test_script / test_script.py
lijianbin's picture
update
6cdb0e4
"""该脚本是官网下载的模板所改写的"""
# import csv
# import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
import pandas as pd
_CITATION = """
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """
This dataset is a random sample used to learn how to share dataset in the Hub.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "www.huggingface.co/lijianbin"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "123"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }
_URLS = {
'train': 'https://huggingface.co/datasets/lijianbin/test_script/train.xlsx',
'validation': 'https://huggingface.co/datasets/lijianbin/test_script/validation.xlsx',
'test': 'https://huggingface.co/datasets/lijianbin/test_script/test.xlsx',
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class ScriptTest(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
# ]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = datasets.Features(
{
"label": datasets.Value("float"),
"x1": datasets.Value("float"),
"x2": datasets.Value("float"),
"x3": datasets.Value("float"),
"x4": datasets.Value("float"),
"x5": datasets.Value("float"),
"x6": datasets.Value("float"),
"x7": datasets.Value("float"),
"x8": datasets.Value("float"),
"x9": datasets.Value("float"),
"x10": datasets.Value("float"),
# 'shape': (1000, 11)
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS
data_dir = dl_manager.download_and_extract(urls)
# data_dir = urls
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir['train']),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir['validation']),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir['test']),
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, 'rb') as f:
df = pd.read_excel(f)
for key in df.index.tolist():
yield key, dict(df.loc[key, :])