"""该脚本是官网下载的模板所改写的""" | |
# import csv | |
# import json | |
import os | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
import pandas as pd | |
_CITATION = """ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """ | |
This dataset is a random sample used to learn how to share dataset in the Hub. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "www.huggingface.co/lijianbin" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "123" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
# _URLS = { | |
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", | |
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", | |
# } | |
_URLS = { | |
'train': 'https://huggingface.co/datasets/lijianbin/test_script/train.xlsx', | |
'validation': 'https://huggingface.co/datasets/lijianbin/test_script/validation.xlsx', | |
'test': 'https://huggingface.co/datasets/lijianbin/test_script/test.xlsx', | |
} | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class ScriptTest(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
# BUILDER_CONFIGS = [ | |
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), | |
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), | |
# ] | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
features = datasets.Features( | |
{ | |
"label": datasets.Value("float"), | |
"x1": datasets.Value("float"), | |
"x2": datasets.Value("float"), | |
"x3": datasets.Value("float"), | |
"x4": datasets.Value("float"), | |
"x5": datasets.Value("float"), | |
"x6": datasets.Value("float"), | |
"x7": datasets.Value("float"), | |
"x8": datasets.Value("float"), | |
"x9": datasets.Value("float"), | |
"x10": datasets.Value("float"), | |
# 'shape': (1000, 11) | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS | |
data_dir = dl_manager.download_and_extract(urls) | |
# data_dir = urls | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir['train']), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir['validation']), | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir['test']), | |
"split": "test" | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
with open(filepath, 'rb') as f: | |
df = pd.read_excel(f) | |
for key in df.index.tolist(): | |
yield key, dict(df.loc[key, :]) | |