min_value=0, max_value=5)) return st.tuples(index_size, lengths).flatmap( lambda x: st.tuples( st.just(x[0]), st.just(x[1]), st.lists( elements=st.integers(min_value=0, max_value=x[0] - 1), min_size=sum(x[1]), max_size=sum(x[1])))) class TestOneHotOps(serial.SerializedTestCase): @serial.given( x=hu.tensor( min_dim=2, max_dim=2, dtype=np.int32, elements=st.integers(min_value=0, max_value=10)), **hu.gcs_cpu_only) def test_batch_one_hot(self, x, gc, dc): d = x.shape[1] lens = [] vals = [] for i in range(0, d): val = np.unique(x[:, i]) vals.extend(val) lens.append(len(val)) lens = np.array(lens, dtype=np.int32) vals = np.array(vals, dtype=np.int32) def ref(x, lens, vals): output_dim = vals.size ret = np.zeros((x.shape[0], output_dim)).astype(x.dtype) p = 0 for i, l in enumerate(lens): for j in range(0, l): v = vals[p + j] ret[x[:, i] == v, p + j] = 1 p += lens[i] return (ret, ) op = core.CreateOperator('BatchOneHot', ["X", "LENS", "VALS"], ["Y"]) self.assertReferenceChecks(gc, op, [x, lens, vals], ref) @given( x=hu.tensor( min_dim=2, max_dim=2, dtype=np.float32, elements=st.integers(min_value=-5, max_value=5)), seed=st.integers(min_value=0, max_value=1000), **hu.gcs_cpu_only) @settings(deadline=10000) def test_batch_bucketized_one_hot(self, x, seed, gc, dc): np.random.seed(seed) d = x.shape[1] lens = np.random.randint(low=1, high=5, size=d) boundaries = [] for i in range(d): # add [0, 0] as duplicated boundary for duplicated bucketization if lens[i] > 2: cur_boundary = np.append( np.random.randn(lens[i] - 2) * 5, [0, 0]) else: cur_boundary = np.random.randn(lens[i]) * 5 cur_boundary.sort() boundaries += cur_boundary.tolist() lens = np.array(lens, dtype=np.int32) boundaries = np.array(boundaries, dtype=np.float32) def ref(x, lens, boundaries): output_dim = lens.size + boundaries.size ret = np.zeros((x.shape[0], output_dim)).astype(x.dtype) boundary_offset = 0 output_offset = 0 for i, l in enumerate(lens): bucket_idx_right = np.digitize( x[:, i], boundaries[boundary_offset:boundary_offset + l], right=True ) bucket_idx_left = np.digitize( x[:, i], boundaries[boundary_offset:boundary_offset + l], right=False ) bucket_idx = np.floor_divide( np.add(bucket_idx_right, bucket_idx_left), 2) for j in range(x.shape[0]): ret[j, output_offset + bucket_idx[j]] = 1.0 boundary_offset += lens[i] output_offset += (lens[i] + 1) return (ret, ) op = core.CreateOperator('BatchBucketOneHot', ["X", "LENS", "BOUNDARIES"], ["Y"]) self.assertReferenceChecks(gc, op, [x, lens, boundaries], ref) @serial.given( hot_indices=hu.tensor( min_dim=1, max_dim=1, dtype=np.int64, elements=st.integers(min_value=0, max_value=42)), end_padding=st.integers(min_value=0, max_value=2), **hu.gcs) def test_one_hot(self, hot_indices, end_padding, gc, dc): def one_hot_ref(hot_indices, size): out = np.zeros([len(hot_indices), size], dtype=float) x = enumerate(hot_indices) for i, x in enumerate(hot_indices): out[i, x] = 1. return (out, ) size = np.array(max(hot_indices) + end_padding + 1, dtype=np.int64) if size == 0: size = 1 op = core.CreateOperator('OneHot', ['hot_indices', 'size'], ['output']) self.assertReferenceChecks( gc, op, [hot_indices, size], one_hot_ref, input_device_options={'size': core.DeviceOption(caffe2_pb2.CPU)}) @serial.given(hot_indices=_one_hots()) def test_segment_one_hot(self, hot_indices): index_size, lengths, indices = hot_indices index_size = np.array(index_size, dtype=np.int64) lengths = np.array(lengths, dtype=np.int32) indices = np.array(indices, dtype=np.int64) def segment_one_hot_ref(lengths, hot_indices, size): offset = 0 out = np.zeros([len(lengths), size], dtype=float) for i, length in enumerate(lengths): for idx in hot_indices[offset:offset + length]: out[i, idx] = 1. offset += length return (out, ) op = core.CreateOperator( 'SegmentOneHot', ['lengths', 'hot_indices', 'size'], ['output']) self.assertReferenceChecks( hu.cpu_do, op, [lengths, indices, index_size], segment_one_hot_ref) @given( x=hu.tensor( min_dim=2, max_dim=2, dtype=np.float32, elements=st.integers(min_value=-5, max_value=5)), seed=st.integers(min_value=0, max_value=1000), **hu.gcs_cpu_only) def test_batch_bucket_one_hot_shape_inference(self, x, seed, gc, dc): np.random.seed(seed) d = x.shape[1] lens = np.random.randint(low=1, high=5, size=d) boundaries = [] for i in range(d): # add [0, 0] as duplicated boundary for duplicated bucketization if lens[i] > 2: cur_boundary = np.append( np.random.randn(lens[i] - 2) * 5, [0, 0]) else: cur_boundary = np.random.randn(lens[i]) * 5 cur_boundary.sort() boundaries += cur_boundary.tolist() lens = np.array(lens, dtype=np.int32) boundaries = np.array(boundaries, dtype=np.float32) workspace.FeedBlob('lens', lens) workspace.FeedBlob('boundaries', boundaries) workspace.FeedBlob('x', x) net = core.Net("batch_bucket_one_hot_test") result = net.BatchBucketOneHot(["x", "lens", "boundaries"], 1) (shapes, types) = workspace.InferShapesAndTypes([net]) workspace.RunNetOnce(net) self.assertEqual(shapes[result], list(workspace.blobs[result].shape)) self.assertEqual( shapes[result], [x.shape[0], lens.shape[0] + boundaries.shape[0]]) self.assertEqual(types[result], core.DataType.FLOAT) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/one_hot_ops_test.py
from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import math MAX_TEST_EMBEDDING_SIZE = 20 MAX_TEST_SEQUENCE_LENGTH = 10 MAX_TEST_BATCH_SIZE = 5 MIN_TEST_ALPHA = 5000.0 MAX_TEST_ALPHA = 20000.0 MIN_TEST_AMPLITUDE = 0.1 MAX_TEST_AMPLITUDE = 10.0 class TestSinusoidPositionEncodingOp(serial.SerializedTestCase): @given( positions_vec=hu.arrays( dims=[MAX_TEST_SEQUENCE_LENGTH], dtype=np.int32, elements=st.integers(1, MAX_TEST_SEQUENCE_LENGTH) ), embedding_size=st.integers(1, MAX_TEST_EMBEDDING_SIZE), batch_size=st.integers(1, MAX_TEST_BATCH_SIZE), alpha=st.floats(MIN_TEST_ALPHA, MAX_TEST_ALPHA), amplitude=st.floats(MIN_TEST_AMPLITUDE, MAX_TEST_AMPLITUDE), **hu.gcs_cpu_only ) @settings(deadline=10000) def test_sinusoid_embedding( self, positions_vec, embedding_size, batch_size, alpha, amplitude, gc, dc ): positions = np.tile(positions_vec, [batch_size, 1]).transpose() op = core.CreateOperator( "SinusoidPositionEncoding", ["positions"], ["output"], embedding_size=embedding_size, alpha=alpha, amplitude=amplitude, ) def sinusoid_encoding(dim, position): x = 1. * position / math.pow(alpha, 1. * dim / embedding_size) if dim % 2 == 0: return amplitude * math.sin(x) else: return amplitude * math.cos(x) def sinusoid_embedding_op(positions): output_shape = (len(positions), len(positions[0]), embedding_size) ar = np.zeros(output_shape) for i, position_vector in enumerate(positions): for j, position in enumerate(position_vector): for k in range(embedding_size): ar[i, j, k] = sinusoid_encoding(k, position) return [ar] self.assertReferenceChecks( device_option=gc, op=op, inputs=[positions], reference=sinusoid_embedding_op, )
pytorch-master
caffe2/python/operator_test/sinusoid_position_encoding_op_test.py
import unittest import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, workspace from hypothesis import given, settings class TestHistogram(hu.HypothesisTestCase): @given(rows=st.integers(1, 1000), cols=st.integers(1, 1000), **hu.gcs_cpu_only) @settings(deadline=10000) def test_histogram__device_consistency(self, rows, cols, gc, dc): X = np.random.rand(rows, cols) bin_edges = list(np.linspace(-2, 10, num=10000)) op = core.CreateOperator("Histogram", ["X"], ["histogram"], bin_edges=bin_edges) self.assertDeviceChecks(dc, op, [X], [0]) def test_histogram__valid_inputs_0(self): workspace.FeedBlob( "X", np.array([-2.0, -2.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 9.0]) ) bin_edges = [-2.0, -1.0, 0.0, 2.0, 5.0, 9.0] net = core.Net("test_net") net.Histogram(["X"], ["histogram"], bin_edges=bin_edges) workspace.RunNetOnce(net) histogram_blob = workspace.FetchBlob("histogram") assert list(histogram_blob) == [2, 0, 4, 3, 1] @given(num_tensors=st.integers(1, 5), num_bin_edges=st.integers(2, 10000)) @settings(deadline=10000) def test_histogram__valid_inputs_1(self, num_tensors, num_bin_edges): self._test_histogram( [ np.random.rand(np.random.randint(1, 1000), np.random.randint(1, 1000)) for __ in range(num_tensors) ], list(np.logspace(-12, 5, num=num_bin_edges)), ) def test_histogram__empty_input_tensor(self): self._test_histogram([np.array([])], list(np.linspace(-2, 2, num=10))) def test_histogram__non_increasing_bin_edges(self): with self.assertRaisesRegex( RuntimeError, "bin_edges must be a strictly increasing sequence of values" ): self._test_histogram( [np.random.rand(100), np.random.rand(98)], [0.0, 0.2, 0.1, 0.1] ) def test_histogram__insufficient_bin_edges(self): with self.assertRaisesRegex( RuntimeError, "Number of bin edges must be greater than or equal to 2" ): self._test_histogram([np.random.rand(111)], [1.0]) def _test_histogram(self, tensors, bin_edges): total_size = 0 input_blob_names = [] for idx, tensor in enumerate(tensors): total_size += np.size(tensor) tensor_blob_name = f"X{idx}" workspace.FeedBlob(tensor_blob_name, tensor) input_blob_names.append(tensor_blob_name) output_name = "histogram" net = core.Net("test_net") net.Histogram(input_blob_names, [output_name], bin_edges=bin_edges) workspace.RunNetOnce(net) histogram_blob = workspace.FetchBlob(output_name) assert np.size(histogram_blob) == len(bin_edges) - 1 assert np.sum(histogram_blob) == total_size if __name__ == "__main__": global_options = ["caffe2"] core.GlobalInit(global_options) unittest.main()
pytorch-master
caffe2/python/operator_test/histogram_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest class TestGroupNormOp(serial.SerializedTestCase): def group_norm_nchw_ref(self, X, gamma, beta, group, epsilon): dims = X.shape N = dims[0] C = dims[1] G = group D = int(C / G) X = X.reshape(N, G, D, -1) mu = np.mean(X, axis=(2, 3), keepdims=True) std = np.sqrt((np.var(X, axis=(2, 3), keepdims=True) + epsilon)) gamma = gamma.reshape(G, D, 1) beta = beta.reshape(G, D, 1) Y = gamma * (X - mu) / std + beta return [Y.reshape(dims), mu.reshape(N, G), (1.0 / std).reshape(N, G)] def group_norm_nhwc_ref(self, X, gamma, beta, group, epsilon): dims = X.shape N = dims[0] C = dims[-1] G = group D = int(C / G) X = X.reshape(N, -1, G, D) mu = np.mean(X, axis=(1, 3), keepdims=True) std = np.sqrt((np.var(X, axis=(1, 3), keepdims=True) + epsilon)) gamma = gamma.reshape(G, D) beta = beta.reshape(G, D) Y = gamma * (X - mu) / std + beta return [Y.reshape(dims), mu.reshape(N, G), (1.0 / std).reshape(N, G)] @serial.given( N=st.integers(1, 5), G=st.integers(1, 5), D=st.integers(1, 5), H=st.integers(2, 5), W=st.integers(2, 5), epsilon=st.floats(min_value=1e-5, max_value=1e-4), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) def test_group_norm_2d( self, N, G, D, H, W, epsilon, order, gc, dc): op = core.CreateOperator( "GroupNorm", ["X", "gamma", "beta"], ["Y", "mean", "inv_std"], group=G, epsilon=epsilon, order=order, ) C = G * D if order == "NCHW": X = np.random.randn(N, C, H, W).astype(np.float32) + 1.0 else: X = np.random.randn(N, H, W, C).astype(np.float32) + 1.0 gamma = np.random.randn(C).astype(np.float32) beta = np.random.randn(C).astype(np.float32) inputs = [X, gamma, beta] def ref_op(X, gamma, beta): if order == "NCHW": return self.group_norm_nchw_ref(X, gamma, beta, G, epsilon) else: return self.group_norm_nhwc_ref(X, gamma, beta, G, epsilon) self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=ref_op, threshold=5e-3, ) self.assertDeviceChecks(dc, op, inputs, [0, 1, 2]) @given(N=st.integers(1, 5), G=st.integers(1, 3), D=st.integers(2, 3), T=st.integers(2, 4), H=st.integers(2, 4), W=st.integers(2, 4), epsilon=st.floats(min_value=1e-5, max_value=1e-4), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) def test_group_norm_3d( self, N, G, D, T, H, W, epsilon, order, gc, dc): op = core.CreateOperator( "GroupNorm", ["X", "gamma", "beta"], ["Y", "mean", "inv_std"], group=G, epsilon=epsilon, order=order, ) C = G * D if order == "NCHW": X = np.random.randn(N, C, T, H, W).astype(np.float32) + 1.0 else: X = np.random.randn(N, T, H, W, C).astype(np.float32) + 1.0 gamma = np.random.randn(C).astype(np.float32) beta = np.random.randn(C).astype(np.float32) inputs = [X, gamma, beta] def ref_op(X, gamma, beta): if order == "NCHW": return self.group_norm_nchw_ref(X, gamma, beta, G, epsilon) else: return self.group_norm_nhwc_ref(X, gamma, beta, G, epsilon) self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=ref_op, threshold=5e-3, ) self.assertDeviceChecks(dc, op, inputs, [0, 1, 2]) @given(N=st.integers(1, 5), G=st.integers(1, 5), D=st.integers(2, 2), H=st.integers(2, 5), W=st.integers(2, 5), epsilon=st.floats(min_value=1e-5, max_value=1e-4), order=st.sampled_from(["NCHW", "NHWC"]), **hu.gcs) @settings(deadline=10000) def test_group_norm_grad( self, N, G, D, H, W, epsilon, order, gc, dc): op = core.CreateOperator( "GroupNorm", ["X", "gamma", "beta"], ["Y", "mean", "inv_std"], group=G, epsilon=epsilon, order=order, ) C = G * D X = np.arange(N * C * H * W).astype(np.float32) np.random.shuffle(X) if order == "NCHW": X = X.reshape((N, C, H, W)) else: X = X.reshape((N, H, W, C)) gamma = np.random.randn(C).astype(np.float32) beta = np.random.randn(C).astype(np.float32) inputs = [X, gamma, beta] for i in range(len(inputs)): self.assertGradientChecks(gc, op, inputs, i, [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/group_norm_op_test.py
from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings from hypothesis import strategies as st import numpy as np import time class TestTensorPackOps(serial.SerializedTestCase): def pack_segments_ref(self, return_presence_mask=False, max_length=None): def pack_segments_ref(lengths, data, max_length=max_length): arr = [] constant_values = 0 if data.dtype.char == 'S': constant_values = '' if max_length is None: max_length = np.max(lengths) start = 0 for idx in range(np.size(lengths)): len = lengths[idx] if max_length >= lengths[idx] else max_length chunk = data[start : start + len] pad_length = max_length - len # ((0, pad_length), (0, 0)) says add pad_length rows of padding # below chunk and 0 rows of padding elsewhere arr.append( np.pad( chunk, ((0, pad_length), (0, 0)), mode=str("constant"), constant_values=constant_values ) ) start += lengths[idx] result = [arr] if return_presence_mask: presence_arr = [] for length in lengths: length = length if max_length >= length else max_length pad_length = max_length - length presence_arr.append( np.pad( np.ones((length), dtype=np.bool), ((0, pad_length)), mode=str("constant") ) ) result.append(presence_arr) return result return pack_segments_ref @given( num_seq=st.integers(10, 100), cell_size=st.integers(1, 10), max_length_buffer=st.integers(-5, 5), **hu.gcs ) @settings(deadline=None, max_examples=50) def test_pack_with_max_length_ops( self, num_seq, cell_size, max_length_buffer, gc, dc ): # create data lengths = np.arange(num_seq, dtype=np.int32) + 1 num_cell = np.sum(lengths) data = np.zeros(num_cell * cell_size, dtype=np.float32) left = np.cumsum(np.arange(num_seq) * cell_size) right = np.cumsum(lengths * cell_size) for i in range(num_seq): data[left[i]:right[i]] = i + 1.0 data.resize(num_cell, cell_size) print("\nnum seq:{}, num cell: {}, cell size:{}\n".format( num_seq, num_cell, cell_size) + "=" * 60 ) # run test max_length = num_seq + max_length_buffer op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t'], max_length=max_length) workspace.FeedBlob('l', lengths) workspace.FeedBlob('d', data) start = time.time() self.assertReferenceChecks( device_option=gc, op=op, inputs=[lengths, data, max_length], reference=self.pack_segments_ref(max_length=max_length), ) end = time.time() print("{} used time: {}".format(gc, end - start).replace('\n', ' ')) with core.DeviceScope(gc): workspace.FeedBlob('l', lengths) workspace.FeedBlob('d', data) workspace.RunOperatorOnce(core.CreateOperator( 'PackSegments', ['l', 'd'], ['t'], max_length=max_length, device_option=gc)) workspace.RunOperatorOnce(core.CreateOperator( 'UnpackSegments', ['l', 't'], ['newd'], max_length=max_length, device_option=gc)) assert(workspace.FetchBlob('t').shape[1] == max_length) def _cal_unpacked_data(data): if max_length >= num_seq: return data output = None start = 0 for i, length in enumerate(lengths): new_len = max_length if length > max_length else length chunk = data[start: start + new_len] if output is None: output = chunk else: output = np.concatenate((output, chunk), axis=0) start += length return output true_newd = _cal_unpacked_data(workspace.FetchBlob('d')) assert((workspace.FetchBlob('newd') == true_newd).all()) @given( num_seq=st.integers(10, 500), cell_size=st.integers(1, 10), **hu.gcs ) @settings(deadline=10000) def test_pack_ops(self, num_seq, cell_size, gc, dc): # create data lengths = np.arange(num_seq, dtype=np.int32) + 1 num_cell = np.sum(lengths) data = np.zeros(num_cell * cell_size, dtype=np.float32) left = np.cumsum(np.arange(num_seq) * cell_size) right = np.cumsum(lengths * cell_size) for i in range(num_seq): data[left[i]:right[i]] = i + 1.0 data.resize(num_cell, cell_size) print("\nnum seq:{}, num cell: {}, cell size:{}\n".format( num_seq, num_cell, cell_size) + "=" * 60 ) # run test op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t']) workspace.FeedBlob('l', lengths) workspace.FeedBlob('d', data) start = time.time() self.assertReferenceChecks( device_option=gc, op=op, inputs=[lengths, data], reference=self.pack_segments_ref(), ) end = time.time() print("{} used time: {}".format(gc, end - start).replace('\n', ' ')) with core.DeviceScope(gc): workspace.FeedBlob('l', lengths) workspace.FeedBlob('d', data) workspace.RunOperatorOnce(core.CreateOperator( 'PackSegments', ['l', 'd'], ['t'], device_option=gc)) workspace.RunOperatorOnce(core.CreateOperator( 'UnpackSegments', ['l', 't'], ['newd'], device_option=gc)) assert((workspace.FetchBlob('newd') == workspace.FetchBlob('d')).all()) @given( **hu.gcs_cpu_only ) def test_pack_ops_str(self, gc, dc): # GPU does not support string. Test CPU implementation only. workspace.FeedBlob('l', np.array([1, 2, 3], dtype=np.int64)) strs = np.array([ ["a", "a"], ["b", "b"], ["bb", "bb"], ["c", "c"], ["cc", "cc"], ["ccc", "ccc"]], dtype='|S') workspace.FeedBlob('d', strs) workspace.RunOperatorOnce(core.CreateOperator( 'PackSegments', ['l', 'd'], ['t'], device_option=gc)) workspace.RunOperatorOnce(core.CreateOperator( 'UnpackSegments', ['l', 't'], ['newd'], device_option=gc)) assert((workspace.FetchBlob('newd') == workspace.FetchBlob('d')).all()) def test_pad_minf(self): workspace.FeedBlob('l', np.array([1, 2, 3], dtype=np.int32)) workspace.FeedBlob( 'd', np.array([ [1.0, 1.1], [2.0, 2.1], [2.2, 2.2], [3.0, 3.1], [3.2, 3.3], [3.4, 3.5]], dtype=np.float32)) workspace.RunOperatorOnce(core.CreateOperator( 'PackSegments', ['l', 'd'], ['t'], pad_minf=True)) workspace.RunOperatorOnce(core.CreateOperator( 'Exp', ['t'], ['r'] )) result = workspace.FetchBlob('t') assert(result[0, -1, 0] < -1000.0) # The whole point of padding with -inf is that when we exponentiate it # then it should be zero. exponentiated = workspace.FetchBlob('r') assert(exponentiated[0, -1, 0] == 0.0) def test_pad_no_minf(self): workspace.FeedBlob('l', np.array([1, 2, 3], dtype=np.int32)) workspace.FeedBlob( 'd', np.array([ [1.0, 1.1], [2.0, 2.1], [2.2, 2.2], [3.0, 3.1], [3.2, 3.3], [3.4, 3.5]], dtype=np.float32)) workspace.RunOperatorOnce( core.CreateOperator( 'PackSegments', ['l', 'd'], ['t'], pad_minf=False), ) result = workspace.FetchBlob('t') assert(result[0, -1, 0] == 0.0) workspace.FeedBlob( 'i', np.array([ [1, 1], [2, 2], [2, 2], [3, 3], [3, 3], [3, 3]], dtype=np.int32)) workspace.RunOperatorOnce( core.CreateOperator( 'PackSegments', ['l', 'i'], ['t2'], pad_minf=False), ) result = workspace.FetchBlob('t2') assert(result[0, -1, 0] == 0) @given(**hu.gcs) def test_presence_mask(self, gc, dc): lengths = np.array([1, 2, 3], dtype=np.int32) data = np.array( [ [1.0, 1.0], [2.0, 2.0], [2.0, 2.0], [3.0, 3.0], [3.0, 3.0], [3.0, 3.0] ], dtype=np.float32 ) op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t', 'p'], return_presence_mask=True ) workspace.FeedBlob('l', lengths) workspace.FeedBlob('d', data) inputs = [lengths, data] self.assertReferenceChecks( device_option=gc, op=op, inputs=inputs, reference=self.pack_segments_ref(return_presence_mask=True), ) op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t', 'p'], return_presence_mask=True ) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('t') expected_output_shape = (3, 3, 2) self.assertEquals(output.shape, expected_output_shape) presence_mask = workspace.FetchBlob('p') expected_presence_mask = np.array( [[True, False, False], [True, True, False], [True, True, True]], dtype=np.bool ) self.assertEqual(presence_mask.shape, expected_presence_mask.shape) np.testing.assert_array_equal(presence_mask, expected_presence_mask) def test_presence_mask_empty(self): lengths = np.array([], dtype=np.int32) data = np.array([], dtype=np.float32) op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t', 'p'], return_presence_mask=True ) workspace.FeedBlob('l', lengths) workspace.FeedBlob('d', data) workspace.RunOperatorOnce(op) output = workspace.FetchBlob('p') expected_output_shape = (0, 0) self.assertEquals(output.shape, expected_output_shape) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_out_of_bounds(self, gc, dc): # Copy pasted from test_pack_ops but with 3 changed to 4 lengths = np.array([1, 2, 4], dtype=np.int32) data = np.array([ [1.0, 1.0], [2.0, 2.0], [2.0, 2.0], [3.0, 3.0], [3.0, 3.0], [3.0, 3.0]], dtype=np.float32) op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t']) inputs = [lengths, data] self.assertRunOpRaises( device_option=gc, op=op, inputs=inputs, exception=RuntimeError ) @given(**hu.gcs_cpu_only) @settings(deadline=10000) def test_under_bounds(self, gc, dc): # Copy pasted from test_pack_ops but with 3 changed to 2 lengths = np.array([1, 2, 2], dtype=np.int32) data = np.array([ [1.0, 1.0], [2.0, 2.0], [2.0, 2.0], [3.0, 3.0], [3.0, 3.0], [3.0, 3.0]], dtype=np.float32) op = core.CreateOperator( 'PackSegments', ['l', 'd'], ['t']) inputs = [lengths, data] self.assertRunOpRaises( device_option=gc, op=op, inputs=inputs, exception=RuntimeError ) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/pack_ops_test.py
from caffe2.proto import caffe2_pb2 from caffe2.python import core from hypothesis import assume, given, settings, HealthCheck import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np import unittest class TestFcOperator(serial.SerializedTestCase): def _run_test(self, n, m, k, transposed, multi_dim, dtype, engine, gc, dc): if dtype == np.float16: # fp16 only supported with CUDA/HIP assume(core.IsGPUDeviceType(gc.device_type)) dc = [d for d in dc if core.IsGPUDeviceType(d.device_type)] if engine == 'TENSORCORE': # TensorCore only makes sense with CUDA assume(gc.device_type == caffe2_pb2.CUDA) # ensures TensorCore kernels can be called m *= 8 k *= 8 n *= 8 X = np.random.rand(m, k).astype(dtype) - 0.5 if multi_dim: if transposed: W = np.random.rand(k, n, 1, 1).astype(dtype) - 0.5 else: W = np.random.rand(n, k, 1, 1).astype(dtype) - 0.5 else: if transposed: W = np.random.rand(k, n).astype(dtype) - 0.5 else: W = np.random.rand(n, k).astype(dtype) - 0.5 b = np.random.rand(n).astype(dtype) - 0.5 def fc_op(X, W, b): return [np.dot(X, W.reshape(n, k).transpose()) + b.reshape(n)] def fc_transposed_op(X, W, b): return [np.dot(X, W.reshape(k, n)) + b.reshape(n)] op = core.CreateOperator( 'FCTransposed' if transposed else 'FC', ['X', 'W', 'b'], 'out', engine=engine, ) if dtype == np.float16 and core.IsGPUDeviceType(gc.device_type): a = caffe2_pb2.Argument() a.i = 1 a.name = "float16_compute" op.arg.extend([a]) # Check against numpy reference # ReferenceChecks is flaky, Relaxing to 1e-3. threshold = 1e-3 self.assertReferenceChecks( device_option=gc, op=op, inputs=[X, W, b], reference=fc_transposed_op if transposed else fc_op, threshold=threshold ) # Check over multiple devices self.assertDeviceChecks(dc, op, [X, W, b], [0]) # Gradient checks threshold = 0.5 if dtype == np.float16 else 0.005 stepsize = 0.5 if dtype == np.float16 else 0.05 for i in range(3): self.assertGradientChecks(gc, op, [X, W, b], i, [0], threshold=threshold, stepsize=stepsize) @settings(max_examples=50, suppress_health_check=[HealthCheck.filter_too_much]) @serial.given(n=st.integers(1, 5), m=st.integers(0, 5), k=st.integers(1, 5), multi_dim=st.sampled_from([True, False]), dtype=st.sampled_from([np.float32, np.float16]), engine=st.sampled_from(['', 'TENSORCORE']), **hu.gcs) def test_fc(self, **kwargs): self._run_test(transposed=False, **kwargs) @settings(max_examples=50, suppress_health_check=[HealthCheck.filter_too_much]) @given(n=st.integers(1, 5), m=st.integers(0, 5), k=st.integers(1, 5), multi_dim=st.sampled_from([True, False]), dtype=st.sampled_from([np.float32, np.float16]), engine=st.sampled_from(['', 'TENSORCORE']), **hu.gcs) def test_fc_transposed(self, **kwargs): self._run_test(transposed=True, **kwargs) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/fc_operator_test.py
from hypothesis import assume, given, settings import hypothesis.strategies as st import numpy as np from caffe2.proto import caffe2_pb2 from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestDropout(serial.SerializedTestCase): @serial.given(X=hu.tensor(), in_place=st.booleans(), ratio=st.floats(0, 0.999), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) def test_dropout_is_test(self, X, in_place, ratio, engine, gc, dc): """Test with is_test=True for a deterministic reference impl.""" # TODO(lukeyeager): enable this path when the GPU path is fixed if in_place: # Skip if trying in-place on GPU assume(not (gc.device_type in {caffe2_pb2.CUDA, caffe2_pb2.HIP} and engine == '')) # If in-place on CPU, don't compare with GPU dc = dc[:1] op = core.CreateOperator("Dropout", ["X"], ["X" if in_place else "Y"], ratio=ratio, engine=engine, is_test=True) self.assertDeviceChecks(dc, op, [X], [0]) # No sense in checking gradients for test phase def reference_dropout_test(x): return x, np.ones(x.shape, dtype=np.bool) self.assertReferenceChecks( gc, op, [X], reference_dropout_test, # The 'mask' output may be uninitialized outputs_to_check=[0]) @given(X=hu.tensor(), in_place=st.booleans(), output_mask=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) @settings(deadline=10000) def test_dropout_ratio0(self, X, in_place, output_mask, engine, gc, dc): """Test with ratio=0 for a deterministic reference impl.""" # TODO(lukeyeager): enable this path when the op is fixed if in_place: # Skip if trying in-place on GPU assume(gc.device_type not in {caffe2_pb2.CUDA, caffe2_pb2.HIP}) # If in-place on CPU, don't compare with GPU dc = dc[:1] is_test = not output_mask op = core.CreateOperator("Dropout", ["X"], ["X" if in_place else "Y"] + (["mask"] if output_mask else []), ratio=0.0, engine=engine, is_test=is_test) self.assertDeviceChecks(dc, op, [X], [0]) if not is_test: self.assertGradientChecks(gc, op, [X], 0, [0]) def reference_dropout_ratio0(x): return (x,) if is_test else (x, np.ones(x.shape, dtype=np.bool)) self.assertReferenceChecks( gc, op, [X], reference_dropout_ratio0, # Don't check the mask with cuDNN because it's packed data outputs_to_check=None if engine != 'CUDNN' else [0]) @given(X=hu.tensor(), in_place=st.booleans(), output_mask=st.booleans(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs_cpu_only) @settings(deadline=10000) def test_dropout_ratio1(self, X, in_place, output_mask, engine, gc, dc): """Test with ratio=0 for a deterministic reference impl.""" if in_place: # Skip if trying in-place on GPU assume(gc.device_type not in {caffe2_pb2.CUDA, caffe2_pb2.HIP}) # If in-place on CPU, don't compare with GPU dc = dc[:1] is_test = not output_mask op = core.CreateOperator("Dropout", ["X"], ["X" if in_place else "Y"] + (["mask"] if output_mask else []), ratio=1.0, engine=engine, is_test=is_test) self.assertDeviceChecks(dc, op, [X], [0]) if not is_test: self.assertGradientChecks(gc, op, [X], 0, [0]) def reference_dropout_ratio1(x): return (x,) if is_test else (np.zeros(x.shape, dtype=np.float), np.zeros(x.shape, dtype=np.bool)) self.assertReferenceChecks( gc, op, [X], reference_dropout_ratio1, # Don't check the mask with cuDNN because it's packed data outputs_to_check=None if engine != 'CUDNN' else [0])
pytorch-master
caffe2/python/operator_test/dropout_op_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np class TestDataCoupleOp(TestCase): def test_data_couple_op(self): param_array = np.random.rand(10, 10) gradient_array = np.random.rand(10, 10) extra_array = np.random.rand(10, 10) workspace.FeedBlob("param", param_array) workspace.FeedBlob("gradient", gradient_array) workspace.FeedBlob("extraBlob", extra_array) workspace.RunOperatorOnce(core.CreateOperator( "DataCouple", ["param", "gradient", "extraBlob"], ["param", "gradient"])) result1 = workspace.FetchBlob('param') result2 = workspace.FetchBlob('gradient') self.assertFalse((result1 - param_array).any()) self.assertFalse((result2 - gradient_array).any())
pytorch-master
caffe2/python/operator_test/data_couple_op_test.py
import hypothesis.strategies as st import numpy as np from caffe2.python import core from hypothesis import given, settings import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial class TestTopK(serial.SerializedTestCase): def top_k_ref(self, X, k, flatten_indices, axis=-1): in_dims = X.shape out_dims = list(in_dims) out_dims[axis] = k out_dims = tuple(out_dims) if axis == -1: axis = len(in_dims) - 1 prev_dims = 1 next_dims = 1 for i in range(axis): prev_dims *= in_dims[i] for i in range(axis + 1, len(in_dims)): next_dims *= in_dims[i] n = in_dims[axis] X_flat = X.reshape((prev_dims, n, next_dims)) values_ref = np.ndarray( shape=(prev_dims, k, next_dims), dtype=np.float32) values_ref.fill(0) indices_ref = np.ndarray( shape=(prev_dims, k, next_dims), dtype=np.int64) indices_ref.fill(-1) flatten_indices_ref = np.ndarray( shape=(prev_dims, k, next_dims), dtype=np.int64) flatten_indices_ref.fill(-1) for i in range(prev_dims): for j in range(next_dims): kv = [] for x in range(n): val = X_flat[i, x, j] y = x * next_dims + i * in_dims[axis] * next_dims + j kv.append((val, x, y)) cnt = 0 for val, x, y in sorted( kv, key=lambda x: (x[0], -x[1]), reverse=True): values_ref[i, cnt, j] = val indices_ref[i, cnt, j] = x flatten_indices_ref[i, cnt, j] = y cnt += 1 if cnt >= k or cnt >= n: break values_ref = values_ref.reshape(out_dims) indices_ref = indices_ref.reshape(out_dims) flatten_indices_ref = flatten_indices_ref.flatten() if flatten_indices: return (values_ref, indices_ref, flatten_indices_ref) else: return (values_ref, indices_ref) @serial.given( X=hu.tensor(), flatten_indices=st.booleans(), seed=st.integers(0, 10), **hu.gcs ) def test_top_k(self, X, flatten_indices, seed, gc, dc): X = X.astype(dtype=np.float32) np.random.seed(seed) # `k` can be larger than the total size k = np.random.randint(1, X.shape[-1] + 4) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(bs=st.integers(1, 3), n=st.integers(1, 1), k=st.integers(1, 1), flatten_indices=st.booleans(), **hu.gcs) def test_top_k_1(self, bs, n, k, flatten_indices, gc, dc): X = np.random.rand(bs, n).astype(dtype=np.float32) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(bs=st.integers(1, 3), n=st.integers(1, 10000), k=st.integers(1, 1), flatten_indices=st.booleans(), **hu.gcs) def test_top_k_2(self, bs, n, k, flatten_indices, gc, dc): X = np.random.rand(bs, n).astype(dtype=np.float32) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(bs=st.integers(1, 3), n=st.integers(1, 10000), k=st.integers(1, 1024), flatten_indices=st.booleans(), **hu.gcs) def test_top_k_3(self, bs, n, k, flatten_indices, gc, dc): X = np.random.rand(bs, n).astype(dtype=np.float32) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(bs=st.integers(1, 3), n=st.integers(100, 10000), flatten_indices=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_top_k_4(self, bs, n, flatten_indices, gc, dc): k = np.random.randint(n // 3, 3 * n // 4) X = np.random.rand(bs, n).astype(dtype=np.float32) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(bs=st.integers(1, 3), n=st.integers(1, 1024), flatten_indices=st.booleans(), **hu.gcs) def test_top_k_5(self, bs, n, flatten_indices, gc, dc): k = n X = np.random.rand(bs, n).astype(dtype=np.float32) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(bs=st.integers(1, 3), n=st.integers(1, 5000), flatten_indices=st.booleans(), **hu.gcs) @settings(deadline=10000) def test_top_k_6(self, bs, n, flatten_indices, gc, dc): k = n X = np.random.rand(bs, n).astype(dtype=np.float32) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator("TopK", ["X"], output_list, k=k, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(X=hu.tensor(dtype=np.float32), k=st.integers(1, 5), axis=st.integers(-1, 5), flatten_indices=st.booleans(), **hu.gcs) def test_top_k_axis(self, X, k, axis, flatten_indices, gc, dc): dims = X.shape if axis >= len(dims): axis %= len(dims) output_list = ["Values", "Indices"] if flatten_indices: output_list.append("FlattenIndices") op = core.CreateOperator( "TopK", ["X"], output_list, k=k, axis=axis, device_option=gc) def bind_ref(X_loc): return self.top_k_ref(X_loc, k, flatten_indices, axis) self.assertReferenceChecks(gc, op, [X], bind_ref) self.assertDeviceChecks(dc, op, [X], [0]) @given(X=hu.tensor(dtype=np.float32), k=st.integers(1, 5), axis=st.integers(-1, 5), **hu.gcs) @settings(deadline=10000) def test_top_k_grad(self, X, k, axis, gc, dc): dims = X.shape if axis >= len(dims): axis %= len(dims) input_axis = len(dims) - 1 if axis == -1 else axis prev_dims = 1 next_dims = 1 for i in range(input_axis): prev_dims *= dims[i] for i in range(input_axis + 1, len(dims)): next_dims *= dims[i] X_flat = X.reshape((prev_dims, dims[input_axis], next_dims)) for i in range(prev_dims): for j in range(next_dims): # this try to make sure adding stepsize (0.05) # will not change TopK selections at all X_flat[i, :, j] = np.arange(dims[axis], dtype=np.float32) / 5 np.random.shuffle(X_flat[i, :, j]) X = X_flat.reshape(dims) op = core.CreateOperator( "TopK", ["X"], ["Values", "Indices"], k=k, axis=axis, device_option=gc) self.assertGradientChecks(gc, op, [X], 0, [0], stepsize=0.05)
pytorch-master
caffe2/python/operator_test/top_k_test.py
import functools from hypothesis import given import hypothesis.strategies as st import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu class TestDecayAdagrad(hu.HypothesisTestCase): @staticmethod def ref_decay_adagrad(param, mom1, mom2, grad, LR, ITER, beta1, beta2, epsilon, weight_decay, bias_correction_first, output_grad=False): t = ITER + 1 mom1_out = (beta1 * mom1) + (1 - beta1) * grad mom2_out = mom2 + np.square(grad) if bias_correction_first: c = 1 - np.power(beta1, t) else: c = 1.0 grad_out = mom1_out / c / (np.sqrt(mom2_out) + epsilon) + weight_decay * param param_out = param + LR * grad_out return param_out, mom1_out, mom2_out @given(inputs=hu.tensors(n=4), ITER=st.integers(min_value=0, max_value=10000), LR=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta1=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), beta2=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), weight_decay=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_decay_adagrad(self, inputs, ITER, LR, beta1, beta2, epsilon, weight_decay, gc, dc): bias_correction_first = True param, mom1, mom2, grad = inputs mom2 = np.abs(mom2) ITER = np.array([ITER], dtype=np.int64) LR = np.array([LR], dtype=np.float32) op = core.CreateOperator( "DecayAdagrad", ["param", "mom1", "mom2", "grad", "lr", "iter"], ["output_param", "output_mom1", "output_mom2"], beta1=beta1, beta2=beta2, epsilon=epsilon, weight_decay=weight_decay, bias_correction_first=bias_correction_first) # Iter lives on the CPU input_device_options = {'iter': hu.cpu_do} self.assertReferenceChecks( gc, op, [param, mom1, mom2, grad, LR, ITER], functools.partial( self.ref_decay_adagrad, beta1=beta1, beta2=beta2, epsilon=epsilon, weight_decay=weight_decay, bias_correction_first=bias_correction_first), input_device_options=input_device_options) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/decay_adagrad_test.py
import functools import logging import hypothesis from hypothesis import given, settings, HealthCheck import hypothesis.strategies as st import numpy as np from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial logger = logging.getLogger(__name__) def ref_wngrad(param_in, seq_b_in, grad, lr, epsilon, output_effective_lr=False, output_effective_lr_and_update=False): # helper functions for wngrad operator test seq_b_out = seq_b_in + 1.0 / (seq_b_in + epsilon) * np.sum(grad * grad) effective_lr = lr / (seq_b_in + epsilon) grad_adj = effective_lr * grad param_out = param_in + grad_adj if output_effective_lr_and_update: return (param_out.astype(np.float32), seq_b_out.astype(np.float32), effective_lr.astype(np.float32), grad_adj.astype(np.float32)) elif output_effective_lr: return (param_out.astype(np.float32), seq_b_out.astype(np.float32), effective_lr.astype(np.float32)) return (param_out.astype(np.float32), seq_b_out.astype(np.float32)) def wngrad_sparse_test_helper(parent_test, inputs, seq_b, lr, epsilon, engine, gc, dc): # helper functions for wngrad operator test param, grad = inputs seq_b = np.array([seq_b, ], dtype=np.float32) lr = np.array([lr], dtype=np.float32) # Create an indexing array containing values that are lists of indices, # which index into grad indices = np.random.choice(np.arange(grad.shape[0]), size=np.random.randint(grad.shape[0]), replace=False) # Sparsify grad grad = grad[indices] op = core.CreateOperator( "SparseWngrad", ["param", "seq_b", "indices", "grad", "lr"], ["param", "seq_b"], epsilon=epsilon, engine=engine, device_option=gc) def ref_sparse(param, seq_b, indices, grad, lr): param_out = np.copy(param) seq_b_out = np.copy(seq_b) seq_b_out = seq_b + 1.0 / seq_b * np.sum(grad * grad) for i, index in enumerate(indices): param_out[index] = param[index] + lr / (seq_b + epsilon) * grad[i] return (param_out, seq_b_out) logger.info('test_sparse_adagrad with full precision embedding') seq_b_i = seq_b.astype(np.float32) param_i = param.astype(np.float32) parent_test.assertReferenceChecks( gc, op, [param_i, seq_b_i, indices, grad, lr], ref_sparse ) class TestWngrad(serial.SerializedTestCase): @given(inputs=hu.tensors(n=2), seq_b=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) @settings(deadline=10000) def test_wngrad_dense_base(self, inputs, seq_b, lr, epsilon, gc, dc): param, grad = inputs seq_b = np.array([seq_b, ], dtype=np.float32) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Wngrad", ["param", "seq_b", "grad", "lr"], ["param", "seq_b"], epsilon=epsilon, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, seq_b, grad, lr], functools.partial(ref_wngrad, epsilon=epsilon)) @given(inputs=hu.tensors(n=2), seq_b=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) @settings(deadline=10000) def test_wngrad_dense_output_effective_lr(self, inputs, seq_b, lr, epsilon, gc, dc): param, grad = inputs seq_b = np.array([seq_b, ], dtype=np.float32) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Wngrad", ["param", "seq_b", "grad", "lr"], ["param", "seq_b", "effective_lr"], epsilon=epsilon, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, seq_b, grad, lr], functools.partial(ref_wngrad, epsilon=epsilon, output_effective_lr=True)) @given(inputs=hu.tensors(n=2), seq_b=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) @settings(deadline=10000) def test_wngrad_dense_output_effective_lr_and_update( self, inputs, seq_b, lr, epsilon, gc, dc): param, grad = inputs seq_b = np.abs(np.array([seq_b, ], dtype=np.float32)) lr = np.array([lr], dtype=np.float32) op = core.CreateOperator( "Wngrad", ["param", "seq_b", "grad", "lr"], ["param", "seq_b", "effective_lr", "update"], epsilon=epsilon, device_option=gc, ) self.assertReferenceChecks( gc, op, [param, seq_b, grad, lr], functools.partial(ref_wngrad, epsilon=epsilon, output_effective_lr_and_update=True)) # Suppress filter_too_much health check. # Likely caused by `assume` call falling through too often. @settings(suppress_health_check=[HealthCheck.filter_too_much], deadline=10000) @given(inputs=hu.tensors(n=2), seq_b=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) def test_sparse_wngrad(self, inputs, seq_b, lr, epsilon, gc, dc): return wngrad_sparse_test_helper(self, inputs, seq_b, lr, epsilon, None, gc, dc) @given(inputs=hu.tensors(n=1), lr=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), seq_b=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), epsilon=st.floats(min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False), **hu.gcs_cpu_only) @settings(deadline=10000) def test_sparse_wngrad_empty(self, inputs, seq_b, lr, epsilon, gc, dc): param = inputs[0] seq_b = np.array([seq_b, ], dtype=np.float32) lr = np.array([lr], dtype=np.float32) grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32) indices = np.empty(shape=(0,), dtype=np.int64) hypothesis.note('indices.shape: %s' % str(indices.shape)) op = core.CreateOperator( "SparseWngrad", ["param", "seq_b", "indices", "grad", "lr"], ["param", "seq_b"], epsilon=epsilon, device_option=gc) def ref_sparse(param, seq_b, indices, grad, lr): param_out = np.copy(param) seq_b_out = np.copy(seq_b) return (param_out, seq_b_out) print('test_sparse_adagrad_empty with full precision embedding') seq_b_i = seq_b.astype(np.float32) param_i = param.astype(np.float32) self.assertReferenceChecks( gc, op, [param_i, seq_b_i, indices, grad, lr], ref_sparse )
pytorch-master
caffe2/python/operator_test/wngrad_test.py
import logging import caffe2.python.hypothesis_test_util as hu import numpy as np from caffe2.python import core from hypothesis import given, settings, strategies as st logger = logging.getLogger(__name__) def get_input_tensors(): height = np.random.randint(1, 10) width = np.random.randint(1, 10) dtype = np.float32 input_tensor = hu.arrays( dims=[height, width], dtype=dtype, elements=st.integers(min_value=0, max_value=100), ) return input_tensor class TestCopyRowsToTensor(hu.HypothesisTestCase): @given(input_tensor=get_input_tensors(), **hu.gcs_cpu_only) def test_copy_rows_to_tensor(self, input_tensor, gc, dc): dtype = np.random.choice([np.float16, np.float32, np.int32, np.int64], 1)[0] input_tensor = np.array(input_tensor).astype(dtype) height = np.shape(input_tensor)[0] width = np.shape(input_tensor)[1] row = np.random.rand(width).astype(dtype) indices_lengths = np.random.randint(height) all_indices = np.arange(height) np.random.shuffle(all_indices) indices = all_indices[:indices_lengths] def ref(input_tensor, indices, row): for idx in indices: input_tensor[idx] = row return [input_tensor] op = core.CreateOperator( "CopyRowsToTensor", ["input_tensor", "indices", "row"], ["input_tensor"] ) self.assertReferenceChecks( device_option=gc, op=op, inputs=[input_tensor, indices, row], reference=ref, ) @given(input_tensor=get_input_tensors(), **hu.gcs_cpu_only) @settings(deadline=10000) def test_copy_rows_to_tensor_invalid_input(self, input_tensor, gc, dc): input_tensor = np.array(input_tensor).astype(np.float32) height = np.shape(input_tensor)[0] width = np.shape(input_tensor)[1] row = np.random.rand(width + 1).astype(np.float32) indices_lengths = np.random.randint(height) all_indices = np.arange(height) np.random.shuffle(all_indices) indices = all_indices[:indices_lengths] self.assertRunOpRaises( device_option=gc, op=core.CreateOperator( "CopyRowsToTensor", ["input_tensor", "indices", "row"], ["input_tensor"] ), inputs=[input_tensor, indices, row], exception=RuntimeError, regexp="width of input tensor should match lengths of row", )
pytorch-master
caffe2/python/operator_test/copy_rows_to_tensor_op_test.py
from caffe2.python import core, workspace from caffe2.python.text_file_reader import TextFileReader from caffe2.python.test_util import TestCase from caffe2.python.schema import Struct, Scalar, FetchRecord import tempfile import numpy as np class TestTextFileReader(TestCase): def test_text_file_reader(self): schema = Struct( ('field1', Scalar(dtype=str)), ('field2', Scalar(dtype=str)), ('field3', Scalar(dtype=np.float32))) num_fields = 3 col_data = [ ['l1f1', 'l2f1', 'l3f1', 'l4f1'], ['l1f2', 'l2f2', 'l3f2', 'l4f2'], [0.456, 0.789, 0.10101, -24342.64], ] row_data = list(zip(*col_data)) with tempfile.NamedTemporaryFile(mode='w+', delete=False) as txt_file: txt_file.write( '\n'.join( '\t'.join(str(x) for x in f) for f in row_data ) + '\n' ) txt_file.flush() for num_passes in range(1, 3): for batch_size in range(1, len(row_data) + 2): init_net = core.Net('init_net') reader = TextFileReader( init_net, filename=txt_file.name, schema=schema, batch_size=batch_size, num_passes=num_passes) workspace.RunNetOnce(init_net) net = core.Net('read_net') should_stop, record = reader.read_record(net) results = [np.array([])] * num_fields while True: workspace.RunNetOnce(net) arrays = FetchRecord(record).field_blobs() for i in range(num_fields): results[i] = np.append(results[i], arrays[i]) if workspace.FetchBlob(should_stop): break for i in range(num_fields): col_batch = np.tile(col_data[i], num_passes) if col_batch.dtype in (np.float32, np.float64): np.testing.assert_array_almost_equal( col_batch, results[i], decimal=3) else: np.testing.assert_array_equal(col_batch, results[i]) if __name__ == "__main__": import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/text_file_reader_test.py
from caffe2.python import core import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import unittest class TestFloor(serial.SerializedTestCase): @given(X=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs) @settings(deadline=10000) def test_floor(self, X, gc, dc, engine): op = core.CreateOperator("Floor", ["X"], ["Y"], engine=engine) def floor_ref(X): return (np.floor(X),) self.assertReferenceChecks( device_option=gc, op=op, inputs=[X], reference=floor_ref) # Check over multiple devices self.assertDeviceChecks(dc, op, [X], [0]) if __name__ == "__main__": unittest.main()
pytorch-master
caffe2/python/operator_test/floor_op_test.py
from caffe2.python import core from hypothesis import assume, given, settings import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np class TestReduceFrontSum(hu.HypothesisTestCase): @given(batch_size=st.integers(1, 3), stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), channels=st.integers(1, 8), **hu.gcs) def test_im2col_layout(self, batch_size, stride, pad, kernel, dilation, size, channels, gc, dc): dkernel = (dilation * (kernel - 1) + 1) assume(size >= dkernel) NCHW_TO_NHWC = (0, 2, 3, 1) NHWC_TO_NCHW = (0, 3, 1, 2) COL_NHWC_TO_NCHW = (4, 2, 3, 0, 1) N = batch_size C = channels H = size W = size out_h = int((H + (2 * pad) - dkernel) / stride + 1) out_w = int((W + (2 * pad) - dkernel) / stride + 1) im_nchw = np.random.rand(N, C, H, W).astype(np.float32) - 0.5 im_nhwc = im_nchw.transpose(NCHW_TO_NHWC) op_im2col_nchw = core.CreateOperator( "Im2Col", ["im_nchw"], ["col_nchw"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order="NCHW", device_option=gc) op_im2col_nhwc = core.CreateOperator( "Im2Col", ["im_nhwc"], ["col_nhwc"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order="NHWC", device_option=gc) self.ws.create_blob("im_nchw").feed(im_nchw, device_option=gc) self.ws.create_blob("im_nhwc").feed(im_nhwc, device_option=gc) self.ws.run(op_im2col_nchw) self.ws.run(op_im2col_nhwc) # there is probably a clever way to spell this in np col_nchw = self.ws.blobs["col_nchw"].fetch() col_nhwc = self.ws.blobs["col_nhwc"].fetch() col_nchw_ = col_nchw.reshape(N, C, kernel, kernel, out_h, out_w) col_nhwc_ = col_nhwc.reshape(N, out_h, out_w, kernel, kernel, C) for i in range(0, N): np.testing.assert_allclose( col_nchw_[i], col_nhwc_[i].transpose(COL_NHWC_TO_NCHW), atol=1e-4, rtol=1e-4) op_col2im_nchw = core.CreateOperator( "Col2Im", ["col_nchw", "im_nchw"], ["out_nchw"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order="NCHW", device_option=gc) op_col2im_nhwc = core.CreateOperator( "Col2Im", ["col_nhwc", "im_nhwc"], ["out_nhwc"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order="NHWC", device_option=gc) self.ws.run(op_col2im_nchw) self.ws.run(op_col2im_nhwc) out_nchw = self.ws.blobs["out_nchw"].fetch() out_nhwc = self.ws.blobs["out_nhwc"].fetch() np.testing.assert_allclose( out_nchw, out_nhwc.transpose(NHWC_TO_NCHW), atol=1e-4, rtol=1e-4) @given(batch_size=st.integers(1, 3), stride=st.integers(1, 3), pad=st.integers(0, 3), kernel=st.integers(1, 5), dilation=st.integers(1, 3), size=st.integers(7, 10), channels=st.integers(1, 8), order=st.sampled_from(["NCHW"]), **hu.gcs) @settings(deadline=10000) def test_col2im_gradients(self, batch_size, stride, pad, kernel, dilation, size, channels, order, gc, dc): assume(size >= dilation * (kernel - 1) + 1) op = core.CreateOperator( "Im2Col", ["X"], ["Y"], stride=stride, kernel=kernel, dilation=dilation, pad=pad, order=order, device_option=gc) X = np.random.rand(batch_size, channels, size, size).astype(np.float32) self.assertGradientChecks(gc, op, [X], 0, [0]) return
pytorch-master
caffe2/python/operator_test/im2col_col2im_test.py
from caffe2.python import core, workspace import caffe2.python.hypothesis_test_util as hu import caffe2.python.serialized_test.serialized_test_util as serial import hypothesis.strategies as st import numpy as np class TestScaleOps(serial.SerializedTestCase): @serial.given(dim=st.sampled_from([[1, 386, 1], [386, 1, 1], [1, 256, 1], [256, 1, 1], [1024, 256, 1], [1, 1024, 1], [1, 1, 1]]), scale=st.floats(0.0, 10.0), num_tensors=st.integers(1, 10), **hu.gcs) def test_scale_ops(self, dim, scale, num_tensors, gc, dc): in_tensors = [] in_tensor_ps = [] out_tensors = [] out_ref_tensors = [] # initialize tensors for i in range(num_tensors): tensor = "X_{}".format(i) X = np.random.rand(*dim).astype(np.float32) - 0.5 in_tensors.append(tensor) in_tensor_ps.append(X) out_tensor = "O_{}".format(i) out_tensors.append(out_tensor) workspace.FeedBlob(tensor, X, device_option=gc) # run ScaleBlobs operator scale_blobs_op = core.CreateOperator( "ScaleBlobs", in_tensors, out_tensors, scale=scale, ) scale_blobs_op.device_option.CopyFrom(gc) workspace.RunOperatorOnce(scale_blobs_op) # run Scale op for each tensor and compare with ScaleBlobs for i in range(num_tensors): tensor = "X_{}".format(i) out_ref_tensor = "O_ref_{}".format(i) scale_op = core.CreateOperator( "Scale", [tensor], [out_ref_tensor], scale=scale, ) scale_op.device_option.CopyFrom(gc) workspace.RunOperatorOnce(scale_op) o_ref = workspace.FetchBlob(out_ref_tensor) o = workspace.FetchBlob(out_tensors[i]) np.testing.assert_allclose(o, o_ref) if __name__ == '__main__': import unittest unittest.main()
pytorch-master
caffe2/python/operator_test/scale_op_test.py
from caffe2.python import core, workspace from caffe2.python.test_util import TestCase import numpy as np class TestCounterOps(TestCase): def test_stats_ops(self): # The global StatRegistry isn't reset when the workspace is reset, # so there may be existing stats from a previous test workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['prev_k', 'prev_v', 'prev_ts'])) previous_keys = workspace.FetchBlob('prev_k') existing = len(previous_keys) prefix = '/'.join([__name__, 'TestCounterOps', 'test_stats_ops']) keys = [ (prefix + '/key1').encode('ascii'), (prefix + '/key2').encode('ascii') ] values = [34, 45] workspace.FeedBlob('k', np.array(keys, dtype=str)) workspace.FeedBlob('v', np.array(values, dtype=np.int64)) for _ in range(2): workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryUpdate', ['k', 'v'], [])) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', [], ['k2', 'v2', 't2'])) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryCreate', [], ['reg'])) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryUpdate', ['k2', 'v2', 'reg'], [])) workspace.RunOperatorOnce(core.CreateOperator( 'StatRegistryExport', ['reg'], ['k3', 'v3', 't3'])) k3 = workspace.FetchBlob('k3') v3 = workspace.FetchBlob('v3') t3 = workspace.FetchBlob('t3') self.assertEqual(len(k3) - existing, 2) self.assertEqual(len(v3), len(k3)) self.assertEqual(len(t3), len(k3)) for key in keys: self.assertIn(key, k3)
pytorch-master
caffe2/python/operator_test/stats_ops_test.py